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Main Question:

If u, — u with respect to a “Sobolev-type” topology, then

777
Iiminf/f(x, up, Vup) dx > /f(x, u, Vu) dx.
Q Q

n—o0




It is well known that

f(x,u, -) is quasiconvex < u +— / f(x,u, Vu)dx is s.w.l.s.c,
Q

where

» QCc RN open, bounded;

> u, — u with respect to a “Sobolev-type" topology;

» f satisfies some regularity (e.g. Carathéodory) and growth
conditions.
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Definition of Quasiconvex Function

Definition:
For N, d > 1, a Borel measurable function f: RY*N — R is said to
be quasiconvex if for all ¢ € RI*N

F(§) < (5 + Vo(x))dx (1)

1
[Q]

for every ¢ € W&’M(Q;Rd), where @ = (—1/2,1/2)N.

Remark: If 0 < £(£) < C(1 + [£]P), P € [1 + o00), then a density
result allows for ¢ in (1) to be ¢ € WpP(Q; RY).




Objective: To obtain an integral representation in BV(Q; R9) for
the relaxed energy F(-) of

u e BV(Q;RY) — / f(x,u, Vu)dx,
Q
F(u) := inf { liminf [ f(x, up(x), Vun(x))dx | {u,} € WH(Q)
{Un} n—-+o00 Q

and u, — uin Llloc},

i.e., to identify the relaxed energy density f s.t.

F(u) = /Qf(x, u, Vu)dx.




Main Result

The integral representation of relaxed energy F(u) is given by,

F(u) :/Qf(x, u, Vu)dx

+ / K(x,u™,ut,v)dHN !
J 3 (u)

dC(u) >
+ | [ x,u, d|C(u)l.
Jor (s ey ) 1€
Remark: The case u — [,f(Vu)dx has been studied by Ambrosio
& Dal Maso [1992].
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Hypotheses on f : Q x R? x MM — [0, +-00)

» f(x,u,-) is quasiconvex.

» f has linear growth, i.e., 3 C > 0 s.t.

CHlEll < Fx,u,€) < C(L+ D

F(&) =/1+ ¢

For example:




Hypotheses on f : Q x R? x MM — [0, +-00)

» VKeQxRY Iwe COR), w(0) =0 such that if
(x,u), (X, v) e K

£ u,8) = (X 0, )] < w(lx = x| + Ju = u'[)(1 + [I€]]);

> Vxp€Q,V5>0,Je>0s.t. if [x — x| <, then

f(Xv u?&) - f(X07 uv&) > _6(1 + Hg”)v

» 3,L>0,0<m<1, st fort>L/||¢]|

|F(x, u,€) — f(x, u, t€) /t] < 'g(x, u)| |7/t




The Strategy of Proof - u € BV(Q)

The integral representation of relaxed energy is a lower bound, i.e.,
for all sequence {un}oo, C WL, u, — u in L} (Q), with
u € BV(Q;RY), then

Iiminf/f(x7 up, Vup) dx 2/ f(x,u, Vu)dx
Q Q

n—o0

+ / K(x,u™,ut, v)dH V=
J X (u)

o (o ey Yot




The Strategy of Proof - u € BV(Q)

The integral representation of relaxed energy is an upper bound,
i.e., there exists a sequence {un}oc; € WL u, — u in LL (Q),
with u € BV(Q;R9), then

Iimsup/f(x, up, Vup) dx §/ f(x,u, Vu)dx
Q Q

n—oo

+ / K(x,u™,ut, v)dHN=?
J3(u)




The Strategy of Proof - u € BV(Q)

Sketch of the proof of the lower bound using the blow-up method.

(The upper bound is skipped in this presentation.)




The Strategy of Proof - u € BV(Q)

Sketch of the proof of the lower bound using the blow-up method.
(The upper bound is skipped in this presentation.)

Assume that

liminf [ f(x,un(x), Vun(x))dx < oco.

n——+00 Q

Up to a subsequence (not relabeled)

F(x, un(x), Vun(x)) |2 = p

in the sense of measures, for some nonnegative finite'Radon
measure [i.




Using the Radon-Nikodym Theorem we obtain
p=paly + & |ut = u [HYHE(0) + 0| C(u)] + s,
with s > 0. We will prove that

,ua(XO) > f(X07 U(Xo), VU(XO))

for a.e. xg € ;
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Density of the Absolutely Continuous Part

H= HaLNI—Q +§]u+ - U_’HN_I L x(u) +nlC(u)| + ps
We will prove that
ta(x0) > f(x0, u(x0), Vu(xo)) for LV ae. xp € Q.

Strategy:
Blow up argument:

» Qs Q= (—1/2,1/2)N;
> u(x) ~ up(x) = u(xo) + Vu(xo)x (affine);

Truncation and localization:

> (x, u(x)) ~ (x0, u(x0));
> f(x,u,Vu) ~ fi(Vu) = f(x0, u(xo), Vu).




The Case u, — &x in WHH(Q)

Theorem: [Bulk Case]

Let {up}r2; C W1(Q;RY) be such that u, — &x in WH(Q),
where @ = (—1/2,1/2)N. Then

n—oo

Iiminf/ f(Vun)dx > £(£),
Q

provided that f(-) is quasiconvex and 0 < f(§) < C(1 +&)).




The Density of the Jump Part

Using the same strategy, for [u™ — u=|HN "1 Z(u) a.e. xg € Z(v),
we show that

K(xo0, u (x0), u™(x0), v(x0)) '

| (x0) = 4™ (x0)

£(x0) >

> Ut =i f{tER‘ lim_o+ = L N{u; >t} N B(x,€)) = 0},

> u =5 p{tE]R ‘ lime_o+ = L N{ui < t} N B(x,€)) = 0}.




The Density of the Jump Part

Using the same strategy, for [u™ — u=|HN "1 Z(u) a.e. xg € Z(v),
we show that
K(x0, u” (x0), u™ (%), ¥(x0))

|ut(x0) — u™(x0)]

£(x0) >

» v normal to ¥ (u) := U2 {x € Q| u (x) < uf ()}
» v exists HV"1-a.e. since ¥(u) is rectifiable.




The Density of the Jump Part

Using the same strategy, for |[u™ — u™ | HN"L|Z(u) a.e. x0 € Z(u),
we show that

K(xo, u™ (x0), u™ (xo0), v(x))

|ut(x0) — u™ (o)

£(x0) >

» K:QxRIxRY x SN=1 5 [0, +00) is the surface energy
density K(x a, b, 1/) =

{fo (v), Vw(y))dy | w € A(a, b, y)}.




The Density of the Jump Part

Using the same strategy, for [u™ — u=|HN "1 Z(u) a.e. xg € Z(v),
we show that

K(xo0, u (x0), u™(x0), v(x0))
|ut(x0) — u™ (o)

£(x0) >

» A(a, b,v) = {W € Wh(Q,;RY) |W(y) =aify-v=

—%, w(y)=bify -v= %, w has period 1 in v; directions}.

» (@, is a unit cube with two faces normal to v.




The Density of the Cantor Part

Using the same strategy, for |C(u)| a.e. xg € Q, we show that

n(x0) > £ (x0, u(x0), A(x0))-

> where

f
(x, u, &) := limsup 7()(’ u, t§)
t—4o00 t

is the recession function;

Du(Q(xo,¢))

A(Xo) = lim

e—0 ’D(U)‘ (Q(X07 5)




Form Linear Growth to Superlinear Growth
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Form Linear Growth to Superlinear Growth

» Linear growth: c|{] < f(§) < C(1+ [¢])
Start with a sequence {u,}°; € W1(Q) and consider

up—u n—o00

inf {Iiminf/f(x, Up, VUp), Up — U in Ll]i)c}?
Q
for u € BV(Q).

» Superlinear growth: c|¢]P < £(€) < C(1+ |¢]P), some p > 1.

» What sequence should we start with?

» What functional should we consider?




The Superlinear Case

If c|¢P < F(€) < C(1+ [€]P), some p > 1, up, — uin L} ().

> If u, € WLHP(Q), then u, — uin LL _forces u € WHP(Q).

loc
Here |.s.c. and relaxation follow from Acerbi & Fusco.
» If u,, ue BV, u, — uin Llloc(Q), then
» If we consider the relaxed energy

uneig\f/-(ﬂ) {llf7nl>lc>rng/ﬂf(x’ Up, VUn)dX’ Up — u in L|10c} )

then it is impossible to obtain the energy contribution for the
singular part of Du, e.g., if f(x, u,0) = 0, by choosing u,, such
that Vu, = 0 a.e., we have nothing to do.




The Superlinear Case

If c|€P < F(€) < C(1+ [€]P), some p > 1, up, — uin L (Q).

loc

> If u, € WHP(Q), then u, — uin LL _forces u € WhP(Q).

loc
Here |.s.c. and relaxation follow from Acerbi & Fusco.

» If u,, u€ BV, u, = uin L|10C(Q), then
» If we consider the relaxed energy
inf {Iiminf/f(x, Up, Vuy)dx
u,€BV(Q) L n—oo Jo

+ term penalizing the singular part of Du,}.

Here |.s.c. and relaxation follow from Ambrosio.




The SBV Case - Ambrosio

We consider the energy functional
E(u) = /f(x, u, Vu)dx +HNH(S(u)),

Q
where u, € SBV(Q) and u, — u € SBV(Q) in L}

loc*

Suppose &(up) is bounded, we ask

n—o0

lim inf/ f(x, un, Vup)dx >777
Q




The SBV Case - Ambrosio

Theorem:

Let f: Q x RY x MN*d — [0, +00) be a Carathéodory function
satisfying a super-linear growth condition, and assume that
f(x,s,-) is quasiconvex in MNX9 for a.e. x € Q and all s € R€.
Then we have

Iiminf/f(x, u,,,Vu,,)de/f(x, u, Vu)dx
Q Q

h—o0

for any sequence {u,} C SBV(Q,R?) converging to
u € SBV(Q,RY) in LL _(Q,R9), and satisfying the condition

loc

sup HN=1(S,,) < +oc.
neN




Approximation of BV Functions.

Theorem:
Let v >0, B=B(0,1), u € BV(B,RY) N L>®(B,RY), and
E:={xe€ B: M(|Du|)(x) <~}.

Then, for any p € (0,1) we can find a Lipschitz function
v: B, — R9 such that u(x) = v(x) for almost every x € EN'B,
and

2d ||ullo
T

Lip(v, B,) < e(n)dy +




The Definition of Maximal Function.

Definition:
Let i be a nonnegative, finite Radon measure in B. The maximal
function M(u) of u is defined by

M(p)(x) = sup{m 0<p<l— |X|}

We have

meas({x € B: M(u)(x) > A}) < C(n))\M(B), YA > 0.




Thank you very much!




The Blow-up Method

Let {un} oy C wii(Q; ]Rd) such that u, — uin Wb, we
consider the same question in Bulk case. i.e.,

lim inf f (Vup)dx > /f Vu),

n—o0

provided that f is quasiconvex and 0 < f(§) < C(1 + |£])-
Again, we consider the measure y such that f(Vu,)LY[Q = p in
the sense of measures.




The Blow-up Method

By Radon-Nikodym, we have

- — Jim 1(Q00,2))
= Hal o ey pa(0) = lim 2 ra e

for a.e. xg € €.

We will be done once we proved that p,(xp) > f(Vu(xp)) for a.e.
xo € Q. WLOG, we assume that Vu(xg) = 0.




The Blow-up Method

We proceed to calculate, by choosing 1(0Q(xo,x)) = 0,

du . M(Q(X07Ek))
E(XO) - khj;o ey

= lim lim lN/ F(Vun)dx
Q(x0,ek)

k—o0 n—00 Ek

= lim lim / f(Vvak(y))dy,

k—00 n—00 Q

where for y € Q,

Up(xo + €k
Vak(y) == "(5ky)




