Recursions

Po-Shen Loh

26 October 2010

1 Problems

VTRMC 2010/0. When and where is the VTRMC?

- **VTRMC 2008/2.** How many sequences of 1's and 3's sum to 16? (Examples of such sequences are $\{1, 3, 3, 3, 3, 3\}$ and $\{1, 3, 1, 3, 1, 3, 1, 3\}$.)
- **VTRMC 2001/3.** For each positive integer n, let S_n denote the total number of squares in an $n \times n$ square grid. Thus $S_1 = 1$ and $S_2 = 5$, because a 2×2 square grid has four 1×1 squares and one 2×2 square. Find a recurrence relation for S_n , and use it to calculate the total number of squares on a chess board (i.e. determine S_8).
- Classical. How about the number of rectangles?
- VTRMC 2004/3. A computer is programmed to randomly generate a string of six symbols using only the letters A, B, C. What is the probability that the string will not contain three consecutive A's?
- **VTRMC 2002/5.** Let *n* be a positive integer. A bit string of length *n* is a sequence of *n* numbers consisting of 0's and 1's. Let f(n) denote the number of bit strings of length *n* in which every 0 is surrounded by 1's. (Thus for n = 5, 11101 is allowed, but 10011 and 10110 are not allowed, and we have f(3) = 2, f(4) = 3.) Prove that f(n) < (1.7)n for all *n*.
- **VTRMC 2005/3.** We wish to tile a strip of n 1-inch by 1-inch squares. We can use dominos which are made up of two tiles which cover two adjacent squares, or 1-inch square tiles which cover one square. We may cover each square with one or two tiles and a tile can be above or below a domino on a square, but no part of a domino can be placed on any part of a different domino. We do not distinguish whether a domino is above or below a tile on a given square. Let t(n) denote the number of ways the strip can be tiled according to the above rules. Thus for example, t(1) = 2 and t(2) = 8. Find a recurrence relation for t(n), and use it to compute t(6).

2 Bonus problems

- **Putnam 2005/A2.** Let S be an $n \times 3$ chessboard, i.e., $S = \{(a,b) : a = 1, \ldots, n; b = 1, 2, 3\}$. A rook tour of S is a polygonal path made up of line segments connecting points p_1, p_2, \ldots, p_{3n} in sequence such that
 - (i) $p_i \in S$,
 - (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
 - (iii) for each $p \in S$ there is a unique *i* such that $p_i = p$.

How many rook tours are there that begin at (1,1) and end at (n,1)?

Putnam 2005/B4. For positive integers m and n, let f(m,n) denote the number of n-tuples (x_1, \ldots, x_n) of integers such that $|x_1| + \cdots + |x_n| \le m$. Show that f(m,n) = f(n,m).

Putnam 2007/B3. Let $x_0 = 1$, and for $n \ge 0$, let

$$x_{n+1} = 3x_n + |x_n\sqrt{5}|.$$

In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for x_{2007} .