Lower Semicontinuity in the Calculus of Variations

Qualifying Oral Examination

Pan Liu

Carnegie Mellon University panl@andrew.cmu.edu

May 13, 2014

Overview

Main Question:

If $u_n \to u$ with respect to a "Sobolev-type" topology, then

$$\liminf_{n\to\infty} \int_{\Omega} f(x,u_n,\nabla u_n) \, dx \stackrel{???}{\geq} \int_{\Omega} f(x,u,\nabla u) \, dx.$$

Overview

It is well known that

$$f(x, u, \cdot)$$
 is quasiconvex $\Leftrightarrow u \mapsto \int_{\Omega} f(x, u, \nabla u) dx$ is s.w.l.s.c,

where

- ▶ $\Omega \subset \mathbb{R}^N$ open, bounded;
- ▶ $u_n \rightarrow u$ with respect to a "Sobolev-type" topology,
- ► f satisfies some regularity (e.g. Carathéodory) and growth conditions.

Background

There is an extensive body of literature in this field, for example

- Scalar-Valued Case: Buttazzo, Ekeland, Struwe, etc.
- ▶ Vector-Valued Case: Morrey, Dacorogna, Ball, etc.

Background

There is an extensive body of literature in this field, for example

- Scalar-Valued Case: Buttazzo, Ekeland, Struwe, etc.
- Vector-Valued Case: Morrey, Dacorogna, Ball, etc.

Here we concentrate on the following papers:

Fonseca, I., Müller, S. - Relaxation of Quasiconvex Functionals in $BV(\Omega, \mathbb{R}^p)$ for Integrands $f(x, u, \nabla u)$, Arch. Rational Mech. Anal. **123** (1993), 1 – 49.

Background

There is an extensive body of literature in this field, for example

- Scalar-Valued Case: Buttazzo, Ekeland, Struwe, etc.
- Vector-Valued Case: Morrey, Dacorogna, Ball, etc.

Here we concentrate on the following papers:

- Fonseca, I., Müller, S. Relaxation of Quasiconvex Functionals in $BV(\Omega, \mathbb{R}^p)$ for Integrands $f(x, u, \nabla u)$, Arch. Rational Mech. Anal. **123** (1993), 1-49.
- Ambrosio, L. On the Lower Semicontinuity of Quasiconvex Integrals in $SBV(\Omega, \mathbb{R}^k)$, Nonlinear Anal. 23 (1994), 405-425.

Outline

1. Fonseca, I., Müller, S. - Relaxation of Quasiconvex Functionals in $BV(\Omega, \mathbb{R}^p)$ for Integrands $f(x, u, \nabla u)$, Arch. Rational Mech. Anal. **123** (1993), 1-49.

Statement of the main theorem and sketch of the proof - "the blow-up" method.

Outline

Functionals in $BV(\Omega, \mathbb{R}^p)$ for Integrands $f(x, u, \nabla u)$, Arch. Rational Mech. Anal. 123 (1993), 1-49.

Statement of the main theorem and sketch of the proof - "the blow-up" method.

1. Fonseca, I., Müller, S. - Relaxation of Quasiconvex

2. Proof of the s.w.l.s.c. of $\int_Q f(\nabla u) dx$ in the case $u_n \rightharpoonup \xi x$ in $W^{1,1}(Q;\mathbb{R}^d)$.

Outline

- 1. Fonseca, I., Müller, S. Relaxation of Quasiconvex Functionals in $BV(\Omega, \mathbb{R}^p)$ for Integrands $f(x, u, \nabla u)$, Arch. Rational Mech. Anal. **123** (1993), 1-49.
 - Statement of the main theorem and sketch of the proof "the blow-up" method.
- 2. Proof of the s.w.l.s.c. of $\int_Q f(\nabla u) dx$ in the case $u_n \to \xi x$ in $W^{1,1}(Q; \mathbb{R}^d)$.
- 3. Ambrosio, L. On the Lower Semicontinuity of Quasiconvex Integrals in $SBV(\Omega, \mathbb{R}^k)$, Nonlinear Anal. 23 (1994), page 405-425.
 - Statement of the main theorem. Proof of a Lipschitz extension theorem for BV functions.

Definition of Quasiconvex Function

Definition:

For N, d>1, a Borel measurable function $f\colon \mathbb{R}^{d\times N}\to\mathbb{R}$ is said to be *quasiconvex* if for all $\xi\in\mathbb{R}^{d\times N}$

$$f(\xi) \le \frac{1}{|Q|} \int_{Q} f(\xi + \nabla \phi(x)) dx \tag{1}$$

for every $\phi \in W_0^{1,\infty}(Q;\mathbb{R}^d)$, where $Q=(-1/2,1/2)^N$.

Remark: If $0 \le f(\xi) \le C(1+|\xi|^p)$, $p \in [1+\infty)$, then a density result allows for ϕ in (1) to be $\phi \in W^{1,p}_{\operatorname{per}}(Q; \mathbb{R}^d)$.

Objective

Objective: To obtain an integral representation in BV $(\Omega; \mathbb{R}^d)$ for the relaxed energy $\mathcal{F}(\cdot)$ of

$$u \in \mathsf{BV}(\Omega; \mathbb{R}^d) \mapsto \int_{\Omega} f(x, u, \nabla u) dx,$$

$$\mathcal{F}(u) := \inf_{\{u_n\}} \left\{ \liminf_{n \to +\infty} \int_{\Omega} f(x, u_n(x), \nabla u_n(x)) dx \mid \{u_n\} \subset W^{1,1}(\Omega) \right\}$$

and $u_n \to u$ in L^1_{loc} ,

i.e., to identify the relaxed energy density \bar{f} s.t.

$$\mathcal{F}(u) = \int_{\Omega} \overline{f}(x, u, \nabla u) dx.$$

Main Result

The integral representation of relaxed energy $\mathcal{F}(u)$ is given by,

$$\mathcal{F}(u) = \int_{\Omega} f(x, u, \nabla u) dx$$

$$+ \int_{\Sigma(u)} K(x, u^{-}, u^{+}, \nu) d\mathcal{H}^{N-1}$$

$$+ \int_{\Omega} f^{\infty} \left(x, u, \frac{dC(u)}{d|C(u)|} \right) d|C(u)|.$$

$$\int_{\Omega} f^{\infty} \left(x, u, \frac{dC(u)}{d|C(u)|} \right) d|C(u)|.$$

Remark: The case $u \to \int_{\Omega} f(\nabla u) dx$ has been studied by Ambrosio & Dal Maso [1992].

Hypotheses on $f: \Omega \times \mathbb{R}^d \times \mathcal{M}^{d \times N} \to [0, +\infty)$

• $f(x, u, \cdot)$ is quasiconvex.

Hypotheses on $f: \Omega \times \mathbb{R}^d \times \mathcal{M}^{d \times N} \to [0, +\infty)$

- $f(x, u, \cdot)$ is quasiconvex.
- ▶ f has linear growth, i.e., $\exists C > 0$ s.t.

$$C^{-1}||\xi|| \le f(x, u, \xi) \le C(1 + ||\xi||);$$

For example:

$$f(\xi) = \sqrt{1 + \left|\xi\right|^2}.$$

Hypotheses on $f: \Omega \times \mathbb{R}^d \times \mathcal{M}^{d \times N} \to [0, +\infty)$

 $ightharpoonup \forall K \subseteq \Omega \times \mathbb{R}^d, \exists \omega \in C^0(\mathbb{R}), \omega(0) = 0 \text{ such that if }$ $(x, u), (x', u') \in K$

$$|f(x, u, \xi) - f(x', u', \xi)| \le \omega(|x - x'| + |u - u'|)(1 + ||\xi||);$$

 $\forall x_0 \in \Omega, \forall \delta > 0, \exists \epsilon > 0 \text{ s.t. if } |x - x_0| < \epsilon, \text{ then }$

$$f(x, u, \xi) - f(x_0, u, \xi) \ge -\delta(1 + ||\xi||);$$

 $0 \le m < 1$, s.t. for $t > L/||\xi||$

▶ $\exists c', L > 0, 0 \le m < 1$, s.t. for $t > L/||\xi||$

$$|f^{\infty}(x,u,\xi)-f(x,u,t\xi)/t| \leq c'g(x,u)||\xi||^{1-m}/t^{m}.$$

The integral representation of relaxed energy is a lower bound, i.e., for all sequence $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}$, $u_n \to u$ in $L^1_{loc}(\Omega)$, with $u \in \mathsf{BV}(\Omega;\mathbb{R}^d)$, then

$$\lim_{n\to\infty} \inf \int_{\Omega} f(x, u_n, \nabla u_n) \, dx \ge \int_{\Omega} f(x, u, \nabla u) \, dx \\
+ \int_{\Sigma(u)} K(x, u^-, u^+, \nu) \, d\mathcal{H}^{N-1 \cup N \cup FRS} \\
+ \int_{\Omega} f^{\infty} \left(x, u, \frac{dC(u)}{d | C(u)|} \right) \, d | C(u)|.$$

The integral representation of relaxed energy is an upper bound, i.e., there exists a sequence $\{u_n\}_{n=1}^{\infty} \in W^{1,1}$, $u_n \to u$ in $L^1_{loc}(\Omega)$, with $u \in BV(\Omega; \mathbb{R}^d)$, then

$$\limsup_{n \to \infty} \int_{\Omega} f(x, u_n, \nabla u_n) \, dx \leq \int_{\Omega} f(x, u, \nabla u) dx \\
+ \int_{\Sigma(u)} K(x, u^-, u^+, \nu) d\mathcal{H}_{0}^{N-1JNIVERS} \\
+ \int_{\Omega} f^{\infty} \left(x, u, \frac{dC(u)}{d | C(u)|} \right) d | C(u)|.$$

Sketch of the proof of the lower bound using the blow-up method. (The upper bound is skipped in this presentation.)

Sketch of the proof of the lower bound using the blow-up method.

(The upper bound is skipped in this presentation.)

Assume that

$$\liminf_{n\to+\infty}\int_{\Omega}f(x,u_n(x),\nabla u_n(x))dx<\infty.$$

Up to a subsequence (not relabeled)

$$f(x, u_n(x), \nabla u_n(x)) \mid \Omega \stackrel{*}{\rightharpoonup} \mu$$

in the sense of measures, for some nonnegative finite Radon measure μ .

Lower Bound

Using the Radon-Nikodym Theorem we obtain

$$\mu = \mu_{\mathsf{a}} \mathcal{L}_{\mathsf{N}} + \xi \left| u^{+} - u^{-} \right| \mathcal{H}^{\mathsf{N}-1} \left[\Sigma(u) + \eta \left| \mathcal{C}(u) \right| + \mu_{\mathsf{s}},$$

with $\mu_s \geq 0$. We will prove that

$$\mu_{a}(x_{0}) \geq f(x_{0}, u(x_{0}), \nabla u(x_{0}))$$

for a.e. $x_0 \in \Omega$;

Lower Bound

Using the Radon-Nikodym Theorem we obtain

$$\mu = \mu_{\mathsf{a}} \mathcal{L}_{\mathsf{N}} + \xi \left| u^{+} - u^{-} \right| \mathcal{H}^{\mathsf{N}-1} \left[\Sigma(u) + \eta \left| \mathcal{C}(u) \right| + \mu_{\mathsf{s}},$$

with $\mu_s \geq 0$. We will prove that

$$\begin{aligned} & u_{\mathsf{a}} \mathcal{L}_{\mathsf{N}} + \xi \left| u^{+} - u^{-} \right| \mathcal{H}^{\mathsf{N}-1} \left[\Sigma(u) + \eta \left| C(u) \right| + \mu_{\mathsf{s}}, \end{aligned} \\ & \text{0. We will prove that} \\ & \xi(x_{0}) \geq \frac{K(x_{0}, u^{-}(x_{0}), u^{+}(x_{0}), \nu(x_{0}))}{\left| u^{+}(x_{0}) - u^{-}(x_{0}) \right|} \\ & - \left| \mathcal{H}^{\mathsf{N}-1} \left[\Sigma(u) \text{ a.e. } x_{0} \in \Sigma(u). \end{aligned}$$

for $|u^+ - u^-| \mathcal{H}^{N-1} | \Sigma(u)$ a.e. $x_0 \in \Sigma(u)$.

Lower Bound

Using the Radon-Nikodym Theorem we obtain

$$\mu = \mu_{\mathsf{a}} \mathcal{L}_{\mathsf{N}} + \xi \left| u^+ - u^- \right| \mathcal{H}^{\mathsf{N}-1} \lfloor \Sigma(u) + \eta \left| \mathcal{C}(u) \right| + \mu_{\mathsf{s}},$$

with $\mu_s \geq 0$. We will prove that

$$\eta(x_0) \geq f^{\infty}(x_0, u(x_0), A(x_0))$$

for |C(u)| a.e. $x_0 \in \Omega$.

Density of the Absolutely Continuous Part

$$\mu = \mu_{\mathsf{a}} \mathcal{L}^{\mathsf{N}} \, \lfloor \, \Omega + \xi | u^+ - u^- | \mathcal{H}^{\mathsf{N}-1} \, \lfloor \, \Sigma(u) + \eta | \, \mathcal{C}(u) | + \mu_{\mathsf{s}}$$

We will prove that

$$\mu_a(x_0) \geq f(x_0, u(x_0), \nabla u(x_0))$$
 for \mathcal{L}^N a.e. $x_0 \in \Omega$.

Density of the Absolutely Continuous Part

$$\mu = \mu_{\mathsf{a}} \mathcal{L}^{\mathsf{N}} \, \lfloor \, \Omega + \xi | u^+ - u^- | \mathcal{H}^{\mathsf{N}-1} \, \lfloor \, \Sigma(u) + \eta | \, \mathcal{C}(u) | + \mu_{\mathsf{s}}$$

We will prove that

$$\mu_a(x_0) \geq f(x_0, u(x_0), \nabla u(x_0))$$
 for \mathcal{L}^N a.e. $x_0 \in \Omega$.

Strategy:

Blow up argument:

- $\Omega \leadsto Q := (-1/2, 1/2)^N$;
- $u(x) \rightsquigarrow u_0(x) := u(x_0) + \nabla u(x_0)x \text{ (affine)};$

Density of the Absolutely Continuous Part

$$\mu = \mu_{\mathsf{a}} \mathcal{L}^{\mathsf{N}} \, \lfloor \, \Omega + \xi | u^+ - u^- | \mathcal{H}^{\mathsf{N}-1} \, \lfloor \, \Sigma(u) + \eta | \, \mathcal{C}(u) | + \mu_{\mathsf{s}}$$

We will prove that

$$\mu_a(x_0) \ge f(x_0, u(x_0), \nabla u(x_0))$$
 for \mathcal{L}^N a.e. $x_0 \in \Omega$.

Strategy:

Blow up argument:

- $\Omega \leadsto Q := (-1/2, 1/2)^N$;
- \bullet $u(x) \rightsquigarrow u_0(x) := u(x_0) + \nabla u(x_0)x$ (affine);

Truncation and localization:

- \blacktriangleright $(x, u(x)) \rightsquigarrow (x_0, u(x_0));$
- $f(x, u, \nabla u) \rightsquigarrow f_0(\nabla u) := f(x_0, u(x_0), \nabla u).$

The Case $u_n \rightharpoonup \xi x$ in $W^{1,1}(Q)$

Theorem: [Bulk Case]

Let $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(Q;\mathbb{R}^d)$ be such that $u_n \rightharpoonup \xi x$ in $W^{1,1}(Q)$, where $Q = (-1/2, 1/2)^N$. Then

$$\liminf_{n\to\infty}\int_Q f(\nabla u_n)dx\geq f(\xi)\,,$$

provided that $f(\cdot)$ is quasiconvex and $0 \le f(\xi) \le C(1+|\xi|)$.

Using the same strategy, for $|u^+ - u^-| \mathcal{H}^{N-1} | \Sigma(u)$ a.e. $x_0 \in \Sigma(u)$, we show that

$$\xi(x_0) \geq \frac{K(x_0, \mathbf{u}^-(x_0), \mathbf{u}^+(x_0), \nu(x_0))}{|\mathbf{u}^+(x_0) - \mathbf{u}^-(x_0)|}.$$

$$ullet u_i^- := \sup \left\{ t \in \mathbb{R} \; \middle| \; \lim_{\epsilon o 0^+} rac{1}{\epsilon^N} \mathcal{L}^N \left(\left\{ u_i < t
ight\} \cap B(x,\epsilon)
ight) = 0
ight\}$$

Using the same strategy, for $|u^+ - u^-| \mathcal{H}^{N-1} | \Sigma(u)$ a.e. $x_0 \in \Sigma(u)$, we show that

$$\xi(x_0) \geq \frac{K(x_0, u^-(x_0), u^+(x_0), \nu(x_0))}{|u^+(x_0) - u^-(x_0)|}.$$

- ▶ ν normal to $\Sigma(u) := \bigcup_{i=1}^d \{x \in \Omega \mid u_i^-(x) < u_i^+(x)\},$ ▶ ν exists \mathcal{H}^{N-1} —a.e. since $\Sigma(u)$ is rectifiable.

Using the same strategy, for $|u^+ - u^-| \mathcal{H}^{N-1}[\Sigma(u)]$ a.e. $x_0 \in \Sigma(u)$, we show that

$$\xi(x_0) \geq \frac{K(x_0, \mathbf{u}^-(x_0), \mathbf{u}^+(x_0), \nu(x_0))}{|\mathbf{u}^+(x_0) - \mathbf{u}^-(x_0)|}.$$

► $K: \Omega \times \mathbb{R}^d \times \mathbb{R}^d \times S^{N-1} \to [0, +\infty)$ is the surface energy density $K(x, a, b, \nu) := \inf_{w} \left\{ \int_{Q_{\nu}} f^{\infty}(x, w(y), \nabla w(y)) dy \mid w \in \mathcal{A}(a, b, \nu) \right\}.$

Using the same strategy, for $|u^+ - u^-| \mathcal{H}^{N-1}[\Sigma(u)]$ a.e. $x_0 \in \Sigma(u)$, we show that

$$\xi(x_0) \geq \frac{K(x_0, \mathbf{u}^-(x_0), \mathbf{u}^+(x_0), \nu(x_0))}{|\mathbf{u}^+(x_0) - \mathbf{u}^-(x_0)|}.$$

- $\mathcal{A}(a,b,\nu) := \bigg\{ w \in W^{1,1}(Q_{\nu};\mathbb{R}^d) \ \big| \ w(y) = a \text{ if } y \cdot \nu = 1 \\ -\frac{1}{2}, w(y) = b \text{ if } y \cdot \nu = \frac{1}{2}, w \text{ has period } 1 \text{ in } \nu_i \text{ directions} \bigg\}.$
- $Q_
 u$ is a unit cube with two faces normal to u.

The Density of the Cantor Part

Using the same strategy, for |C(u)| a.e. $x_0 \in \Omega$, we show that

$$\eta(x_0) \geq f^{\infty}(x_0, u(x_0), A(x_0)).$$

where

$$f^{\infty}(x, u, \xi) := \limsup_{t \to +\infty} \frac{f(x, u, t\xi)}{t}$$

is the recession function:

Linear growth: $c|\xi| \le f(\xi) \le C(1+|\xi|)$ Start with a sequence $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(\Omega)$ and consider

$$\inf_{u_n\to u}\left\{\liminf_{n\to\infty}\int_{\Omega}f(x,u_n,\nabla u_n),u_n\to u\text{ in }L^1_{\mathrm{loc}}\right\},$$

for $u \in BV(\Omega)$.

Linear growth: $c|\xi| \le f(\xi) \le C(1+|\xi|)$ Start with a sequence $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(\Omega)$ and consider

$$\inf_{u_n\to u}\left\{\liminf_{n\to\infty}\int_{\Omega}f(x,u_n,\nabla u_n),u_n\to u\text{ in }L^1_{\mathrm{loc}}\right\},$$

for $u \in BV(\Omega)$.

▶ Superlinear growth: $c |\xi|^p \le f(\xi) \le C(1+|\xi|^p)$, some p > 1.

Linear growth: $c |\xi| \le f(\xi) \le C(1 + |\xi|)$ Start with a sequence $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(\Omega)$ and consider

$$\inf_{u_n\to u} \left\{ \liminf_{n\to\infty} \int_{\Omega} f(x,u_n,\nabla u_n), u_n\to u \text{ in } L^1_{\text{loc}} \right\},$$

for $u \in BV(\Omega)$.

- Superlinear growth: $c |\xi|^p \le f(\xi) \le C(1+|\xi|^p)$, some p > 1.
 - ▶ What sequence should we start with?

▶ Linear growth: $c |\xi| \le f(\xi) \le C(1 + |\xi|)$ Start with a sequence $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(\Omega)$ and consider

$$\inf_{u_n\to u}\left\{\liminf_{n\to\infty}\int_{\Omega}f(x,u_n,\nabla u_n),u_n\to u\text{ in }L^1_{\mathrm{loc}}\right\},$$

for $u \in BV(\Omega)$.

- Superlinear growth: $c |\xi|^p \le f(\xi) \le C(1+|\xi|^p)$, some p > 1.
 - ▶ What sequence should we start with?
 - ▶ What functional should we consider?

The Superlinear Case

If
$$c |\xi|^p \le f(\xi) \le C(1+|\xi|^p)$$
, some $p > 1$, $u_n \to u$ in $L^1_{loc}(\Omega)$.

- ▶ If $u_n \in W^{1,p}(\Omega)$, then $u_n \to u$ in L^1_{loc} forces $u \in W^{1,p}(\Omega)$. Here l.s.c. and relaxation follow from Acerbi & Fusco.
- ▶ If u_n , $u \in BV$, $u_n \to u$ in $L^1_{loc}(\Omega)$, then
 - If we consider the relaxed energy

$$\inf_{u_n \in BV(\Omega)} \left\{ \liminf_{n \to \infty} \int_{\Omega} f(x, u_n, \nabla u_n) dx, u_n \to u \text{ in } L^{1}_{loc} \right\},$$

then it is impossible to obtain the energy contribution for the singular part of Du, e.g., if f(x, u, 0) = 0, by choosing u_n such that $\nabla u_n = 0$ a.e., we have nothing to do.

The Superlinear Case

If
$$c |\xi|^p \le f(\xi) \le C(1+|\xi|^p)$$
, some $p > 1$, $u_n \to u$ in $L^1_{loc}(\Omega)$.

- ▶ If $u_n \in W^{1,p}(\Omega)$, then $u_n \to u$ in L^1_{loc} forces $u \in W^{1,p}(\Omega)$. Here l.s.c. and relaxation follow from Acerbi & Fusco.
- ▶ If u_n , $u \in BV$, $u_n \to u$ in $L^1_{loc}(\Omega)$, then
 - If we consider the relaxed energy

$$\inf_{u_n \in BV(\Omega)} \Big\{ \liminf_{n \to \infty} \int_{\Omega} f(x, u_n, \nabla u_n) dx$$

+ term penalizing the singular part of Du_n }.

Here I.s.c. and relaxation follow from Ambrosio.

The SBV Case - Ambrosio

We consider the energy functional

$$\mathcal{E}(u) := \int_{\Omega} f(x, u, \nabla u) dx + \mathcal{H}^{N-1}(S(u)),$$

where $u_n \in SBV(\Omega)$ and $u_n \to u \in SBV(\Omega)$ in L^1_{loc} .

Suppose $\mathcal{E}(u_n)$ is bounded, we ask

$$\liminf_{n\to\infty}\int_{\Omega}f(x,u_n,\nabla u_n)dx\geq ??$$

The SBV Case - Ambrosio

Theorem:

Let $f \colon \Omega \times \mathbb{R}^d \times M^{N \times d} \to [0, +\infty)$ be a Carathéodory function satisfying a super-linear growth condition, and assume that $f(x, s, \cdot)$ is quasiconvex in $M^{N \times d}$ for a.e. $x \in \Omega$ and all $s \in \mathbb{R}^d$. Then we have

$$\liminf_{h\to\infty}\int_{\Omega}f(x,u_n,\nabla u_n)dx\geq\int_{\Omega}f(x,u,\nabla u)dx$$

for any sequence $\{u_n\} \subset SBV(\Omega, \mathbb{R}^d)$ converging to $u \in SBV(\Omega, \mathbb{R}^d)$ in $L^1_{loc}(\Omega, \mathbb{R}^d)$, and satisfying the condition

$$\sup_{n\in\mathbb{N}}\mathcal{H}^{N-1}(S_{u_n})<+\infty.$$

Approximation of BV Functions.

Theorem:

Let
$$\gamma > 0$$
, $B = B(0,1)$, $u \in BV(B,\mathbb{R}^d) \cap L^{\infty}(B,\mathbb{R}^d)$, and
$$E := \{x \in B : M(|Du|)(x) < \gamma\}.$$

Then, for any $\rho \in (0,1)$ we can find a Lipschitz function $v: B_{\rho} \to \mathbb{R}^d$ such that u(x) = v(x) for almost every $x \in E \cap B_{\rho}^{VERS}$

and

Lip
$$(v,B_
ho) \le c(n)d\gamma + rac{2d \|u\|_\infty}{1-
ho}.$$

The Definition of Maximal Function.

Definition:

Let μ be a nonnegative, finite Radon measure in B. The maximal function $M(\mu)$ of μ is defined by

$$M(\mu)(x) := \sup \left\{ rac{\mu(B_
ho(x)))}{\mathcal{L}^N(B_
ho(x))} : \ 0 <
ho < 1 - |x|
ight\}.$$

We have

ave
$$ext{meas}(\{x \in B: M(\mu)(x) > \lambda\}) \leq \frac{c(n)\mu(B)}{\lambda}, \quad \forall \lambda > 0.$$

Thank you very much!

The Blow-up Method

Let $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(Q; \mathbb{R}^d)$ such that $u_n \to u$ in $W^{1,1}$, we consider the same question in Bulk case. i.e.,

$$\liminf_{n\to\infty}\int_{\Omega}f(\nabla u_n)dx\geq\int_{\Omega}f(\nabla u),$$

provided that f is quasiconvex and $0 \le f(\xi) \le C(1+|\xi|)$. Again, we consider the measure μ such that $f(\nabla u_n)\mathcal{L}^N[\Omega \xrightarrow{*} \mu$ in the sense of measures.

The Blow-up Method

By Radon-Nikodym, we have

$$\mu = \mu_a \mathcal{L}_N + \mu_s, \ \mu_a(x_0) = \lim_{\varepsilon \to 0} \frac{\mu(Q(x_0, \varepsilon))}{\mathcal{L}_N(Q(x_0, \varepsilon))}$$

for a.e. $x_0 \in \Omega$.

We will be done once we proved that $\mu_a(x_0) \ge f(\nabla u(x_0))$ for a.e. $x_0 \in \Omega$. WLOG, we assume that $\nabla u(x_0) = 0$.

The Blow-up Method

We proceed to calculate, by choosing $\mu(\partial Q(x_0, \varepsilon_k)) = 0$,

$$\frac{d\mu}{d\mathcal{L}_N}(x_0) = \lim_{k \to \infty} \frac{\mu(Q(x_0, \varepsilon_k))}{\varepsilon_k^N}
= \lim_{k \to \infty} \lim_{n \to \infty} \frac{1}{\varepsilon_k^N} \int_{Q(x_0, \varepsilon_k)} f(\nabla u_n) dx
= \lim_{k \to \infty} \lim_{n \to \infty} \int_Q f(\nabla v_{n,k}(y)) dy,$$

where for $y \in Q$,

$$v_{n,k}(y) := \frac{u_n(x_0 + \varepsilon_k y)}{\varepsilon_k}.$$

