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Part 1. The One Dimensional Cases - Sobolev Functions, BV Functions, and AC Fucntions

1. Sobolev Functions v.s. AC Functions v.s. BV Functions

Theorem 1.1 (The Relationship Between W1,1 , BV , and AC ). We discuss this for I bounded and unbounded:

(1) Let I be open bounded, then we have

W1,1(I) = AC(I) ( BV(I)

(2) Let I be unbounded, we have

W1,1(I) ( AC(I) and W1,1(I) ( BV(I),

but there is no relationship between AC(I) and BV(I) , because AC is more or less a local property but BV is
always a global property.

Theorem 1.2 (The Algebraical Properties of AC(I) , W1, p(I) , and BV(I) ). We assume I is bounded, then

(1) Let u, v ∈ AC(I) , we have
(a) uv ∈ AC(I) ,
(b) u/v ∈ AC(I) provided that v > 0
(c) ?? AC(I) is separable?? Yes, on bounded interval it is separable.
(d) f ◦ u ∈ AC(I) if and only if f is locally Lipschitz

(2) Let u, v ∈ W1,p(I) , we have
(a) uv ∈ W1,p(I) ,
(b) u/v ∈ W1,p(I) provided v ≥ c > 0 ,

(3) Let u, v ∈ BV(I) , we have
(a) uv ∈ BV(I) ,
(b) u/v ∈ BV(I) provided v ≥ c > 0 ,
(c) BV(I) is NOT separable under norm ‖u‖BV(I) := ‖u‖L1(I) + Var(u) .
(d) f ◦ u ∈ BV(I) if and only if f is locally Lipschitz
(e) The smallest vector space of functions u: I → R that contains all monotone functions (respectively,

bounded monotone functions) is given by the space BPVloc(I) (respectively, BPV(I) ). Moreover, every
function in BPVloc(I) (respectively, BPV(I) ) may be written as a difference of two increasing functions
(respectively, two bounded increasing functions).

Theorem 1.3 (The Embedding in 1-D). Generally, for unbounded I ⊂ R , we have, for 1 ≤ p ≤ ∞

‖u‖C0(I) ≤ C ‖u‖W1,p(I) .

So W1,p(I) is necessarily a bounded continuous function.
Also, we have that the bounded variation function is necessarily bounded, i.e.,

BV(I) ⊂ L∞(I)

Next, for I bounded, we have

(1) for 1 < p ≤ ∞ , we have
W1,p(I) ⊂⊂ C0,α(I)

for any α < 1 − 1/p.
(2) for p = 1 , we have

W1,1(I) ⊂⊂ Lq(I), 1 ≤ q < ∞

and
BV(I) ⊂⊂ Lq(I), 1 ≤ q < ∞

Theorem 1.4 (Some Theorems). We list some important theorems in 1 -D special cases.

(1) The space BV([0, 1]) armed with norm ‖u‖BV := |u(c)| + Var[u] , is a Banach space.
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(2) As V(x) := Var[0,x]u, we have V ′(x) = |u′(x)| a.e.,

V(x) ≥
∫ x

0
|u′(t)| dt

and the equality hold if and only if u ∈ AC(0, 1)
(3) This is the Helly’s selection theorem. Assume F is an infinite collection of function u ∈ BV([0, 1]) and
‖u‖BV ≤ C < ∞ for all u ∈ F . Then there exists {un}

∞
n=1 ⊂ F and a function v ∈ BPV(I) such that un(x)→ v(x)

for all x ∈ I .
(4) This is l.s.c. in 1-D. If un → u everywhere, then u ∈ BV(I) and

lim inf
n→∞

Var[un] ≥ Var[u]

(5) Having V(x) is defined, we can write u = V − (V − u) as the combination of two increasing functions. Also, all
V , V − u, and V + u are increasing.

Theorem 1.5 (The Relationship Between Hölder continuous, AC , UC , and BV ). We assume I ⊂ R is bounded, then
(1) u is Hölder then u is UC .
(2) u is Hölder can not imply u is AC , nor u is AC can NOT imply u is Hölder neither.

Remark 1.6. A very interesting approach to study Sobolev and BV space is to study 1-D first and try to extend the
result to Muti-Dimensions.

Hence, we find some properties hold by case N = 1 also hold for N < p .
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Part 2. Sobolev Spaces

2. Basic Definition and Properties

Remark 2.1. In this section, unless specific, Ω ⊂ RN will always denotes an open set, not necessary bounded. By
V ⊂⊂ Ω we mean V is open and V̄ ⊂ Ω is compact.

Remark 2.2. Before we formally talk about Sobolev space. We remark that what Sobolev do, more then Lp , is Lp only
capture the width and height of a function but Sobolev capture the scale and oscillation as well.

Definition 2.3. (The Weak Partial Derivative)
Assume Ω ⊂ RN is open and u ∈ L1

loc(Ω) . We say g ∈ L1
loc(Ω) is the weak partial derivative of u if∫

Ω

u · ∂iφ dx = −

∫
Ω

g φ dx,

for all φ ∈ C∞c (Ω) . or C1
c is enough.

Definition 2.4. (The Definition of Sobolev Space) Here we provide 3 equivalent definitions of Sobolev space. The
1st is the general definition, the 2nd one use Risze representation and the 3rd one use weak compactness of Lp space.
Therefore, the last two ONLY work at the case 1 < p ≤ ∞ .

(1) We say u ∈ W1,p(Ω) if u ∈ Lp(Ω) and its weak partial derivative belongs to Lp(Ω) as well.
(2) For 1 < p ≤ ∞ , there exists C > 0 such that∣∣∣∣∣∫

Ω

u ∂iϕ dx
∣∣∣∣∣ ≤ C ‖ϕ‖Lp′ (Ω)

for all ϕ ∈ C1
c (Ω)

(3) For 1 < p ≤ ∞ , there exists C > 0 such that for all Ω′ ⊂⊂ Ω , and |h| < dist(Ω′, ∂Ω) ,

‖τhu − u‖Lp(Ω′) ≤ C |h| ,

where τyu(x) = u(x + y) .

Definition 2.5. (The Sobolev Space)

(1) We say u ∈ W1,p(Ω) if u ∈ Lp(Ω) and its weak partial derivative belongs to Lp(Ω) as well.
(2) We say u ∈ W1,p

loc (Ω) if u ∈ W1,p(V) for any V ⊂⊂ Ω .
(3) We say u is a Sobolev function if u ∈ W1,p

loc (Ω) for some 1 ≤ p ≤ ∞ .

Remark 2.6. W1,p(Ω) is uniformly convex for any 1 < p < ∞ with respect to norm

‖u‖W1,p(Ω) :=

∫
Ω

|u|p dx +

N∑
i=1

∫
Ω

|∂iu|p dx


1
p

Theorem 2.7 (The Interpolation by Smoothness, an equivalent norm). We have, for any ε > 0 , that

‖u‖Wm,p ≤ ε ‖Dαu‖Lp + Cε ‖u‖Lq ,

where |α| = m and q = p will work, but usually if the domain is good enough and by embedding we could extend q to
where embedding would go.
And this is also provide an equivalent norm in Wm,p .

Comment: This theorem also gives us a general idea: some times the extreme term (The highest and lowest) in a sum
often already suffice to control the intermediate terms. For example, Ck norm and Ck,α norm has similar properties.
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Definition 2.8. (The Definition by Fourier Transform)
A function u ∈ Hk(RN) if and only if

(1 + |y|2)
s
2 û(y) ∈ L2(RN).

Moreover, there exists a constant C1 and C2 such that

C1 ‖u‖Hk(RN ) ≤
∥∥∥(1 + |y|2)

s
2 û(y)

∥∥∥
L2(RN )

≤ C2 ‖u‖Hk(RN ) .

In addition, we extend our definition to any −∞ < s < ∞ , could be non-integer, to define H s(RN) for

‖u‖Hs(RN ) =
∥∥∥(1 + |y|2)

s
2 û(y)

∥∥∥
L2(RN )

.

Keep in mind that we only use Fourier Transform to define Sobolev space for p = 2 on entire space RN , that is, they
are all Hilbert.

Theorem 2.9 (The Weak Compactness in W1,p(Ω) ). Let Ω ⊂ RN be open, suppose the sequence {un}
∞
n=1 is uniformly

bounded in W1,p(Ω) , then, up to a subsequence, we have

un ⇀ u in W1,p(Ω)

and
∇un ⇀ ∇u in [W1,p(Ω)]N

Moreover, we can future extract a subsequence such that un → u a.e., no matter Ω is bounded of not. Ω can even be
RN .

Definition 2.10 (Mollifier). The standard mollifier we will take all the way is defined as

η(x) :=

c exp
(

1
|x|2−1

)
0 < |x| < 1

0 |x| ≥ 1

and adjust constant c such that ∫
B(0,1)

η(x)dx = 1.

Then we define our mollifier to be

ηε(x) :=
1
εN η

( x
ε

)
.

We notice that ηε is radially symmetric and compact supported in B(0, ε) .

Theorem 2.11. [The properties of mollification]
We define, for u ∈ L1

loc(R
N)

uε(x) :=
∫
RN

u(y)ηε(x − y)dy =

∫
RN

u(x − y)ηε(y)dy.

(1) uε ∈ C∞(RN) as long as u is L1
loc(R

N)
(2) uε → u uniformly on a compact set if u is continuous.
(3) uε(x)→ u(x) on every Lebesgue point of u .
(4) For any V ⊂⊂ Ω , we have uε → u in Lp(V) of u ∈ Lp(Ω) , for 1 ≤ p < ∞ . ??what happens for p = ∞?? For

p = ∞ , we have uniform norm, which leads uε never leave C(V) , but u can be out of C(V) for sure.
(5) Suppose u ∈ W1,p(Ω) , we have

∂iuε(x) =

∫
RN

∂

∂xi
ηε(x − y)u(y)dy =

∫
RN
ηε(x − y)

∂

∂yi
u(y)dy = ηε ∗ ∂iu.

(6) For any V ⊂⊂ Ω , we have uε → u in W1,p(V) for u ∈ W1,p(Ω) . Or, in other word, uε → u in W1,p
loc (Ω)

(7) If un ⇀ u in Lp(Ω) , then for x ∈ Ω ,
(un)ε(x)→ uε(x),

i.e., ηε is a good test function for any p .
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Theorem 2.12. [The Local Approximation by C∞ functions]
For any u ∈ W1,p(Ω) , 1 ≤ p < ∞ , there exists {un}

∞
n=1 ⊂ C∞(Ω) ∩W1,p(Ω) such that

lim
n→∞
‖un − u‖W1,p(Ω) = 0.

note that p can NOT take value +∞ . Because if we do, un will end up with a C1 function.

Corollary 2.13. Take p = ∞ and Ω is finite, we can still have {un}
∞
n=1 ⊂ C∞(Ω) ∩W1,∞(Ω) but only with

lim
n→∞
‖un − u‖L∞(Ω) = 0,

and
lim
n→∞
‖∇un‖L∞(Ω) = ‖∇u‖L∞(Ω) and ∇un → ∇u a.e.

Comment: this Corollary implies that if u ∈ W1,∞(Ω) , then u ∈ C0(Ω) , no matter what ugly boundary we have. Of
course, we could have embedding such that W1,∞(Ω) ⊂ C0(Ω) , or, in another word, trivially,

‖u‖C0(Ω) ≤ ‖u‖W1,∞

Theorem 2.14. [The Global Approximation by C∞c function]
Here we assume that Ω is open, bounded, and Lipschitz boundary (Actually an extension domain will do). Then we
have for any u ∈ W1,p(Ω) , 1 ≤ p < ∞ , there exists {un}

∞
n=1 ⊂ C∞(Ω) ∩W1,p(Ω) such that

lim
n→∞
‖un − u‖W1,p(Ω) = 0.

Again, note that p can NOT take value +∞ .
??can we have same result as in Corollary above?? For p = ∞ , we have same result as in Corollary above.
Moreover, we could do the same for unbounded C0 domain.

Theorem 2.15 (The Fake Global Approximation by C∞c function on arbitrary domain). Let Ω ⊂ RN be given, no other
assumptions, then for u ∈ W1,p(Ω) , there exists {un}

∞
n=1 ⊂ C∞c (RN) such that

un → u in Lp(Ω),

and
∇un → ∇u in Lp(Ω′)

for any Ω′ ⊂⊂ Ω .

Corollary 2.16 (Better Approximation in RN ). Let u ∈ W1,p(RN) , 1 ≤ p < ∞ , there exists {vn}
∞
n=1 ⊂ W1,p(RN)∩C∞c (RN)

such that
lim
n→∞
‖vn − u‖W1,p(RN ) = 0.

This is the special view of W1,p
0 (RN) = W1,p(RN)

Theorem 2.17 (The Algebraical Properties of Wk,p(Ω) ). We claim that when N < kp , Wk,p(Ω) is an algebra, i.e., for u ,
v ∈ Wk,p(Ω) we have uv ∈ Wk,p(Ω) as well. The key is that embedding should be good enough so that Wk,p(Ω) ⊂ L∞(Ω) .
This observation also matches what we required for Chain rule in Sobolev space.

Theorem 2.18 (The Extension Domain). Suppose Ω is open bounded with Lipschitz boundary (or a bounded extension
domain). Let Ω ⊂⊂ V , there exists a linear bounded operator E : W1,p(Ω)→ W1,p(RN) such that

(1) spt(E(u)) ⊂ V .
(2) E(u) = u for every x ∈ Ω .
(3) ‖E(u)‖W1,p(RN ) ≤ C ‖u‖W1,p(Ω) , where C = C(p,N,Ω,U)

Remark 2.19. Any open set Ω , not necessary bounded, could be extension domain if it has smooth, Lipschitz, boundary.

Theorem 2.20. [Trace Operator]
Suppose Ω is open bounded with Lipschitz boundary and 1 ≤ p < ∞ . Then there exists a bounded linear operator T :
W1,p(Ω)→ Lp(∂Ω) such that

(1) T [u] = u on ∂Ω if u ∈ C0(Ω̄) ∩W1,p(Ω) .
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(2) ‖T [u]‖Lp(∂Ω) ≤ C ‖u‖W1,p(Ω) where C = C(Ω, p,N)
(3) Moreover, we have ‖u‖Lp(Ω) ≤ C(‖T [u]‖Lp(∂Ω) + ‖∇u‖Lp(Ω)) where C = C(Ω, p,N)
(4) The integration by part formula is valid, i.e. for any ϕ ∈ C1(RN ;RN) .∫

Ω

u divϕ dx = −

∫
Ω

〈∇u, ϕ〉 dx +

∫
∂Ω

T [u]ϕ · ν dS x,

where ν is the outer normal vector of Ω .
Moreover, by approximation, we have, for u , v ∈ W1,p(Ω)∫

Ω

u ∂iv dx = −

∫
Ω

∂iu v dx +

∫
∂Ω

T [u] T [v]σi dS x.

Comment: for the case p = ∞ there is not too much to talk about. Because as Ω process a nice boundary, W1,∞(Ω) is
necessary a Lipschitz function and can be extended unique up to the boundary.
Comment: we never have trace operator in Lp space, as showed in Q8 in [1].

Theorem 2.21. [The Line Properties of W1,p Functions]
(1) If u ∈ W1,p

loc (RN) , then for each n = 1, . . . ,N the functions

un(x′, t) ≡ u(. . . , xn−1, t, xn+1, . . .)

are absolutely continuous in t on compact subsets of R , for LN−1 a.e. point x′ = (. . . , xn−1, xn+1, . . .) ∈ RN−1 .
In addition (un)′ ∈ Lp

loc(R
N) .

(2) Conversely, suppose f ∈ Lp
loc(R

N) and f = g LN a..e, where for each n = 1, . . . ,N the functions

gn(x′, t) ≡ g(. . . , xn−1, t, xn+1, . . .)

are absolutely continuous in t on compact subsets of R for Ln−1 a.e. point x′ = (. . . , xn−1, xn+1, . . .) ∈ RN−1 ,
and g′n ∈ Lp

loc(R
N) . Then u ∈ W1,p

loc (RN)

Theorem 2.22 (W1,∞ and Lipschitz Function). In short, W1,∞
loc (Ω) is equal to Locally Lipschitz function in Ω .

W1,∞(Ω) is equal to Lipschitz function in Ω for Ω open bounded extension domain. This is result in [1], p279.
But for arbitrary domain, especially the domain lies on the both side of boundary, this result will fail.

Theorem 2.23 (The Póincare Inequality in B(x, r) ). For any u ∈ W1,p
0 (Ω) , 1 ≤ p < ∞ , we have∫

Ω

|u − uB|
p dx ≤ rp

∫
Ω

|∇u|p dx.

??For p = ∞ , this is still true.?? Yes, as same reason as above.

Theorem 2.24 (The General Póincare Inequality). Let Ω be an open connected extension domain with finite measure,
then for any u ∈ W1,p(Ω) , 1 ≤ p < ∞ and |E| , 0 ,∫

Ω

|u − uE |
p dx ≤ C

∫
Ω

|∇u|p dx,

where C = C(Ω, E, p, n) . Thus, if we have u ≡ 0 in a positive measure set, we could obtain the same type of Póincare
Inequality in W1,p

0 (Ω) case.
For p = ∞ , we have the same result, namely

‖u − uΩ‖L∞(Ω) ≤ C ‖∇u‖L∞(Ω) .

This result from p274 in [1]. ??does case E hold in L∞ as well?? Yes, the embedding works just fine. The key is the
embedding for W1,∞ ⊂⊂ C0,α(Ω) for any α < 1 .

Corollary 2.25. Let Ω be an open bounded extension domain, then for any u ∈ W1,p(Ω) , 1 ≤ p < N ,(∫
Ω

|u − uE |
p∗ dx

) 1
p∗

≤ C
(∫

Ω

|∇u|p dx
) 1

p

,

where C = C(Ω, E, p, n) .
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Theorem 2.26. [The Differential Quotient]
We define the differential quotient Dh

i (u)(x) to be

Dh
i (u)(x) =

u(x + hei) − u(x)
h

,

for any x ∈ Ωh . Then we have
(1) For 1<p ≤ ∞ , u ∈ Lp(Ω) , if, for all 1 ≤ i ≤ N ,

sup
h>0

∥∥∥Dh
i (u)

∥∥∥
Lp(V)

≤ M < ∞,

for all 0 < |h| < 1
2 dist(V, ∂Ω) . Then we have u ∈ W1,p(V) with ‖∇u‖Lp(V) ≤ M .

This is false for p = 1 because we may end up in BV(Ω) . For example, take any continuous function in 1-D
which converges to a jump function

(2) Suppose 1 ≤ p < ∞ and u ∈ W1,p(Ω) . Then for each V ⊂⊂ U ,∥∥∥Dhu
∥∥∥

Lp(V)
≤ C ‖Du‖Lp(Ω) ,

for some constant C and all 0 < |h| < 1
2 dist(V, ∂Ω) . ??counter-example for p = ∞??

(3) We future have
lim
h→0

∥∥∥Dh
i u

∥∥∥
Lp(Ωh)

= ‖∂iu‖Lp(Ω)

and ∥∥∥Dh
i u − ∂iu

∥∥∥
Lp(RN )

= 0

for 1 ≤ p < ∞ .
Note: for case 1 < p < ∞ we can prove easily by using uniformly convex space property, but for p = 1 we need to do
computation directly.

Theorem 2.27 (The Dual Space of W1,p(Ω) ). Given Ω ⊂ RN is open, then we define W−1,p′ (Ω) =
(
W1,p

0 (Ω)
)∗

and we
have:

(1) For any f ∈
(
W1,p(Ω)

)∗
, there exists f 0 , f 1 . . . , f n ∈ Lp′ (Ω) such that

〈 f , v〉 =

∫
Ω

f 0v dx +

n∑
i=1

∫
Ω

f i∂iv dx;

and
‖ f ‖W−1,p(Ω) = max

{
‖ fi‖Lp′ (Ω)

}
(2) If we assume f ∈ W−1,p′ (Ω) , we may take f0 ≡ 0 .

Moreover, if Ω is bounded in one direction, we could take f 0 = 0 because now by Poincáre that we have equivalent
norm ‖∇u‖Lp(Ω) .

Remark 2.28. We denote by H−1(Ω) the dual of H1
0 (Ω) . The dual of L2(Ω) is identified with L2(Ω) , but we do NOT

identify H1
0 (Ω) with its dual, and we have inclusions: H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) , where the injection are cont’s and
dense.
Also, if Ω is bounded then we have W1,p

0 (Ω) ⊂ L2(Ω) ⊂ W−1,p(Ω) if 2N/(N + 2) ≤ p ≤ 2, and if Ω is not bounded, the
same holds but only for the range 2N/(N + 2) ≤ p ≤ 2.

3. Sobolev Embedding & Compact Embedding

Theorem 3.1 ( p < N ). Suppose u ∈ W1,p(RN) and p < N , then we have(∫
RN
|u|p

∗

dx
) 1

p∗

≤ C
(∫
RN
|∇u|p dx

) 1
p

,

where C = C(N, p) and

p∗ =
N p

N − p
.
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Moreover, by Lp interpolation, we have ‖u‖Lq(RN ) ≤ C ‖∇u‖Lp(RN ) for any p ≤ q ≤ p∗ .
note that we have no information for q < p.

Comment: This is an poincare-like inequality, and this is the only place we have it. We lose this poincare-like properties
in the case of N = p or extension domain.

Corollary 3.2 ( p < N for Bounded Extension Domain). Suppose u ∈ W1,p(Ω) and p < N , and we in addition assume
that Ω is open, bounded, extension domain, then we have W1,p(Ω) is continuous embedded in Lp∗ (Ω) , i.e.,

‖u‖Lp∗ (Ω) ≤ C ‖u‖W1,p(Ω)

where C = C(N, p,Ω) and

p∗ =
N p

N − p
.

Moreover, since Ω is bounded, we have the theorem hold for any 1 ≤ q ≤ p∗ .

Theorem 3.3 ( p = N ). Suppose u ∈ W1,p(RN) and p = N , then we have

‖u‖Lq(RN ) ≤ C ‖u‖W1,p(RN ) .

where C = C(N, p) and p ≤ q < ∞ .
Note that we have no information for q < p = N .
The same result will be hold in bounded extension domain.

Theorem 3.4 ( p > N ). Suppose u ∈ W1,p(RN) and p > N ( p = ∞ ), then we have the space W1,p(RN) is continuous
embedded in C0,1− n

p (RN) and
lim
|x|→∞

u(x) = 0.

and also
|u(x) − u(y)| ≤ C |x − y|1−

N
p ‖∇u‖Lp(RN ) .

The same result will be hold in bounded extension domain but with

|u(x) − u(y)| ≤ C |x − y|1−
N
p ‖u‖W1,p(Ω)

The extreme case for p = ∞ , we get nothing but

|u(x) − u(y)| ≤ C |x − y| ‖u‖L∞(Ω)

i.e., an Lipschitz function, and this match with the observation that W1,∞(Ω) = C0,1(Ω̄) if Ω is an extension domain.

Corollary 3.5. [The Algebraical Property of W1,p(RN) (W1,p(Ω) )] Assume p > N , then we have space W1,p(RN) is an
algebra, i.e., uv ∈ W1,p(RN) if u , v ∈ W1,p(RN) . The same thing hold for Ω is an extension domain.
Notice that this observation is consistent with the product rule in W1,p , as product rule require that u , v ∈ W1,p(Ω) ∩
L∞(RN)

Corollary 3.6 (A Special Case). We have
‖u‖C0(RN ) ≤ C ‖u‖WN,1(RN )

This is the case N = kp . But we actually get L∞ estimation, even better, C0 .

Comment: before we talk about compact embedding, we provide the general idea behind it. Actually, sequence bounded
in a high regularity space, and constrained to lie in a compact domain, will tend to have convergent subsequence in low
regularity spaces (regularity with respect to derivative). As a by-product, we have the compact embedding in Hölder
space.

Theorem 3.7 (The Compact Embedding in Hölder Space). Let Ω ⊂ RN be open bounded, not necessarily have a good
boundary, we have

C0,α(Ω̄) ⊂⊂ C0,β(Ω̄)

for any α < β .
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Theorem 3.8 (The Compact Embedding in Bounded Extension Domain for 1 ≤ p < N ). Suppose Ω is an open
bounded extension domain then we have

W1,p(Ω) ⊂⊂ Lq, for any 1 ≤ q < p∗

Notice that Ω is finite is enough, not necessary to be bounded. See Leoni’s Theorem 11.10
Notice that we can say NOTHING about q = p∗ . See example 13.7
Notice that for p = 1 , we may end up in BV(Ω) .??counterexample??

Theorem 3.9 (The Compact Embedding in Extension Domain for p = N ). Suppose Ω is an open bounded extension
domain then we have

W1,p(Ω) ⊂⊂ Lq, for any 1 ≤ q < ∞

note that we can say NOTHING about q = ∞ . ??counterexample??

Theorem 3.10 (The Compact Embedding in Bounded Extension Domain for p > N ). Suppose Ω is an open bounded
extension domain then we have

W1,p(Ω) ⊂⊂ C0,α(Ω̄), for any 0 ≤ α < 1 −
N
p

note that we can say NOTHING about α = 1 − N
p . ??counterexample??

Also, if p = ∞ , we have
W1,∞(Ω) ⊂⊂ C0,α(Ω̄), for any 0 ≤ α < 1

Theorem 3.11. [Compact Embedding in Bounded Extension Domain for Arbitrary p ]
In summary, if Ω be an open bounded Extension domain, we have the compact embedding

W1,p(Ω) ⊂⊂ Lp(Ω),

is always compact for any 1 ≤ p ≤ ∞ .
Again, for p = 1 we may end up in BV , but the embedding is still compact.

Theorem 3.12 (Some Special Case for Unbounded, or Non-Extension Domain). Notice that in usual embedding theo-
rem, boundness(finiteness) of domain and regularity of boundary is essential. However, we do have some exception.

(1) Generally, if Ω is unbounded (infinite), we have no compact embedding, and a moving triangle example would
do. However a special case will happen for radial function. See Leoni’s Exercise 11.19 .

(2) Generally, if Ω is non-extensionable, we can not define mollification and hence the usual prove will not work.
However, if we only consider the case q < p and use uniformly integrability, we can overcome this difficult and
obtain the following result:
Suppose Ω is finite, not necessary extension-able, we still have that

W1,p(Ω) ⊂⊂ Lq, for any 1 ≤ q < p.

Moreover, we have
W1,p(Ω) ⊂⊂ Lp

if and only if

lim
n→∞

sup
u∈W1,p(Ω)

∫
Ω\Ωn

|u|p dx = 0

where Ωn := {x ∈ Ω, dist(x, ∂Ω) > 1/n}

4. The W1,p
0 (Ω) Space

Here we comment out some special properties of W1,p
0 functions.

Definition 4.1 (The space W1,p
0 (Ω) , for 1 ≤ p < ∞ ). Given Ω ⊂ RN be open, we define W1,p

0 (Ω) to be the closure of
C∞c (Ω) in W1,p norm. Note that we do NOT define for p = ∞ in this way.
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Remark 4.2 (The space W1,∞
0 (Ω) , for 1 ≤ p < ∞ ). We usually define W1,∞

0 (Ω) by define the space

W1,∞
0 (Ω) :=

{
u ∈ W1,∞(Ω), T [u] = 0

}
and hence in this definition W1,∞

0 (Ω) will contain the piece-wise affine functions. Also, we could identify W1,∞
0 (Ω) by

W1,∞
0 (Ω) =

{
The weak star closure of C∞c (Ω) under W1,∞

0 norm
}

Lemma 4.3. Suppose u ∈ W1,p(Ω) and spt(u) ⊂⊂ Ω , then u ∈ W1,p
0 (Ω) .

Theorem 4.4. (The Equivalent Properties of W1,p
0 (Ω) ) Here we assume 1 < p < ∞ and Ω is open only

(1) u ∈ W1,p
0 (Ω)

(2) There exists C > 0 such that ∣∣∣∣∣∫
Ω

u ∂iϕ dx
∣∣∣∣∣ ≤ C ‖ϕ‖Lp′ (Ω)

for all ϕ ∈ C1
c (RN)

(3) The canonical extension

ū :=

u x ∈ Ω

0 x < Ω

belongs to W1,p(RN) . Moreover, we have
∇ū = ∇u

Remark 4.5. The implication from (1) to (2)&(3) is hold for p = 1 and require nothing on the boundary of Ω .
However, as (3)→ (1) , we need ∂Ω to be regular.

Remark 4.6. The implication (1)→ (3) is THE MOST IMPORTANT conclusion in W1,p
0 (Ω) . It says that any W1,p

0 (Ω)
function can be extended no matter what ∂Ω is. Hence, the embedding and compact embedding will work on W1,p

0 (Ω)
no matter how ugly ∂Ω will be.

Theorem 4.7 (Some Useful but not Trivial result). Suppose u ∈ W1,p
0 (Ω) , 1 ≤ p ≤ ∞ , Ω ⊂ RN is open, but not

necessary have a nice boundary. Then we have
(1) u+ , u− ∈ W1,p

0 (Ω)
(2) if u+ , u− ∈ W1,p

0 (Ω) , we have (u + v)+ ∈ W1,p
0 (Ω) . (Here we do not assume u, v ∈ W1,p

0 )

Theorem 4.8 (The Póincare Inequality in W1,p
0 (Ω) ). Suppose Ω is bounded in one direction, i.e., it lies between two

parallel hyperplanes, then we have for any u ∈ W1,p
0 (Ω) , 1 ≤ p < ∞ , that∫

Ω

|u|p dx ≤
dp

p

∫
Ω

|∇u|p dx,

where d is the one direction bound for Ω .
??what is the analogous result for p = ∞?? For p = ∞ we can either prove directly or notice that limp→∞ ‖u‖Lp(Ω) =

‖u‖L∞(Ω) , we have
‖u‖L∞(Ω) ≤ d ‖∇u‖L∞(Ω) .

Theorem 4.9 (W1,p
0 (Ω) vs T (u) = 0). Let Ω be open bounded and Lipschitz domain. Then u ∈ W1,p(Ω) if and only if

T [u] = 0 . That is, the kernel of the trace operator is W1,p
0 (Ω) .

Remark 4.10. W1,p
0 (Ω) is strongly closed subspace by definition or the estimation of trace. Hence W1,p

0 (Ω) is weakly
closed, so does the space u0 + W1,p

0 (Ω) , where u0 ∈ W1,p(Ω)
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Part 3. BV Spaces

5. Basic Definition and Properties

Remark 5.1. In this section, unless specific, Ω ⊂ RN will always denotes an open set, not necessary bounded.

Definition 5.2. (The Weakest Partial Derivative)
Assume Ω ⊂ RN is open and u ∈ L1

loc(Ω) . We say a Radon measure µi is the weak partial distributional derivative of u
if ∫

Ω

u · ∂iφ dx = −

∫
Ω

φ dµi,

for all φ ∈ C∞c (Ω) . or C1
c is enough.

Definition 5.3. Here again we provide 3 equivalent definitions of BV space. The 1st is the general definition, the 2nd
one use Risze representation and the 3rd one use weak star compactness in Radon measure. Now, we actually take care
the case p = 1.

(1) We say u ∈ BV(Ω) if µi is a finite Radon measure for 1 ≤ i ≤ N
(2) Let Ω ⊂ RN be a given open set, u ∈ L1(Ω) ( L1

loc(Ω) is not good enough). Then if

sup
ϕ

{∫
Ω

u divϕ dx, ϕ ∈ C1
c (Ω), ‖ϕ‖L∞(Ω) ≤ 1

}
< ∞,

we say u ∈ BV(Ω) .
Moreover, we say a subset E (not necessary open) has finite perimeter in Ω if χE ∈ BV(Ω) .
??What if we have Ω be closed set?? ??C1

c (Ω) = C1
c (Ω̄)?? The space Cc(Ω̄) is not well-defined.

(3) There exists C > 0 such that for all Ω′ ⊂⊂ Ω , and |h| < dist(Ω′, ∂Ω) ,

‖τhu − u‖L1(Ω′) ≤ C |h| ,

where τyu(x) = u(x + y) .

Remark 5.4. We take 2nd definition and we show they are actually the same thing.

Theorem 5.5. [Basic Properties of BV(Ω) as a Algebracial Space] Here we take Ω ⊂ RN as an open set.
(1) The space BV(Ω) is not separable, although the space L1 is separable. See example 13.5
(2) The space BV(Ω) is not an algebra, as u , v ∈ BV(Ω) , but we may not have uv ∈ BV(Ω) . The problem is

BV(Ω) is not good enough, i.e., BV(Ω) 1 L∞(Ω) , even if Ω is bounded. Compare with Corollary 3.5.

Definition 5.6. We say u ∈ BVloc(Ω) if u ∈ BV(Ω̃) for any Ω̃ ⊂⊂ Ω .

Theorem 5.7. [Risez Representation - The Structure Theorem for BVloc Functions]
For any u ∈ BVloc(Ω) , there exists an Radon measure µ and a µ -measurable function σ : RN → RN such that

(1) |σ(x)| = 1 for a.e. x ∈ Ω

(2) ∫
Ω

u divϕ dx = −

∫
Ω

〈ϕ · σ〉 dµ,

for every ϕ ∈ C1
c (Ω) .

(3) If u ∈ BV(Ω) , we have

µ(Ω) = sup
ϕ

{∫
Ω

u divϕ dx, ϕ ∈ C1
c (Ω), ‖ϕ‖L∞(Ω) ≤ 1

}
Notation. We use ‖Du‖ to denote µ and Du as ‖Du‖ bσ

Theorem 5.8 (Basic Properties of Du ). Assume u ∈ BVloc(Ω) , we have
(1) If Du = 0 , u ≡ C .
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(2) For any locally Lipschitz function Φ : Ω→ R , we have uΦ ∈ BVloc(Ω) and

D(uΦ) = ΦDu + u ⊗ ∇Φ

(3) Let Iε := {x ∈ Ω, dist(x, ∂Ω) > ε} , then ∇(u ∗ ηε) = Du ∗ ηε

Remark 5.9. We say Du is the weakest sense that we can talk about derivative, and we write∫
Ω

u ∂iφ dx = −

∫
Ω

φσi d ‖Du‖ , φ ∈ C1
c (Ω).

Moreover, we use ‖∂E‖ to denote ‖DχE‖ and we say E has finite perimeter in Ω if χE ∈ BV(Ω) .

Corollary 5.10. For any Ω open, not necessary bounded, we have
(1) W1,p

loc (Ω) ⊂ W1,1
loc (Ω) ⊂ BVloc(Ω) , for any 1 ≤ p ≤ ∞ .

(2) ??W1,p(Ω) ⊂ W1,1(Ω) ⊂ BV(Ω) , for any 1 ≤ p ≤ ∞ .?? We do have W1,1(Ω) ⊂ BV(Ω) , but W1,p ⊂ W1,1 won’t
be true if |Ω| = ∞ . ??we need a counterexample??

(3) W1,1(Ω) , BV(Ω) as χE ∈ BV(Ω) . A set E with C1 boundary would do.

Corollary 5.11. For any E has finite perimeter in Ω , we have
(1) If E has C1 boundary, then ‖∂E‖ (Ω) = HN−1(∂E ∩Ω)
(2) ??‖∂E‖ is supported in ∂E ?? Yes, it is.

Definition 5.12. We define
‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖ (Ω).

Definition 5.13. The usual topology induced by norm of BV is not really useful. Here we define the so call weak
convergence and strict convergence in BV space.

(1) We say {un}
∞
n=1 ⊂ BV(Ω) weakly convergences in BV to u if un → u in L1(Ω) and Dun weakly star conver-

gence to Du in Ω , i.e.,

lim
n→∞

∫
Ω

φ dDun =

∫
Ω

φ dDu

for all φ ∈ Cc(Ω;RN)
(2) We say {un}

∞
n=1 ⊂ BV(Ω) strictly convergences in BV to u if un → u in L1(Ω) and

‖Dun‖ (Ω)→ ‖Du‖ (Ω).

Theorem 5.14 (The Lower Semi-continuous of ‖Du‖ ). For Ω open, if {un}
∞
n=1 ⊂ BV(Ω) and un → u in L1

loc(Ω) , we
have

lim inf
n→∞

‖Dun‖ (Ω) ≥ ‖Du‖ (Ω).

??what is the analogous result in W1,p(Ω)?? For W1,p(Ω) , we don’t know unless |Ω| < ∞ . However, we do have same
result for W1,1(Ω) as W1,1(Ω) ⊂ BV(Ω) , and again, the strict greater can happen even for W1,1(Ω) . See Example 13.3.

Theorem 5.15 (The Approximation by C∞ functions). For Ω ⊂ RN open and u ∈ BV(Ω) , there exists {un}
∞
n=1 ⊂

BV(Ω) ∩C∞(Ω) such that
lim
n→∞
‖un − u‖L1(Ω) = 0.

However, we only have
lim
n→∞
‖Dun‖ (Ω) = ‖Du‖ (Ω).

??for Ω is a Lipschitz domain, do we have un ∈ BV(Ω) ∩C∞(Ω̄)?? Yes, next corollary.

Corollary 5.16 (Better Approximation in RN ). Let u ∈ BV(RN) , there exists {vn}
∞
n=1 ⊂ BV(RN) ∩C∞c (RN) such that

lim
n→∞
‖vn − u‖L1(RN ) = 0.

However, we only have
lim
n→∞
‖Dvn‖ (RN) = ‖Du‖ (RN).



14 PAN LIU

Corollary 5.17 (The Approximation by C∞(Ω̄) functions). For Ω ⊂ RN open bounded with extension domain, if
u ∈ BV(Ω) , then there exists {un}

∞
n=1 ⊂ BV(Ω) ∩C∞(Ω̄) such that

lim
n→∞
‖un − u‖L1(Ω) = 0.

and
lim
n→∞
‖Dun‖ (Ω) = ‖Du‖ (Ω).

Corollary 5.18 (The Subset in Convergence). For Ω ⊂ RN open and u ∈ BV(Ω) , assume {un}
∞
n=1 ⊂ BV(Ω) and

lim
n→∞
‖un − u‖L1(Ω) = 0, lim

n→∞
‖Dun‖ (Ω) = ‖Du‖ (Ω).

Then for any Ω′ ⊂ Ω , we have
lim
n→∞
‖Dun‖ (Ω′) = ‖Du‖ (Ω′),

provided that ‖Du‖ (∂Ω′ ∩Ω) = 0 .
??what is the analogous result in W1,p(Ω)?? The Sobolev case is trivial because for any u ∈ W1,p(Ω) , Du << LN and
we never worry about Lebesgue measure 0 set.

Theorem 5.19 (Weak Convergence of Du ). Assume u and un is obtained from Theorem 5.15, define

µn(B) :=
∫

B∩Ω

dDun, µ(B) :=
∫

B∩Ω

dDu

Then, we have µn
∗
⇀ µ , i.e., for any φ ∈ C0

c (RN) , we have

lim
n→∞

∫
Ω

φ dµn =

∫
Ω

φ dµ.

??should be φ ∈ Cc(RN)?? Yes, this is the density result. See Theorem 11.26

Theorem 5.20 (Compactness in BV(Ω) ). Let Ω be an open bounded extension domain and

sup
n∈N
‖un‖BV(Ω) < ∞.

Then, up to a subsequence, we have
lim
n→∞
‖un − u‖Lq (Ω) = 0,

for any 1 ≤ q < 1∗ . Also, by the compactness of Radon measure, Dun
∗
⇀ Du, up to a subsequence.

Theorem 5.21 (Trace Operator). Suppose Ω is open bounded with Lipschitz boundary. Then there exists a bounded
linear operator T : BV(Ω)→ L1(∂Ω;HN−1) such that

(1) T [u] = u on ∂Ω a.e. if u ∈ C0(Ω̄) ∩W1,1(Ω) .
(2) ‖T [u]‖L1(∂Ω) ≤ C ‖u‖BV(Ω) where C = C(Ω,N) . This is the result of T being a linear bounded operator. But it

is not clear why T is bounded from prove.
(3) Also, we have another direction of trace estimation

‖u‖L1(Ω) ≤ C(Ω, ∂Ω)
(
‖T [u]‖L(∂Ω) + ‖Du‖ (Ω)

)
.

(4) The integration by part formula is valid, i.e. for any ϕ ∈ C1(RN ;RN) .∫
Ω

u divϕ dx = −

∫
Ω

〈σ, ϕ〉 d ‖Du‖ +

∫
∂Ω

T [u]ϕ · ν dHN−1,

where ν is the outer normal vector of Ω .
(5) T[u](x) is a lebesgue point for a.e. x ∈ ∂Ω , i.e.

lim
r→0

1
LN(B(x, r) ∩Ω)

∫
B(x,r)∩Ω

|u − T [u](x)| dy = 0

Theorem 5.22 (Trace Operator - Guess Result and After Reduced Boundary). .
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(1) Still assume Ω is open bounded with Lipschitz boundary, but ??By approximation, can we have, for u, v ∈
BV(Ω)?? ∫

Ω

uσ(v)i d ‖Dv‖ = −

∫
Ω

σ(u)i v d ‖Du‖ +

∫
∂Ω

T [u] T [v] νi dS x.

(2) Now we only assume E has ??locally?? finite perimeter in RN , ??do we have??∫
E

u divϕ dx = −

∫
E
〈σ, ϕ〉 d ‖Du‖ +

∫
∂∗E

T [u]ϕ · νE dHN−1,

where ϕ ∈ C∞c (RN ;RN) .
(3) In the end, ??do we have??∫

E
uσ(v)i d ‖Dv‖ = −

∫
E
σ(u)i v d ‖Du‖ +

∫
∂∗E

T [u] T [v] (νE)i dHN−1.

Theorem 5.23 (The Fake Extension Operator). Given Ω open bounded with Lipschitz boundary, assume u1 ∈ BV(Ω)
and u2 ∈ BV(RN \Ω) . Define

ū :=

u1 x ∈ Ω

u2 x ∈ RN \Ω

Then we have ū ∈ BV(RN) and

‖Dū‖ (RN) = ‖Du1‖ (Ω) + ‖Du2‖ (Ω) +

∫
∂Ω

|T [u1] − T [u2]| dS

Definition 5.24 (The Extension Domain). We say that an open set Ω ⊂ RN is an extension domain if ∂Ω is bounded
and for any open A ⊃ Ω̄ , there exists a linear and continuous extension operator E : BV(Ω)→ BV(RN) satisfying

(1) Eu = 0 a.e. in RN \ A for any u ∈ BV(Ω)
(2) ‖D(Eu)‖ (∂Ω) = 0 for any u ∈ BV(Ω)
(3) for any p ∈ [1,∞] the restriction of E to W1,p(Ω) induces a linear continuous map between this space and

W1,p(RN) .

Comment: the 2nd property is the most important one. It states that the measure ‖D(Eu)‖ never charge on the boundary.

Theorem 5.25. [The Line Properties in BV function]
Assume u ∈ L1

loc(R
N) . Then u ∈ BVloc(RN) if and only if∫

K
essVb

a undx′ < ∞

for each n = 1, . . . ,N , a < b, and compact set K ⊂ RN−1

6. BV Embedding and Coarea Formula

Theorem 6.1 (Sobolev-Type Embedding for BV Functions). Assume u ∈ BV(RN) , we have(∫
RN
|u|q dx

) 1
q

≤ C ‖Du‖ (RN),

for any 1 ≤ q ≤ 1∗ .
??Similar result in extension domain?? Yes, if extension domain we have(∫

Ω

|u|q dx
) 1

q

≤ C ‖u‖BV(Ω) ,

Theorem 6.2 (BV-Type Póincare Inequalities). ??Is there a similar define in BV for W1,p
0 ??
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(1) The general case:
Let Ω be open bounded extension domain and u ∈ BV(Ω) , we have for any positive measure E ⊂ Ω ,∫

Ω

|u − uE | dx ≤ C ‖Du‖ (Ω).

In addition, by embedding, we have(∫
Ω

|u − uE |
q dx

) 1
q

≤ C ‖Du‖ (Ω),

for any 1 ≤ q ≤ 1∗ .
(2) The ball B(x, r) case: Let u ∈ BV(B(x, r))(∫

B
|u − uB|

q dx
) 1

q

≤ C ‖Du‖ (B),

for any 1 ≤ q ≤ 1∗ .
(3) For each 0 < α ≤ 1 , there exists a constant C3(α) such that

‖u‖Ln/n−1(B(x,r)) ≤ C3(α) ‖Du‖ (B(x, r))

for all B(x, r) ⊂ RN , u ∈ BVloc(RN) satisfying

Ln(B(x, r) ∩ { f = 0})
LN(B(x, r))

≥ α

This is actually a direct result of (1) .

Theorem 6.3. [The Isoperimetric Inequality]
Let E be a bounded set has finite perimeter in RN .Then we have(

LN(E)
) N−1

N
≤ C ‖∂E‖ (RN).

Theorem 6.4 (The Relative Isoperimetric Inequality). Let E be a bounded set has finite perimeter in RN , then for any
B(x, r) , we have

min
{
LN(B(x, r) ∩ E),LN(B(x, r) − E

}1− 1
N
≤ C ‖∂E‖ (B(x, r)).

This is just the application of Poincare inequality above.

Notation. We define the set Et to be

Et := {x ∈ Ω, u(x) > t}

Theorem 6.5. [The Coarea Formula]
For Ω open and u ∈ BV(Ω) , we have

‖Du‖ (Ω) =

∫ +∞

−∞

‖∂Et‖ (Ω) dt,

and hence ‖∂Et‖ (Ω) is finite for a.e. t ∈ R .

On the other hand, if ∫ +∞

−∞

‖∂Et‖ (Ω) dt < ∞,

we have u ∈ BV(Ω) .
??Do we have analogous result of BVloc(Ω)??
??Can we use reduced boundary to rewrite this?? ??what is the analogous result in W1,p(Ω) , W1,1(Ω) , Lipschitz??
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Comment: for Lipschitz function, this is just the special case of co-area formula, namely, we have if u is Lipschitz, then∫
Ω

|∇u| dx =

∫ ∞

−∞

HN−1({x ∈ Ω, u(x) = t}) dt

However, for the W1,1(Ω) case, we stay with BV coarea formula, since we have no special information of the boundary
of the level set (super-level set).

7. The Reduced Boundary

Definition 7.1. Assume E has locally finite perimeter in RN , we say x ∈ ∂∗E , the reduced boundary, if

(1) For every r > 0, we have ‖∂E‖ (B(x, r)) > 0.
(2) |νE(x)| = 1
(3) ν(x) is the lebesgue point w.r.t. ∂E , i.e.,

lim
r→0

1
‖∂E‖ (B(x, r))

∫
B(x,r)

νE d ‖∂E‖ = νE(x).

Comment: condition (3) is the key because Lebesgue point means measure theoretically continuous and this is why we
have the reduced boundary is measure theoretically C1 .

Theorem 7.2 (The Fake Integration by Parts). Let E has locally finite perimeter in RN , then we have for any B(x, r) ,
B(x, r) ∩ E , ∅ , ∫

B∩E
divϕ dx =

∫
B∩E

ϕ · νE d ‖∂E‖ +

∫
∂B∩E

ϕ · ν dHN−1

Theorem 7.3. [The Properties of the Points in Reduced Boundary]
We say from this theorem that a point belongs to reduced boundary is reasonably good enough. It takes a fair share on
the boundary. Here we take x0 ∈ ∂

∗E where E has locally finite perimeter.

(1)

lim inf
r→0

LN(B(x0, r) ∩ E)
rN ≥ A1 > 0

(2)

lim sup
r→0

LN(B(x0, r) − E)
rN ≥ A2 > 0

(3)

lim inf
r→0

‖∂E‖ (B(x, r)))
rN−1 ≥ A3 > 0

(4)

lim sup
r→0

‖∂E‖ (B(x, r)))
rN−1 ≤ A4

(5)

lim sup
r→0

‖∂(E ∩ B(x, r))‖ (RN)
rN−1 ≤ A5

Comment: We can actually write A1 = A2 = 1/2 and A3 = A4 = A5 = 1 .

Theorem 7.4 (The Blow-up). Assume E has locally finite perimeter in RN , then for x ∈ ∂∗E , we have

χEr (x) → χH−(x) in L1
loc(R

N)

where Er := E ∩ B(x, r) and H−(x) :=
{
y ∈ RN , νE(x) · (y − x) ≤ 0

}
Corollary 7.5 (Being in reduced boundary has an outer normal vector). Assume E has locally finite perimeter in RN ,
then for x0 ∈ ∂

∗E , we have



18 PAN LIU

(1)

lim sup
r→0

LN(B(x, r) ∩ E ∩ H+(x))
rN = 0

lim sup
r→0

LN(B(x, r) − E) ∩ H−(x))
rN = 0

(2)

lim
r→0

‖∂E‖ (B(x, r))
α(N − 1)rN−1 = 1

Comment: This is somehow saying that ∂E is almost C1 .

Theorem 7.6 (The Reduced Boundary). Let E has locally finite perimeter in RN , we have
(1) ∂∗E is almost good, i.e.,

∂∗E =

 ∞⋃
n=1

Kn

 ∪ N,

where ‖∂E‖ (N) = 0 and Kn is a compact subset of C1 hyper surface S n in RN .
(2) For x ∈ Kn , we have νE(x) = ν(x) where ν is the regular outer vector of Kn .
(3) ‖∂E‖ = HN−1b∂∗E

Definition 7.7 (The Measure Theoretical Boundary). We define x ∈ ∂∗E , the measure theoretical boundary, if

lim sup
r→0

LN(B(x, r) ∩ E)
rN > 0,

and

lim sup
r→0

LN(B(x, r) \ E)
rN > 0.

Note that ∂∗E is purely a topological property, but ∂∗E is more a measure-like property.

Theorem 7.8. All in one, the measure theoretical boundary is almost the reduced boundary, i.e.,

HN−1(∂∗E \ ∂∗E) = 0.

Theorem 7.9 (The Generalized Gauss-Green Theorem). Let E has locally finite perimeter in RN , then for any ϕ ∈

C1
c (RN ; RN) , we have HN−1(∂∗E ∩ K) < ∞ for each K compact.∫

E
divϕ dx =

∫
∂∗E

ϕ · νE dHN−1,

as well as, ∫
E

divϕ dx =

∫
∂∗E

ϕ · νE dHN−1.

??Moreover??, if E has locally finite perimeter in Ω , then for any ϕ ∈ C1
c (Ω; RN) , we have∫

E
divϕ dx =

∫
∂∗E∩Ω

ϕ · νE dHN−1.

Definition 7.10. Given u ∈ BVloc(RN) , we define

µ(x) := inf
{

t, lim
r→0

LN(B(x, r) ∩ {u > t})
rn = 0

}
and

λ(x) := sup
{

t, lim
r→0

LN(B(x, r) ∩ {u < t})
rn = 0

}
.

We define
J :=

{
x ∈ RN , λ(x) < µ(x)

}
Lemma 7.11. Of course we have λ(x) = µ(x) LN a.e. In addition we have −∞ < λ(x) ≤ µ(x) < ∞ HN−1 a.e.
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Theorem 7.12 (The Fine Properties of BV Function). Given u ∈ BVloc(RN) , we have HN−1 a.e. x ∈ J such that there
exists vector ν(x) such that

lim
r→0

?
B(x,r)∩H+

ν(x)

|u − λ(x)|
N

N−1 dx = 0

and
lim
r→0

?
B(x,r)∩H−

ν(x)

|u − µ(x)|
N

N−1 dx = 0.

Moreover, setting U(x) = (µ(x) + λ(x))/2 , we have

lim
r→0

?
B(x,r)
|u − U(x)|

N
N−1 dx = 0.

HN−1 a.e., and same hold in W1,p as well.

Theorem 7.13 (The ). If HN−1(∂E ∩ K) < ∞ for every compact set K ⊂ RN , then E has locally finite perimeter.

??if uniform bounded, can we have finite perimeter instead of finite??



20 PAN LIU

Part 4. Elliptic PDEs

In this Part, Ω will always denote an open bounded set with smooth boundary.

8. Laplace Equation

Definition 8.1 (Harmonic Function). A function u ∈ C2(Ω) , Ω ⊂ RN , is harmonic if 4u = 0.

Theorem 8.2. [The Properties of Laplace Operator]
We collect some short but useful properties of Laplace operator.

(1) The Laplace operator 4 is Homogeneous (independent of position) and isotropic (independent of direction).
That is, it is Rotation invariant, and also translation invariant.

(2) The Laplace operator is Radial symmetric

Theorem 8.3. [The Fundamental Solution of Laplace Equation in RN ] The function −4u = 0 on RN has the funda-
mental solution

Φ(x) =

− 1
2π log(|x|), N = 2

1
α(N)(N−2)

1
|x|N−2 , N ≥ 3

Theorem 8.4. [The Solution of −4u = f on RN ]
Suppose f ∈ C2

c (RN) , then the function

u(x) :=
∫
RN

Φ(y) f (x − y)dy =

∫
RN

Φ(x − y) f (y)dy

solves the equation −4u = f , and u ∈ C2(RN) . Notice that u(x) → 0 as |x| → ∞ as n ≥ 3 and growth in the rate of
log(|x|) as N = 2
The condition of f can be weaken to f is Höoder continuous and integrable.
Intuitively, we write −4Φ = δx

Theorem 8.5. [The Mean Value Theorem]
This is the most important theorem in harmonic equation. Let −4u = 0 for u ∈ C2(Ω) for any Ω open, then we have

(1) u(x) =

?
∂B(x,r)

u(y)dy =

?
B(x,r)

u(y)dy,

for any B(x, r) ⊂ Ω .
Moreover, the condition −4u = 0 and u ∈ C2(Ω) can be weaken to u ∈ C1(Ω) and∫

∂B

∂

∂ν
u(y)dy = 0,

for all ball B ⊂ Ω .
Now for the converse, suppose u ∈ C(Ω) and satisfies MVT, then u is smooth and also harmonic.
Comment: when we say u satisfies MVT, we actually only require that for each x ∈ Ω , there exists R(x) > 0 such that
for all r < R(x) we have u satisfies (1). The point is that R(x) is not necessary to be dist(x, ∂Ω) , it could be smaller
then it. However, R could be it as showed in HW.

Theorem 8.6. [The Maximal Principle]
Take Ω be open bounded, then the harmonic function u in Ω will only take the Max and Min on the boundary of Ω .

Theorem 8.7. [The Smoothness of u ]
If u is harmonic in open Ω , then u is smooth in Ω .
Moreover, if u ∈ C0(Ω) and MVT, then u is smooth as well. That is, the condition of u can be weaken then C2(Ω)
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Theorem 8.8. [The Estimation of Derivative]
Suppose u satisfies MVT in Ω open, then u is smooth and in addition,

|Dαu(x)| ≤
C(n, k)

α(n)rn · rk

∫
B(x,r)
|u(y)| dy =

C(n, k)
rk

?
B(x,r)
|u(y)| dy ≤

C(n, k)
rk ‖u‖L∞(B(x,r))

Theorem 8.9. If u is harmonic, then it is analytic. Moreover, if −∆u = f and f is analytic, so is u .

Corollary 8.10. The directly application of u being analytic is that if Ω is open connected, then u ≡ 0 on Ω if u ≡ 0
on an neighborhood in Ω . Moreover, u ≡ constant if u ≡ constant in an neighborhood.

Theorem 8.11. [Green’s Reconstruction Formula]
Let Ω be open bounded with C1 boundary. If u ∈ C2(Ω) ∩C0(Ω̄) and Green’s function exists on Ω , then

u(x) =

∫
Ω

− 4u(y) G(x.y)dy −
∫
∂Ω

u(y)
∂yG(x, y)

∂ν
dσ(y).

??The formula is true if u ∈ C2(Ω̄) , but what kind of approximation should we use here??

Theorem 8.12. [The Properties of Green Function] We list all properties of Green function
(1) G(x, y) = G(y, x)
(2) ??G(x, y) is strict positive.?? Yes, and we actually have φ(x, y) > G(x, y) > 0 .
(3) Take

u(x) =

∫
Ω

G(x, y) f (y)dy,

then u solves −4u(x) = f (x) for x ∈ Ω and u = 0 on ∂Ω . ??what f ?? ??u(x)→ 0 as x→ ∂Ω??

Theorem 8.13 (The Poisson Reconstruction Formula in B(0,R) ). We could uniquely solve Dirichlet problem−4u = 0 in B(0,R)
u = φ on ∂B(0,R),

where φ is continuous on ∂B(0,R) , by defining

u(x) =

∫
∂B(0,R)

K(x, y) φ(y) dσ(y)

where K is the Poisson Kernel defined as

K(x, y) =
R2 − |x|2

nα(n)R
1

|y − x|n
, for x ∈ B(0,R), y ∈ ∂B(0,R),

then u ∈ C2(B(0,R)) ∩C0(B(0,R)) .

Theorem 8.14 (The Poisson Reconstruction Formula in RN
+ ). We could solve Dirichlet problem, however, may not

uniquely, by −4u = 0 in RN
+

u = φ on ∂RN
+ ,

where φ is continuous on ∂RN
+ , by defining

u(x) =

∫
∂RN

+

K(x, y) φ(y) dσ(y)

where K is the Poisson Kernel defined as

K(x, y) =
2xN

nα(n)
1

|y − x|n
, for x ∈ RN

+ , y ∈ ∂RN
+ ,

then u ∈ C2(RN
+ ) ∩C0(∂RN

+ ) .

Comment: If g is continuous and bounded, then so is u and hence we have unique solution. Also, if g vanish at infinity,
so is u .



22 PAN LIU

Theorem 8.15 (The general existence theorem of Laplace equation for Dirichlet problem). We present two methods for
general existence theorem of Dirichlet problem for Ω open bounded with regular boundary such that the problem−4u = 0 in Ω

u = g on ∂Ω,

where g ∈ C0(Ω) , has a unique solution u ∈ C2(Ω) ∩C0(Ω̄) .

(1) The Perron method:
We define

P :=
{
u ∈ C0(Ω̄) is Sub-harmonic and u ≤ g on ∂Ω

}
and

Pg(x) := sup
u∈P

u(x), for x ∈ Ω.

Then Pg is the solution we want.
(2) The Poincaré sweeping out:

We use countably ball {Bn}
∞
n=1 cover Ω and re-index them as

B1, B2, B1, B2, B3, B1, B2, B3, B4, . . .

Then, we start with a sub-harmonic function u0 ∈ C0(Ω̄) such that u = g on ∂Ω . We obtain u1 by doing
Possion re-construction on B1 . Likewise, we obtain {un}

∞
n=1 and the limiting function u is the solution we are

looking at.

9. General Elliptic PDEs - Strong Solutions

In this section we define the non-divergence form L on open bounded Ω such that

L := −ai j∂i∂ j + bi∂i + c,

where ai j , bi and c are all L∞(Ω) .

Lemma 9.1. This is an simple observation but it is really nice. Suppose u = 0 on ∂Ω , then ∇u(x0) = ∂νu(x0) , up to a
sign. That is, the gradient is parallel to the direction derivative along the outer normal vector of ∂Ω .

Theorem 9.2. [The Weak Maximal Principle for c ≡ 0] Let Ω be open bounded, u ∈ C2(Ω) ∩C0(Ω̄) . Then

(1) if Lu ≤ 0 , sub-solution, we have
sup

Ω

u = sup
∂Ω

u

(2) if Lu ≥ 0 , super-solution, we have
inf
Ω

u = inf
∂Ω

u

(3) if Lu = 0 , we have
sup

Ω

u = sup
∂Ω

u and inf
Ω

u = inf
∂Ω

u

Theorem 9.3 (A Priori Estimation ). Let Ω be open bounded, i.e., Ω ⊂
{
x ∈ RN , 0 ≤ x · ξ ≤ d

}
, and u ∈ C2(Ω)∩C0(Ω̄)

solves Lu = f in Ω

u = g on ∂Ω,

then we have
sup

Ω

u ≤ sup
∂Ω

g+ + C sup
Ω

f +,

and

C =
1
θ

(
edL − 1

)
where L := 1 +

‖b‖
θ
.
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Theorem 9.4 (Uniqueness). Let Ω be open bounded and u1 u2 solvesLu = f in Ω

u = g on ∂Ω,

then u1 = u2 in Ω . ??what kind of f and g?? We don’t really worry about what kind of f and g here since we are
only talk about Priori estimation.

Theorem 9.5. [The Weak Maximal Principle for c ≥ 0] Let Ω be open bounded, u ∈ C2(Ω) ∩C0(Ω̄) . Then
(1) if Lu ≤ 0 , sub-solution, we have

sup
Ω

u ≤ sup
∂Ω

u+

(2) if Lu ≥ 0 , super-solution, we have
inf
Ω

u ≥ inf
∂Ω
−u−

(3) if Lu = 0 , we have
sup

Ω

|u| = sup
∂Ω

|u|

Theorem 9.6. [The Hope’s Lemma for case c ≡ 0 and c ≥ 0] Let Ω be open bounded and and u ∈ C2(Ω) ∩ C1(Ω̄) .
Then assume there exists x0 ∈ ∂Ω such that u(x0) > u(x) for all x ∈ Ω and Ω satisfies the interior ball condition at x0 .
Then

(1) if c ≡ 0 , we have
∂u
∂ν

u(x0) > 0;

(2) if c > 0 and u(x0) ≥ 0 , we have
∂u
∂ν

u(x0) > 0,

where ν is outer normal of Ω at x0 .

Theorem 9.7 (The Strong Maximal Principle). Let Ω be open bounded and u ∈ C2(Ω) ∩ C0(Ω̄) with Lu ≤ 0 . Then u
can not assume Maximal inside interior if c ≡ 0 or can not assume non-negative maximal inside interior if c > 0 .

Theorem 9.8 (The Generally Case for c ). Suppose there exists a w ∈ C2(Ω) ∩ C1(Ω̄) satisfying w > 0 in Ω̄ and
Lw ≥ 0 . If u ∈ C2(Ω) ∩C0(Ω̄) satisfies Lu ≤ 0 in Ω , then u/w has Strong-Max-Principle for the case c ≥ 0 .

Comment: If the domain is small enough we could have w for free.

Corollary 9.9 (Uniqueness). The operator L satisfies above will have uniqueness for Dirchlet problem.

10. General Elliptic PDEs - Weak Solutions

In this section we take
L := −∂ j(ai j∂i) + bi∂i + c = −div(A · ∇) + b · ∇ + c

as the divergence form.

Definition 10.1 (The Weak Solution). We define, for Ω open bounded,

B[u, v] :=
∫

Ω

A∇u∇v dx +

∫
Ω

b · ∇uv dx +

∫
Ω

cuv dx =

∫
Ω

ai j∂iu∂ jv dx +

∫
Ω

b∂iuv dx +

∫
Ω

cuv dx

We say u ∈ H1
0 (Ω) is a weak solution of

(2)

Lu = f in Ω

u = 0 on ∂Ω,

if

B[u, v] =

∫
Ω

f v dx
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for all v ∈ H1
0 (Ω) .

Here we assume f ∈ L2 , but it could be weaken into H−1 .

Theorem 10.2. [The Weak Maximal Principle for c ≥ 0] Let Ω be open bounded, u ∈ H1(Ω) is a Weak-solution. Then
(1) if B[u, v] ≤ 0 for all v ≥ 0 in H1

0 (Ω) , Weak-sub-solution, we have

ess supΩu ≤ ess sup∂Ωu+

Theorem 10.3 (A Priori Estimation ). Let A ∈ C1(Ω̄) and Ω be open bounded, i.e., Ω ⊂
{
x ∈ RN , 0 ≤ x · ξ ≤ d

}
, and

u ∈ H1(Ω) is a weak solution solves Lu = f in Ω

u = g on ∂Ω,

then we have
ess supΩu ≤ ess sup∂Ωg+ + Cess supΩ f +,

and
C =

1
θ

(
edL − 1

)
where L := 1 +

‖b‖L∞ + ‖∇A‖L∞
θ

.

Theorem 10.4 (The Three Existence Theorems). Now we present those three existence theorem in weak solutions.
(1) The 1st existence theorem.

As the most fundamental existence theorem, it highly depends on the result in Lax-Mailgram Theorem. Let γ is
large enough, which can be determined by A, b , and c , that for every f ∈ L2(Ω) we have the equationLu + γu = f in Ω

u = 0 on ∂Ω,

has a unique solution.
(2) The second existence theorem is the variation of Fredholm alternative. We simply notice that, by define Lγ :=

L + γ , that T := (Lγ)−1 is a compact operator from L2 → L2 and hence Fredholm applied. The result is:
(a) There exactly one and only one will hold:

(i) The equation Lu = f in Ω

u = 0 on ∂Ω,

will have a unique solution for every f ∈ L2(Ω)
(ii) The equation Lu = 0 in Ω

u = 0 on ∂Ω,

will have a non-trivial solution.
(3) The 3rd existence theorem is the variation of the spectrum theorem in Hilbert space. The theorem states that

the equation Lu = λu + f in Ω

u = 0 on ∂Ω,

has a unique solution for all f if and only if that λ < ΣL , where ΣL is the spectrum of L , i.e., the equationLu = λu in Ω

u = 0 on ∂Ω,

has non-trivial solution if λ ∈ ΣL .
Moreover, if ΣL is infinite, we have for {αn}

∞
n=1 ⊂ ΣL , αn → +∞ .

Comment: 3rd existence is a consequence of 2nd existence. It has nothing to do with 1st existence, so to say...

Remark 10.5. Hence, by 2nd existence theorem and W-M-P, we know that if c ≥ 0 then equation (2) will always have
unique weak solution.
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Theorem 10.6. Suppose λ < ΣL , we have the equationLu = λu + f in Ω

u = 0 on ∂Ω,

has a unique solution u ∈ H1
0 (Ω) , and moreover, we have

‖u‖H1
0 (Ω) ≤ C ‖ f ‖L2(Ω)

Theorem 10.7 (Continuity Depends on Dataum). Basically, for operators L1 and L2 , if ‖A1 − A2‖L∞ + ‖b1 − b2‖L∞ +

‖c1 − c2‖L∞ < ε for arbitrary ε > 0 , then if λ < ΣL1 , λ < ΣL2 as well.

Theorem 10.8 (The interior and exterior regularity). The interior estimation is the result of Characterization of H1
0 (Ω)

and exterior estimation if the result of flat boundary condition. We all just consider about the equationLu = f in Ω

u = 0 on ∂Ω,

(1) The H2 regularity of interior and exterior.
(a) As the interior regularity, we never care about the boundary behavior of solution u . What we will do is fix

a compact subset Ω′ ⊂⊂ Ω and focus inside Ω′ .
Assume now f ∈ L2(Ω) and A ∈ C1(Ω) , b , c ∈ L∞(Ω) , then we have u ∈ H2

loc(Ω) and

‖u‖H2(Ω′) ≤ C(Ω′,Ω)(‖ f ‖L2(Ω) + ‖u‖L2 ).

Moreover, we have Lu = f a.e.
(b) As the exterior regularity, we now have to ask the boundary of Ω to be nice so that we could do a ”flatten”

argument at ∂Ω .
Assume now f ∈ L2(Ω) and A ∈ C1(Ω̄) and b, c ∈ L∞(Ω) . (Here we explicitly require that A ∈ C1(Ω̄) , as
in interior case, A is implicitly assumed to be C1(Ω̄′) ). Then if Ω has C2 boundary, we have u ∈ H2(Ω)
and we have

‖u‖H2(Ω) ≤ C(Ω)(‖ f ‖L2(Ω) + ‖u‖L2 ).
(2) The Hm regularity of interior and exterior.

(a) Assume now f ∈ Hm(Ω) and A ∈ Cm(Ω) , b , c ∈ Cm−1(Ω) , then we have u ∈ Hm+2
loc (Ω) and

‖u‖Hm+2(Ω′) ≤ C(Ω′,Ω)(‖ f ‖Hm(Ω) + ‖u‖L2 ).

(b) Assume now f ∈ Hm(Ω) and A ∈ Cm+1(Ω̄) and b, c ∈ Cm(Ω̄) . Then if Ω has Cm+2 boundary, we have
u ∈ Hm+2(Ω) and we have

‖u‖Hm+2(Ω) ≤ C(Ω)(‖ f ‖Hm(Ω) + ‖u‖L2 ).

Also, we could have f = g on ∂Ω where g ∈ Hm+2 .
Comment: the continuity assumption can be weaken to Lipschitz continuous. The whole point is we can have a classical
derivative and serve in integral sense, i.e., a.e. differentiable is good enough.
Comment: Since the interior regularity does not depends on the behavior on the boundary, hence we could work on the
estimation of the entire space, locally, i.e., if Lu = f on RN and f is C∞ , then u is C∞ as well, maybe even analytic.

Theorem 10.9 (The Eigenvalue and Eigenvector). Here we take

L := −∂ j(ai j∂i) + c

for c > 0 . Hence the Lax-Mailgram will always work and we sure have unique solutions for each f ∈ L2(Ω)

Theorem 10.10 (The Completion of Eigenvalue). In view that L is one-to-one and onto, so T := L−1 L2(Ω) → L2(Ω)
is self-adjoint operator and hence we have there exists sequence {λn}

∞
n=1 such that 0 < λ1 ≤ λ2 ≤ · · · and wn such thatLwn = λnwn in Ω

wn = 0 on ∂Ω,

where {wn}
∞
n=1 forms an orthonormal basis in L2(Ω) but each wn ∈ C∞(Ω̄)
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Theorem 10.11 (The Rayleigh Quotient Theorem and Courant Min-Max Theorem). Those two theorems basically tell
the same story so we put them together.

(1) The Rayleigh Quotient Theorem: we could identify λk by

λk = min
‖u‖L2(Ω)=1

{B[u, u], (u,wn) = 0 for all 1 ≤ n ≤ k − 1}

(2) The Courant Min-Max Theorem states that

λk = max
S⊂H1

0 (Ω)
min
u∈S⊥

‖u‖L2(Ω)=1

B[u, u]

where S is a (k − 1) dimensional subspace in H1
0 (Ω)

Theorem 10.12 (The Interpolation of Hm
0 norm). Assume Ω open bounded and smooth boundary, A , c are all C∞(Ω̄) .

From the prove of Rayleigh Quotient Theorem, we deduce that for all u ∈ H1
0 (Ω) we have

C1 ‖u‖H1
0 (Ω) ≤

∞∑
k=1

λk(u,wk)2 ≤ C2 ‖u‖H1
0 (Ω) .

Moreover, by induction, we could write for any m ≥ 1 be integer, we have

C1 ‖u‖Hm
0 (Ω) ≤

∞∑
k=1

λm
k (u,wk)2 ≤ C2 ‖u‖Hm

0 (Ω) .

Even more, we could have for any s ∈ [0,∞) , that

C1 ‖u‖Hs
0(Ω) ≤

∞∑
k=1

λs
k(u,wk)2 ≤ C2 ‖u‖Hs

0(Ω) .

where all C1 and C2 are depends on Ω , A , and c .

Theorem 10.13 (More Properties of λ1 ). The first eigenvalue is a bit special, so to say...
(1) λ1 has multiplicity 1 , i,e., the dimension of the eigenspace is 1 , as such 0 < λ1 < λ2 ≤ · · ·

(2) If w1 is the corresponding eigenfunction, then we may take w1 > 0 in Ω .
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Part 5. Micellaneous

11. Measure Theory & Functional Analysis

Definition 11.1 (Measure & Signed Measure). We say a map µ : B(X)→ R+ ∪ {0} is a measure if
(1) µ(∅) = 0;
(2) µ(A) ≤ µ(B) if A ⊂ B ;
(3) µ(A ∪ B) = µ(A) + µ(B) if A ∩ B = ∅

A measure µ on X is regular if for each set A ⊂ X there exists a µ -measurable set B such that A ⊂ B and µ(A) = µ(B) .
A measure µ on RN is called Borel if every Borel set is µ -measurable.
A measure µ on RN is Borel regular if µ is Borel and for each A ⊂ RN there exists a Borel set B such that A ⊂ B and
µ(A) = µ(B) .
A measure µ on RN is a Radon measure if µ is Borel regular and µ(K) < ∞ for each compact set K ⊂ RN .
A measure ν is said to be Signed if there exists f ∈ L1

loc(µ) and

ν(A) =

∫
A

f dµ

Theorem 11.2. [Approximation by Open and Compact Sets]
Let µ be a Radon measure on RN . Then

(1) for each set A ⊂ RN ,
µ(A) := inf {µ(U), A ⊂ U, U is open}

(2) for each set A ⊂ RN and A is measurable,

µ(A) := sup {µ(K), K ⊂ A, K is compact}

Theorem 11.3. (The Convergence Theorem)
(1) The Monotone Convergence: Let un : X → [0,+∞] and 0 ≤ u1(x) ≤ u2(x) ≤ · · · ≤ un(x) ≤ · · · for (almost)

every x ∈ X , we have

lim
n→∞

∫
X

un dx =

∫
X

lim
n→∞

un(x) dx

And from this we conclude that for un non-negative,∫
X

∞∑
n=1

un(x) dx =

∞∑
n=1

∫
X

un(x) dx,

and
∞∑

n=1

∞∑
m=1

an,m =

∞∑
m=1

∞∑
n=1

an,m,

if an,m ≥ 0 .
(2) The Fatou’s Lemma: Let un be non-negative, then

lim inf
n→∞

∫
X

un dx ≥
∫

X
lim inf

n→∞
un(x) dx.

Also if un is uniformly bounded below and µ(X) < ∞ , the same will work.
(3) The Dominate Convergence Theorem: Suppose |un| ≤ g a.e. x ∈ X and g ∈ L1(X) , then

lim
n→∞

∫
X

un dx =

∫
X

lim
n→∞

un(x) dx.

Thus, if
∣∣∣∑∞n=1 un

∣∣∣ ≤ g and g ∈ L1(X) , we have∫
X

∞∑
n=1

un(x) dx =

∞∑
n=1

∫
X

un(x) dx.
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Theorem 11.4. [Lusin - The Continuity Property of Measurable Function]
Let u be a measurable function on (X, µ) , and a measurable set A with µ(A) < ∞ . Then for any ε > 0 there exists
g ∈ Cc(X) such that

µ({ f (x) , g(x)}) < ε.
Moreover, g can be arranged that

sup
x∈X
|g| ≤ sup

x∈X
|u| .

In other word, u is continuous on a compact set K such that µ(A − K) < ε .

Check Remark 13.1 for the limitation of Lusin.

Theorem 11.5. [Egoroff]
Let un → u pointwise and a measurable set A with µ(A) < ∞ . Given any ε > 0 there exists a measurable set B ⊂ A
such that µ(A − B) < ε and un → u uniformly on B.

Check Remark 13.1 for the limitation of Lusin

Lp Space Theorem: The next couple of Theorems concern about Lp Theorem.

Theorem 11.6. [ Lp Space Interpolation]
Let u ∈ Lp1 (X) ∩ Lp2 (x) where p ≤ q and µ(X) is not necessary finite, we have u ∈ Lq(X) for any p1 ≤ q ≤ p2 and
moreover,

‖u‖Lq(X) ≤ ‖u‖
θ
Lp1 (X) ‖u‖

1−θ
Lp2 (X) ,

where θ is defined as
1
q

:=
1 − θ

p1
+

θ

p1

Theorem 11.7. [ Lp Space Approximation]
For any 1 ≤ p < ∞ and u ∈ Lp(X) , there exists {un}

∞
n=1 ⊂ C∞c (X) ∩ Lp(X) such that

lim
n→∞
‖un − u‖Lp(X) = 0.

Here we do not require X is finite or not.
For L∞ we can NOT because uniformly convergence will always result in continuous function.

Theorem 11.8. [Weierstrass Approximation Theorem]
Suppose f is a continuous real-valued function defined on the real interval [a, b] . For every ε > 0 , there exists a
polynomial p(x) such that for all x ∈ [a, b] , we have | f (x) − p(x)| < ε , or equivalently, the supremum norm ‖ f − p‖L∞ <
ε .

Corollary 11.9. From Weierstrass Approximation, we could also deduce that the polynomial p(x) is dense in Lp([0, 1]) ,
1 ≤ p < ∞ because of the density of continuous function in Lp space above.

Theorem 11.10. [Vitali Convergence Theorem]
Let {un}

∞
n=1 and u ∈ L1(X) , then un → u in L1(X) if and only if

(1) un → u in measure;
(2) (Tightness) For any ε > 0 , there exists a set V such that µ(V) < ∞ and

sup
n∈N

∫
X−V
|un| dµ < ε

(3) (Uniform Integrable) For any ε > 0 , there exists δ > 0 such that for any set E , µ(E) < δ , we have

sup
n∈N

∫
E
|un| dµ < ε

??What is the analogous results in Lp , p > 1 , in L∞ ??

Theorem 11.11. [The Weak Convergence in Lp for p = 1, 1 < p < ∞ , and p = ∞ ]
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(1) We assume 1 < p < ∞ and supn∈N ‖un‖Lp(X) ≤ M < ∞ , then up to a subsequence, that un ⇀ u for some
u ∈ Lp(X) , i.e., for every ϕ ∈ Lp′ (X) ∫

X
unϕ dx→

∫
X

uϕ dx.

Also, by Banach-Algoglu, we have ‖u‖Lp ≤ M as well. ??can we have l.s.c of norm?? Yes, this is weak conver-
gence theorem
??Do we have for any Ω ⊂ X the above convergence still hold?? No the testing space is getting larger.
??If µ(X) < ∞ , do we have Lp weak implies Lq weak for q < p. Of course this is true in Strong sense?? Yes,
this is try by Lp embedding.

(2) For p = ∞ ,we write un
∗
⇀ u for some u ∈ L∞ . Again, by Banach-Algoglu, we have ‖u‖Lp ≤ M as well.

??can we have l.s.c of norm?? Yes
(3) For p = 1 , we certainly lose the weak completeness. We will have details in next theorem.

Theorem 11.12. [Dunford-Pettis]
Suppose supn∈N ‖un‖L1(X) < ∞ and {un}

∞
n=1 satisfies Tightness and Uniform Integrable. Then, up to a subsequence, that

un ⇀ u for some u ∈ L1(X) . Usually, we test against ϕ ∈ L∞(X) , or ??could we test against Cc(X) is enough. I don’t
think so b/c Cc is not dense in L∞ ??.

Theorem 11.13. [Characterization of Lp(X) Weak Convergence]
We will do the case p = 1 and 1 < p ≤ ∞ separately.

(1) For the case 1 < p ≤ ∞ , we have un ⇀ u in Lp(Ω) (
∗
⇀ if p = ∞ ) if and only if

lim
n→∞

∫
Ω∩Q

un dx =

∫
Ω∩Q

u dx,

for any cube and
sup
n∈N
‖un‖Lp(Ω) < ∞

(2) For the case p = 1 , this is again the Dunford-Pettis. We have a sequence un ⇀ u in L1(Ω) if and only if

lim
n→∞

∫
Ω∩Q

un dx =

∫
Ω∩Q

u dx,

and {un}
∞
n=1 satisfies uniformly integrable and tightness. (Notice that UI and Tightness implies supn∈N ‖un‖L1(Ω) <

∞ )

Theorem 11.14. [Weak Compactness of Radon Measure]
Let νn be a sequence of Radon measure on X and we assume supn∈N νn(K) < ∞ for each K compact, then, up to a
subsequence, that

νn
∗
⇀ ν, for some Radon measure ν ,

i.e., for every ϕ ∈ Cc(X) ,

lim
n→∞

∫
X
ϕ dνn =

∫
X
ϕ dν

Theorem 11.15. [Consequence of Weak Compactness]
Assume µn

∗
⇀ µ

(1) For any A open, we have
lim inf

n→∞
µn(A) ≥ µ(A);

(2) For any K compact, we have
lim sup

n→∞
µn(K) ≥ µ(K);

For any bounded Borel set B and µ(∂B) = 0 , we have

lim
n→∞

µn(B) = µ(B)
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Theorem 11.16. [Weak Compactness of Signed Measure]
Let σn be a sequence of Signed measure on X and we assume supn∈N ‖σn‖ < ∞ , then, up to a subsequence, that

σn
∗
⇀ σ, for some Signed measure σ,

i.e., for every ϕ ∈ Cc(X) ,

lim
n→∞

∫
X
ϕ dσn =

∫
X
ϕ dσ

??Can we have l.s.c. of the norm of σn ?? Yes, the l.s.c always hold for weak convergence, this is a consequence of
general functional analysis conclusion.

The derivative in measure, AC, and FTC

Theorem 11.17. [The Radon-Nikogy] Let ν be a signed measure, then there exists two signed measure νac and νs such
that

νac � L
N , νs⊥L

N .

Moreover, there exists a unique u ∈ L1
loc(R

N) such that

νac(E) =

∫
E

u dLN ,

for every set E measurable. Also if ν is finite, u will be in L1(RN) .

Definition 11.18. [The Maximal Function]
Given a measure µ , we define the Maximal Function of µ to be

M(µ)(x) := sup
r>0

µ(B(x, r))
LN(B(x, r))

,

and the Maximal Function for measurable function u to be

M(u)(x) := sup
r>0

1
LN(B(x, r))

∫
B(x,r)
|u| dLN ,

Theorem 11.19. [The Vitali’s Covering Theorem]
Let F be any collection of non degenerate closed balls in RN with

sup {diam B B ∈ F } < ∞.

Then there exists a countable family G of disjoint balls in F such that⋃
B∈F

B ⊂ ∪B∈GB̂.

Corollary 11.20. [The Actual Usage of Vitali’s Covering Theorem]
If B is the union of a finite collection of balls B(xi, ri , 1 ≤ i ≤ N , then there is a set S ⊂ {1, . . . ,N} so that

(1) the balls B(xi, ri) with i ∈ S are disjoint,
(2) B ⊂

⋃
i∈S (B(xi, 3ri) and

(3) LN(B) ≤ 3k ∑
i∈S L

N(B(si, ri))

Theorem 11.21. [The Estimation of Maximal Function]
Suppose u ∈ L1(RN) , then for any λ > 0 we have

LN {M(u) > λ} ≤ 3Nλ−1 ‖u‖L1

Theorem 11.22. [The Lebesgue Points]
Let u ∈ L1(X) , then a.e. x ∈ Ω we have

lim
r→0

1
LN(B(x, r))

∫
B(x,r)

u(y) dy = u(x),

or
lim
r→0

1
LN(B(x, r))

∫
B(x,r)
|u(y) − u(x)| dx = 0.
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Theorem 11.23 (The Weak and Weak* Convergence). Notice the l.s.c part
(1) For weak convergence, suppose xn ⇀ x and {xn}

∞
n=1 ⊂ Y where Y is closed and convex, then we have

(a) x ∈ Y
(b) sup ‖xn‖ < ∞

(c) lim infn→∞ ‖xn‖ ≥ ‖x‖
(2) For weak* convergence, suppose xn

∗
⇀ x , then we have

(a) sup ‖xn‖ < ∞

(b) lim infn→∞ ‖xn‖ ≥ ‖x‖

Theorem 11.24 (Every Hilbert space has an orthonormal basis). The most efficient way to prove a orthonormal set is
actually an orthonormal basis is to show this set is complete, i.e., if {xn}

∞
n=1 ⊂ H is an orthonormal set, then if (xn, y) = 0

for all xn implies that y = 0 , we have {xn}
∞
n=1 is an ONB in H .

Theorem 11.25. [The Stampacchia and Lax-Milgram] Here are two most important theorems in Hilbert Space H which
relevant to Variational Problem

(1) The Stampacchia: Assume that a(u, v) is a continuous coercive bilinear form on H . Let K ⊂ H be a nonempty
closed and convex subset. Then, given any ϕ ∈ H∗ , there exists a unique element u ∈ K such that

a(u, v − u) ≥ 〈ϕ, v − u〉〈H∗ ,H〉 ∀v ∈ K.

Moreover, if a is symmetric, then u is characterized by the property

u ∈ K and
1
2

a(u, u) − 〈ϕ, u〉 = min
v∈K

{
1
2

a(v, v) − 〈ϕ, v〉
}

Comment: the Stampacchia theorem is corresponding to the Unilateral constraints problem in Calculus of
Variation. In application, we usual take v − u = ±εu to finally have equality. Also, this version of Stampacchia
also gives the formula of minimizing problem.

(2) The Lax-Milgram: Assume that a(u, v) is a continuous coercive bilinear form on H . Then, given any ϕ ∈ H∗ ,
there exists a unique element u ∈ H such that

a(u, v) = 〈ϕ, v〉〈H∗ ,H〉 ∀v ∈ K.

Moreover, if a is symmetric, then u is characterized by the property

u ∈ H and
1
2

a(u, u) − 〈ϕ, u〉 = min
v∈H

{
1
2

a(v, v) − 〈ϕ, v〉
}

Comment: The Lax-Mailgram is corresponding to the general variation problem. Notice that this version of
Lax-Milgram also gives the form of minimizing problem.

Theorem 11.26. Let X be a Banach space, S be a total subset of X∗ , i.e., the span of S is dense in X∗ , {xn}
∞
n=1 be a

sequence in X and x ∈ X is given. Then xn ⇀ x as n→ ∞ if and only if {xn}
∞
n=1 is bounded and

〈y∗, xn〉 → 〈y∗, x〉 for all y∗ ∈ S .

Comment: This Theorem is extremely useful, as the boundedness is already proven, when we try to prove (verify) certain
weak convergence sequence, such that ∇un weakly goes to some ∇u in Lp , as ∇u is already determined. Hence, instead
of testing against Lp′ function, we only need to test against C∞c function and hence the IBP will come into play and we
reduce the problem into the weak convergence of u itself. Also, consult Theorem 5.19.
Comment: The same result hold for Weak Star convergence.

Theorem 11.27 (The Riesz Representation Theorem). Let L: Cc(RN ; R)→ R be a liner functional satisfying

sup
{
L( f ), f ∈ Cc(RN ,R), | f | ≤ 1, spt( f ) ⊂ K

}
< ∞

for each compact set K ⊂ RN . Then there exists a Radon measure µ on RN and a µ -measurable function σ : RN → RN

such that
(1) |σ(x)| = 1 µ a.e., x
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(2)

L( f ) =

∫
RN
〈 f , σ〉 dµ

for all f ∈ Cc(RN ,R)
(3) ??‖L‖ = µ(RN) if??

Theorem 11.28 (Riemann-Lebesgue Lemma). Let u ∈ Lp
loc(R

N) , 1 ≤ p ≤ ∞ , be KQ-periodic. For every ε > 0 and
x ∈ RN set

uε(x) := u
( x
ε

)
.

Then uε ⇀ ū in Lp(E) (
∗
⇀ if p = ∞ ) for every bounded measurable set E ⊂ RN , where

ū(x) ≡ const :=
1

KN

∫
Q(0,K)

u(y)dy.

12. Other Calculation Facts

We collect some useful but easy to forget facts.
(1) Any function can be written as the summation of odd and even function.

ueven =
u(x) + u(−x)

2
and uodd =

u(x) − u(−x)
2

(2) The triangle inequality for p power

|a − b|p ≤ ||a| + |b||p ≤ 2p−1(|a|p + |b|p)

(3) Generally, for R1 uniformly continuous function u and v , the product uv is not necessary uniformly continuous
unless both of them are bounded. (One bounded is still not enough. For example: u(x) = x · sin(x2)

√
x ). The similar

result happens in W1,p and ?? BV ??.
The space BV(R) is better since any u ∈ BV(R) is necessary L∞(R) . Actually, BV(I) is an algebra for
I bounded. ??what if I is unbounded?? The same result hold. The key is BV(I) ⊂ L∞ . Moreover, since
W1,p(I) ⊂ BV(I) , the same result hold.
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13. Counterexamples and Some Useful Explanation

In this section we collect all must-known counterexamples and some useful explanations of theorems

Remark 13.1. By the first glance, I thought Lusin and Egoroff all so powerful, it almost turns a barely measurable
function into a continuous function and a pointwise convergence function into a uniformly convergence function. What
we need to do is just push ε → 0. But, of course, we can not. We point out, as in Egoroff, we actually have for each
ε > 0, there exists Nε > 0 such that for all x ∈ Bε , |un(x) − u(x)| < ε . However, as ε → 0, Nε → ∞ , thus we have
nothing in the end. Plus, all usage of Egoroff can be easily replaced by LDC.
Also, for Lusin, we mark that ε > 0 is essential, we can not obtain that u is a.e. continuous by pushing ε → 0, as
example 13.2 shows.

Example 13.2. We provide a function u : R → R such that u is no where continuous but u is continuous after we
remove a measure 0 set.
We define u as

u(x) :=

0 x ∈ Q
1 x < Q

Of course u is no where continuous but u is continuous without Q which is a measure 0 set.

Example 13.3. We define un, u such that un, u ∈ W1,1(0, 1) such that un → u in L1(0, 1) but

lim
n→∞

∥∥∥u′n
∥∥∥

L1(0,1)
> ‖u′‖L1(0,1) .

We define un as the copy of n triangles with length 1/n and hight 1/2n . Hence ‖un‖L1(0,1) = 1/4n and hence un → 0
in L1 . However,

∥∥∥u′n
∥∥∥ (0, 1) ≡ 1. Clearly we have u ≡ 0. Thus, we have strict inequality.

Example 13.4. There exists a function u ∈ Lp(0, 1) for all p ≥ 1, but u < L∞(0, 1)

Example 13.5. We show that BV(0, 1) is not separable.
Take uε = χ(1/2−ε,1/2+ε) . Then we have uε ∈ BV(0, 1) and

∥∥∥u′ε1
− u′ε2

∥∥∥ (0, 1) = 2 for every ε1 , ε2 , and hence∥∥∥uε1 − uε2

∥∥∥
BV(0,1)

≥ 2 for each ε1 , ε2 . Hence we can build a uncountablely many ball centered at uε with radius
1/2 and hence those balls are mutually disjoint.

Example 13.6. We discuss the relationship between AC(I) , BV(I) , and the uniformly continuous function on [0, 1] ,
where I would be [0, 1] . (0, 1) and (0,∞) .

Example 13.7. Let Ω = B(0, 1) ⊂ RN , and 1 ≤ p < N , and consider the sequence of functions un : Ω→ R defined by

un(x) :=

n
N−p

p (1 − n |x|) if |x| < 1
n

0 if |x| ≥ 1
n

Then we have {un}
∞
n=1 is bounded in W1,p(Ω) but that it does not admit any subsequence strongly convergent in Lp∗ (Ω)
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