
SUM-PRODUCT ESTIMATES

BEN GREEN

Abstract. Notes on the sum-product estimates of Bourgain-Katz-Tao and Bourgain-
Konyagin.

1. introduction

The aim of these notes is to give a self-contained proof of the sum-product estimates of
Bourgain, Katz, Tao and Konyagin. Specifically we will establish:

Theorem 1.1. Suppose that p is a prime, and that A ⊆ Fp\{0} is a set with |A| 6 p1−δ.
Then there is an absolute constant c = c(δ) > 0 such that we have the estimate

|A + A|+ |A · A| > c|A|1+c.

2. The Balog-Szemerédi-Gowers theorem

The first three sections are devoted to proving Proposition 4.4. This proposition shows
that if |A + A| and |A · A| are both small then, after passing to a largeish subset of A,
we may control more complicated algebraic expressions too.

Let A be a subset of an abelian group, written additively. We write M+(A) for the
number of additive quadruples in A, that is to say quadruples (a1, a2, a3, a4) ∈ A4 such
that a1 − a2 = a3 − a4. If A is a subset of some abelian group written multiplicatively,
then we write M×(A) for the number of solutions to a1/a2 = a3/a4. A very simple
application of the Cauchy-Schwarz inequality serves to establish that if A has small
doubling, then M+(A) is large.

Lemma 2.1. Suppose that A is a subset of an abelian group with |A| = N , and that
|A+A| 6 K|A|. Then M+(A) > K−1N3. Similarly, suppose that |A ·A| 6 K|A|. Then
M×(A) > K−1N3.

Proof. We have

M+(A) =
∑

x

1A ∗ 1A(x)2 > |A + A|−1
( ∑

x

1A ∗ 1A(x)
)2

=
N4

|A + A|
.

The converse inequality does not hold: there are sets with large M+(A) which also have
very large doubling (take A to be the union of an arithmetic progression of length N/2
and N/2 random points, for example). There is, however, a very useful result of Balog
and Szemerédi which does provide a converse, so long as one is prepared to pass to a
subset of A.
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Lemma 2.2 (Gowers). Suppose that |A| = N and that M+(A) = αN3. Then there is
a set A′ ⊆ A, |A′| > αN/8, such that for all a′1, a

′
2 ∈ A′ there are at least 2−29α11N7

solutions to the equation

a′1 − a′2 = x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8

with xi ∈ A.

Proof. (following Gowers [4], with variation due to Chang [3]). We construct a graph
Γ = (V, E), the popular difference graph of A, as follows. We set V := A and join a1 to
a2 if the number of solutions to a1− a2 = a3− a4 with a3, a4 ∈ A is at least αN/2. Now
we have

αN3 = M+(A) =
∑
a1,a2

1A ∗ 1−A(a1 − a2) 6 N |E(Γ)|+ 1

2
αN3,

and so
|E(Γ)| > αN2/2. (2.1)

We will be interested in the neighbourhoods of vertices in Γ. Thus for x ∈ V define

N(x) := {y ∈ V : xy ∈ E(Γ)}.
Set δ := 2−11α3. We say that a pair (a1, a2) ∈ A2 is unfriendly if

|N(a1) ∩N(a2)| 6 δN.

Claim. There is some a∗ ∈ A such that |N(a∗)| > αN/4, and such that at least 95
percent of the pairs (x1, x2) ∈ N(a∗)2 are friendly.

Proof. Fix an unfriendly pair (a1, a2) ∈ A2. The number of t for which a1, a2 ∈ N(t)
is then precisely |N(a1) ∩ N(a2)|, which by definition is at most δN . Thus if t ∈ A
is selected at random, the probability that (a1, a2) ∈ N(t)2 is δ. Writing f(t) for the
number of unfriendly pairs in N(t)2, we therefore have

Et∈Af(t) 6 δN2.

Now we also have
Et∈A|N(t)| = N−1|E(Γ)| > αN/2.

Therefore, in view of the choice of δ, we have

Et∈A

(
|N(t)| − 320

α2N
f(t)

)
> αN/4.

Choose a particular value of a∗ for which

|N(a∗)| − 320

α2N
f(a∗) > αN/4.

Certainly, then, we have
|N(a∗)| > αN/4;

furthermore, we have

f(a∗) 6 α2N2/320 6
1

20
|N(a∗)|2.

This proves the claim.

Now it is easy to see that for at least 1/2 of all a ∈ N(a∗), at least 90 percent of
x ∈ N(a∗) are such that (a, x) is friendly. Define A′ to be the set of such a, and suppose
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that a′1, a
′
2 ∈ A′. Then for at least 80 percent of w ∈ N(a∗), both of the pairs (a′1, w)

and (a′2, w) are friendly. This means, by definition, that

|N(a′1) ∩N(w)| > δN

and
|N(a′2) ∩N(w)| > δN.

There are, therefore, at least αδ2N3/8 choices of a triple (w, b1, b2) such that all of a′1b1,
b1w, wb2 and b2a

′
2 lie in Γ. For each such triple there are (by definition of Γ) at least

(αN/2)4 solutions to the system of equations

a′1 − b1 = x1 − x2

b1 − w = x3 − x4

w − b2 = x5 − x6

b2 − a′2 = x7 − x8.

Summing these equations, we obtain

a′1 − a′2 = x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8

in at least 2−29α11N7 ways.

Chang [3] in fact obtains slightly better bounds by refining the notion of “popular
difference”, working on dyadic ranges where 1A ∗ 1−A is roughly constant.

Corollary 2.3 (Balog-Szemerédi-Gowers). Suppose that A is a subset of an abelian
group with |A| = N , and that M+(A) = αN3. Then there is a set A′ ⊆ A, |A′| > αN/8,
such that |A′ − A′| 6 232α−12|A′|.

Proof. Simply take the set A′ constructed above. To each element x = a′1−a′2 ∈ A′−A′ is
associated at least 2−29α11N7 octuples (x1, . . . , x8) ∈ A8 such that a′1−a′2 = x1−· · ·−x8.
Clearly, then, |A′ − A′| 6 229α−11N .

3. Bounding the algebra generated by A

In this section and the next we work in an arbitrary field k. Only in the final section will
the specific properties of Fp come to the fore. Now the knowledge that |A+A|, |A ·A| 6
K|A| is not in itself enough to prove Theorem 1.1. In this section we use the Balog-
Szemerédi-Gowers theorem to show that after passing to a subset A′′ ⊆ A we may
assume that more complicated algebraic expressions are also small.

Proposition 3.1. Suppose that A ⊆ k and that |A + A|, |A ·A| 6 K|A|. Then there is
some A′′ ⊆ A with |A′′| � K−C |A| such that |A′′ · A′′ − A′′ · A′′| � KC |A|.

Proof. Write N := |A|. We may assume (after adjusting constants slightly) that 0 /∈ A.
From Lemmas 2.1 and 2.2, we may find a subset A′ ⊆ A with |A′| � N/K such that
for each pair (a′1, a

′
2) ∈ A′2 there are � K−11N7 solutions to the equation

a′1 − a′2 = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8.

Multiplying though by an arbitrary element of A ·A ·A ·A ·A/A ·A ·A ·A, we see that
if

x ∈ X :=
(A′ − A′)A · A · A · A · A

A · A · A · A
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then there are � K−11N7 solutions to the equation

x = b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8

with

bi ∈ B :=
A · A · A · A · A · A

A · A · A · A
.

Note that from the multiplicative form of the Plünnecke-Ruzsa inequalities we have

|B| 6 K10N.

It follows, then, that
|X| � K91N. (3.1)

We now refine A′ multiplicatively. Noting that

|A′ · A′| 6 |A · A| 6 KN 6 8K2|A′|,
we may apply the multiplicative form of Lemmas 2.1 and 2.2 to obtain a further refine-
ment A′′ ⊆ A′, |A′′| � K−3N , such that for any pair (a′′1, a

′′
2) ∈ A′′ there are � K−22N7

solutions to the equation
a′′1
a′′2

=
a′1a

′
2a

′
3a

′
4

a′5a
′
6a

′
7a

′
8

(3.2)

with a′i ∈ A′.

Pick an arbitrary further pair of elements a′′3, a
′′
4. Then we have

a′′1a
′′
4 − a′′2a

′′
3 =

a′1a
′
2a

′
3a

′
4a

′′
2a

′′
4 − a′′3a

′′
2a

′
5a

′
6a

′
7a

′
8

a′5a
′
6a

′
7a

′
8

.

This may be written as
x1 + x2 + x3 + x4 + x5 + x6,

where
a′5a

′
6a

′
7a

′
8x1 = a′1a

′
2a

′
3a

′
4a

′′
2(a

′′
4 − a′8),

a′5a
′
6a

′
7a

′
8x2 = a′1a

′
2a

′
3a

′
4(a

′′
2 − a′7)a

′
8,

a′5a
′
6a

′
7a

′
8x3 = a′1a

′
2a

′
3(a

′
4 − a′6)a

′
7a

′
8,

a′5a
′
6a

′
7a

′
8x4 = a′1a

′
2(a

′
3 − a′5)a

′
6a

′
7a

′
8,

a′5a
′
6a

′
7a

′
8x5 = a′1(a

′
2 − a′′3)a

′
5a

′
6a

′
7a

′
8

and
a′5a

′
6a

′
7a

′
8x6 = (a′1 − a′′2)a

′′
3a

′
5a

′
6a

′
7a

′
8.

Observe that each xi lies in the set X which we defined earlier, and whose cardinality
is bounded by (3.1). Regarding the a′′i as fixed, one may use (3.2) and simple algebra
to recover, in turn, the six quantities a′8, a

′
7, a

′
6/a

′
4, a

′
5/a

′
3, a

′
2 and a′1 from a knowledge of

the xi. Thus the map

(a′1, a
′
2, a

′
3, a

′
4, a

′
5, a

′
6, a

′
7, a

′
8) → (x1, x2, x3, x4, x5, x6)

is at most N2-to-one, which means that there are� K−22N5 sextuples (x1, . . . , x6) ∈ X6

so that
a′′1a

′′
4 − a′′2a

′′
3 = x1 + x2 + x3 + x4 + x5 + x6.

It follows from (3.1) that

|A′′ · A′′ − A′′ · A′′| � K568N,

as required.
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4. The algebra generated by A

In this section we show (quoting almost verbatim from [1]) that if k is a field and if
A ⊆ k is a set with |A ·A−A ·A| 6 K|A|, then in fact A is almost closed under much
more complicated algebraic operations too.

Proposition 4.1. Suppose that k is a field and that A ⊆ k is a set with |A ·A−A ·A| 6
K|A|. Let P be any multivariable polynomial with integer coefficients. Then there is
some constant C(P ) such that

|P (A, A, . . . , A)| �P KC(P )|A|.
Let A, B be two sets in k. Then we write A b B if there is an absolute constant C
together with a set X ⊆ k, |X| 6 CKC , such that A ⊆ X + B. The following lemma1,
known as Ruzsa’s Covering Lemma, gives a supply of situations like this.

Lemma 4.2. Let A and B be subsets of k such that either |A + B| 6 CKC |A| or
|A−B| 6 CKC |A|. Then B b A− A.

Proof. By symmetry we may assume that |A + B| 6 CKC |A|. Let X be a maximal
subset of B with the property that the sets {x+A : x ∈ X} are all disjoint. Since these
sets x+A all have cardinality |A| and are all contained in A+B we have |X||A| 6 |A+B|,
and hence |X| 6 CKC . Since the set X is maximal, we see that for every b ∈ B, the
set b + A must intersect x + A for some x ∈ X. Thus b ∈ x + A − A, and hence
B ⊆ X + A− A as desired.

We say that an element x ∈ k good if we have x · A b A− A.

Proposition 4.3. Every element of A is good. If x and y are good then x + y, x − y
and xy are all good.

Remark. Note that the definition of “good” involves an absolute constant C. That
constant may (and will, in fact) be larger for x + y (or x− y, xy) than it is for x and y.

Proof. Let us first show that every element of A is good. Since 1 ∈ A, we have

|A · A− A| 6 |A · A− A · A| 6 K|A|
and hence by Lemma 4.2

A · A b A− A (4.1)

and so indeed
a · A b A− A

for each a ∈ A.

Now suppose that x and y are good, so that x · A b A− A and y · A b A− A. Then

(x + y) · A ⊆ x · A + y · A b A− A + A− A.

On the other hand, since |A−A| 6 |A.A−A.A| 6 K|A|, the Plünnecke-Ruzsa inequal-
ities imply that

|A− A + A− A + A| 6 K5|A|
and hence by Lemma 4.2

A− A + A− A b A− A. (4.2)

1We saw essentially this lemma when we proved Freiman’s theorem in Fn
2 .
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Since b is clearly a transitive relation, we have (x + y) ·A b A−A and hence x + y is
good. A very similar argument shows that x− y is good.

It remains to show that xy is good. Since x · A b A− A we have

xy · A b y · A− y · A.

But since y · A b A− A, we have

xy · A b A− A− A + A.

By (4.2) we conclude that xy is good.

Proof of Proposition 4.1. Write Am for the product of m copies of A. We now prove
inductively that Am b A − A for all m = 0, 1, 2, 3, . . . . The cases m = 0, 1 are trivial,
and the case m = 2 has already been proved in (4.1). Suppose then that m > 3, and
that we have already proven that Am−1 b A− A. Thus

Am−1 ⊆ X + A− A

for some set X with |X| 6 CKC . Clearly we may assume that X ⊆ Am−1 − (A − A),
since if x /∈ Am−1 − (A−A) then Am−1 ∩ (x + A−A) = ∅. In particular every element
of X is good. We now multiply through by A to obtain

Am ⊆ X · A + A · A− A · A.

Since every element of X is good, and |X| 6 CKC , we see that X · A b A − A. By
(4.1) we thus have

Am b A− A + A− A− (A− A).

But by arguing as in the proof of (4.2) we have

A− A + A− A− (A− A) b A− A.

Thus we have indeed proved inductively that Am b A − A for all m. To conclude the
proof of Proposition 4.1, simply note that from (4.2) and the transitivity of b we have
P (A, . . . , A) b A − A for every multivariable polynomial P with integer coefficients.
The required bound on |P (A, . . . , A)| is immediate.

We conclude this section with a corollary. This corollary will be the only result that we
carry through to the final section of the paper, where Theorem 1.1 will be proved. If
A ⊆ k is a set then we define

J(A) :=
{
a5

(a1a2 − a3a4

a3 − a1

+ a6

)
: a1, . . . , a6 ∈ A, a1 6= a3

}
.

Proposition 4.4. Suppose that A ⊆ k satisfies |A + A| 6 K|A| and |A · A| 6 K|A|.
Then there is a set A′′ ⊆ A with |A′′| � K−C |A| and |J(A′′)| � KC |A|.

Proof. By Proposition 3.1 there is A′′ ⊆ A with |A′′| � K−C |A| and such that |A′′ ·
A′′ − A′′ · A′′| � KC |A′′|. Note that

J(A′′) ⊆ P (A′′, . . . , A′′)

(A′′ − A′′) \ {0}
,

where

P (x1, x2, x3, x4, x5, x6) := x5(x1x2 − x3x4 + x3x6 − x1x6).
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Note that P (A′′, . . . , A′′) contains a homothetic copy of A′′ − A′′, since

x2(a1 − a2) = x(xa1 − xa2 + xx− xx)

for any x ∈ A′′. Thus we have

|J(A′′)| 6 |X/X̃|,
where

X := P (A′′, . . . , A′′)

and X̃ := X \ {0}. Now an application of Proposition 4.1 confirms that

|X ·X| � KC |A′′| � KC |X|,
and so

|X̃ · X̃| � KC |X̃|.
Applying the Plünnecke-Ruzsa inequalities in k×, it follows that

|J(A′′)| 6 |X/X̃| 6 |X̃/X̃|+ 1 � KC |X| � KC |A|,
as required.

5. A lower bound for the algebra generated by A

Finally, we specialize to the case k = Fp. Let A ⊆ Fp; our aim in this section is to prove
a lower bound for |J(A)|. Combined with the results of the previous section, this will
easily lead to a proof of Theorem 1.1.

Proposition 5.1. Suppose that A ⊆ Fp. Then

(i) If |A| > √
p we have |J(A)| > p/2;

(ii) If |A| 6 √
p we have |J(A)| > |A|3/2|A− A|.

To get lower bounds for |J(A)| we will use the following simple lemma. This together
with later lemmas somehow encode the notion that it is not possible to find a “basis”
for F×

p over A.

Lemma 5.2. Suppose that A ⊆ F×
p , and that ξ ∈ Fp is such that |A · (A + ξ)| < |A|2.

Then

A · (A + ξ) ⊆ J(A).

Proof. Since |A · (A + ξ)| < |A|2 there are two pairs (a1, a2) 6= (a3, a4) such that
a1(a2 + ξ) = a3(a4 + ξ). Clearly a1 6= a3 and a2 6= a4, and thus

ξ =
a1a2 − a3a4

a3 − a1

.

It follows immediately that for any a5, a6 ∈ A we have

a5(a6 + ξ) =
a5(a3a6 − a1a6 + a1a2 − a3a4)

a3 − a1

∈ J(A).

The result follows.

We must turn, then, to the rather strange task of finding values of ξ for which |A·(A+ξ)|
is large, but not actually equal to |A|2. The following lemma handles the “large” part
of that endeavour:
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Lemma 5.3. Suppose that A ⊆ F×
p . Then there is some ξ ∈ Fp such that

|A · (A + ξ)| > |A|2p
|A|2 + p

.

Proof. Write fξ(s) for the number of representations of s as a1(a2 + ξ) with a1, a2 ∈ A.
Note that ∑

ξ∈Fp

∑
s∈Fp

fξ(s)
2 = |{(a1, a2, a3, a4, ξ) : a1(a2 + ξ) = a3(a4 + ξ)}|.

We distinguish two types of such quintuples: those with a1 = a3 and a2 = a4, of which
there are |A|2p, and those where this is not the case, of which there are at most |A|4
since ξ is uniquely determined by a1, . . . , a4. Thus∑

ξ∈Fp

∑
s∈Fp

fξ(s)
2 6 |A|2p + |A|4,

and so there is some ξ ∈ Fp such that∑
s∈Fp

fξ(s)
2 6 |A|2 +

|A|4

p
.

Noting that fξ(s) is supported on A · (A + ξ), the result now follows immediately from
the Cauchy-Schwarz inequality:

|A|2 +
|A|4

p
>

∑
s∈Fp

fξ(s)
2 >

1

|A · (A + ξ)|
( ∑

s∈Fp

fξ(s)
)2

=
|A|4

|A · (A + ξ)|
.

Now we say that some ξ ∈ Fp is involved with A if |A · (A + ξ)| < |A|2. Write
K := |A − A|/|A|. As we stated, our aim is to find a ξ which is involved with A
but not very involved, which for us will mean that |A · (A + ξ)| > |A|2/2K.

Lemma 5.4. Suppose that A ⊆ Fp satisfies |A| 6 √
p and |A−A| 6 K|A|. Then there

is some ξ ∈ Fp such that ξ is involved with A but not very involved, that is to say we
have

|A|2

2K
6 |A · (A + ξ)| < |A|2.

Proof. Suppose, as a hypothesis for contradiction, that this is not the case. It is easy to
see from Lemma 5.3 that there is at least one ξ which is not very involved with A, and
hence by our assumption it must be not involved with A at all, i.e. |A · (A + ξ)| = |A|2.
This means, of course, that all |A|2 of the quantities a1(a2 + ξ) are distinct. Since
|A−A| 6 K|A| we see that there is some d 6= 0 which has at least (|A|−1)/K > |A|/2K
representations as a − a′ with a, a′ ∈ A. For any a′ such that a′ + d ∈ A and for any
a′′ ∈ A, we clearly have a′′(a′ + ξ + d) ∈ A · (A + ξ). It follows that

|A · (A + ξ + d)| > |A|2/2K,

and so ξ + d is not very involved with A. By our assumption it cannot be involved with
A at all, and so we have shown that the set

Λ = {ξ ∈ Fp : ξ is not involved with A}
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satisfies Λ = Λ + d. Since Λ 6= 0, it immediately follows that Λ = Fp. Clearly, however,
0 is involved with A because

|A · A| = |A|(|A|+ 1)/2 < |A|2.
This contradiction proves the lemma.

Proof of Proposition 5.1. Suppose first that we are in case (i), that is |A| > √
p. Then

clearly every value of ξ is involved with A, and so in view of Lemma 5.3 there is some
ξ such that

p/2 6 |A · (A + ξ)| < |A|2.
The proposition follows immediately from this Lemma 5.2. For case (ii), in which
|A| 6 √

p, we may instead apply Lemma 5.4 and, of course, Lemma 5.2.

To finish, we supply the proof of Theorem 1.1. Suppose that A ⊆ Fp is such that
|A + A|, |A · A| 6 K|A|. Then, by Proposition 4.4, there is a set A′′ ⊆ A with |A′′| �
K−C |A| and

|J(A′′)| � KC |A|.
Since |A′′ − A′′| � KC |A|, we know from Proposition 5.1 that

|J(A′′)| � min(p, K−C |A|2).
The result follows immediately upon comparing these two bounds.

6. Bibliographical remarks.

Theorem 1.1 was proved in [1] for |A| > pδ. This condition was removed in [2]. Their
method imported some rather algebraic tools (Stepanov’s method). I observed in writing
these notes that by switching the rôle of addition and multiplication in [2], or rather
in an old preprint of Konyagin available on the ArXiV, the proof becomes much more
elementary. That modification is presented here. The observation that Stepanov’s
method is not necessary to prove Theorem 1.1 was made earlier in [5], where a closely
related elementary proof is given. In that book one may also find an account of the
original method of [2].
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