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ABSTRACT

This paper introduces a new aspect of queueing theory, the study of systems
that service customers with specific timing requirements (e.g. due dates or
deadlines). Unlike standard queueing theory in which common performance
measures are customer delay, queue length and server utilization, real-time
queueing theory focuses on the ability of a queue discipline to meet cus-
tomer timing requirements, e.g., the fraction of customers who meet their
requirements and the distribution of customer lateness. It also focuses on
queue control policies to reduce or minimize lateness, although these control
aspects are not explicitly addressed in this paper.

To study these measures, one must keep track of the lead-times (dead-
line minus current time) of each customer, hence the system state is of
unbounded dimension. A heavy traffic analysis is presented for the earli-
est deadline first (EDF) scheduling policy. This analysis decomposes the
behavior of the real-time queue into two parts: the number in the system
(which converges weakly to a reflected Brownian motion with drift) and the
set of lead-times given the queue length. The lead-time profile has a limit
which is a non-random function of the limit of the scaled queue length pro-
cess. Hence, in heavy traffic, one can characterize the system as a diffusion
evolving on a one-dimensional manifold of lead-time profiles. Simulation re-
sults are presented which indicate that this characterization is surprisingly
accurate. A discussion of open research questions is also presented.
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1 Introduction

This paper introduces a new aspect of queueing theory, the study of systems
that service customers with individual timing requirements (e.g. due dates
or deadlines). Such systems arise naturally in manufacturing in which orders
have due dates. A second category of examples arises in real-time computer
and communication systems. Such systems might involve the transmission
of digitized voice, video or images over a network. These transmissions
must reach their destination within specific deadlines in order to maintain
the integrity of the communication (e.g., voice conversation, teleconference
or movie). Real-time computer systems also control much of modern tech-
nology, for example engines and braking systems in automobiles, all avionic
systems (including air traffic control) and all aspects of modern manufactur-
ing facilities. Computerized control systems must receive and react to state
information within a fixed, often stringent, time interval in order to maintain
proper control over the system. Failure to meet task timing requirements in
safety-critical applications can have serious consequences. Thus, the condi-
tions for correct performance of a real-time system include both the logical
correctness of each of the tasks that it executes and the timing correctness of
those tasks. Over the last decade, there have been significant strides made
in the development of a theory of hard real-time systems, systems in which
tasks must be completed before their deadline elapses. The reader is referred
to the handbook by Klein et. al. [17] for a description of this theory which
addresses many practical considerations encountered in computer systems
such as operating system overhead, hardware architecture details, concur-
rency control and other sorts of blocking and task precedence relations.
The scheduling theory described in [17] assumes an essentially determin-
istic environment. For example, task arrivals are modeled as the superpo-
sition of periodic arrival processes, and task service times are deterministic
and given by the worst case execution of each task type. Two principal
approaches have been developed for assessing the design of real-time sys-
tems with periodic task arrivals, one based on a fixed task priority struc-
ture (exemplified by rate monotonic scheduling) and the other based on dy-
namic priorities (exemplified by the earliest deadline first (EDF) approach
to scheduling). These two scheduling algorithms were analyzed by Liu and
Layland [22] and the EDF scheduling algorithm was shown to be optimal
for this scheduling problem. In some systems, especially communication sys-
tems, only a small number of bits are available in each packet to represent
the task’s priority; thus EDF cannot be fully implemented because it can
require an unlimited number of distinct priority categories. Nonetheless, we



introduce real-time queueing theory in the context of the EDF scheduling
algorithm, since this algorithm is optimal under some conditions. Panwar
and Towsley [24] showed that EDF maximizes the fraction of customers
meeting their deadlines within the class of work conserving policies allow-
ing preemption in GI/M/1 queues where customers have general deadlines.
Bounds on the performance of EDF for M/M/1 queues in which customers
have exponential deadlines were developed by Hong, Tan and Towsley [12].
We also discuss the first-in first-out (FIFO) queue discipline in Section 5 of
this paper.

There are major limitations to any theory which requires periodic ar-
rivals and assumes worst-case execution times. These assumptions are quite
narrow and limit the range of systems that can be studied. Multimedia
applications or real-time communications can exhibit substantial variability
in the arrival of tasks and their work requirements. For real-time systems
for which the task sets exhibit substantial variability, one would like to de-
velop approaches based on queueing theory, a theory which was designed
to model and predict stochastic system behavior with resource contention.
This theory allows randomness in the task arrivals and task execution times.
The difficulty with queueing theory is that it typically does not allow for
explicit consideration of dynamically changing task timing requirements. In-
stead, it only permits priorities which allow important tasks or tasks with
initial short timing requirements to receive preferential treatment. Much of
queueing theory focuses on general system performance measures, such as
task delay, queue lengths, processor utilization, etc., and these are usually
computed under equilibrium assumptions. It does not model the timing
requirements of each customer, nor does it analyze the ability of a schedul-
ing algorithm to meet those timing requirements. What is needed is a new
theory which combines the focus on meeting task timing requirements as
studied in real-time scheduling theory with the focus on stochastic task sets
as studied in queueing theory. This paper represents a step in the direction
of building such a theory, hence the name real-time queueing theory.

To study whether tasks or customers meet their timing requirements,
one must keep track of the customer lead-times, where the lead-time is the
time remaining until the deadline elapses, that is

lead-time = deadline — current time.

Customer lead-times decrease linearly while a customer is in the queue. Be-
cause the lead-time must be tracked for each customer, the dimension of
the system state is the number of customers in queue, which is unbounded.



This causes analytic difficulties. In spite of this unbounded dimension, a
heavy traffic analysis can be carried out. This analysis decomposes the
behavior of the real-time queue into two parts: the number in the sys-
tem, say Q(¢) (which is shown under the heavy traffic scaling to converge
weakly to a reflected Brownian motion with drift) and the set of lead-times,
(L1(t)- .-, Lo (t)) (we refer to this as the lead-time profile), conditional
on the queue length. It is convenient to think of this profile as a random
counting measure on IR. In heavy traffic, under the earliest deadline first
queue discipline, it will be shown that when suitably scaled, the lead-time
profile converges to a nonrandom function of the limit of the scaled queue
length process, the particular function being determined by the distribution
of initial deadline of arriving customers. Hence, in heavy traffic, the un-
bounded dimension process collapses to a one-dimensional process and one
can conceptualize the real-time queueing process as a diffusion evolving on a
one-dimensional manifold of lead-time profiles. Simulation results, presented
in Section 4, indicate that this characterization is surprisingly accurate.

This work is based on the long tradition of heavy traffic queueing theory
pioneered by Kingman [16]. This research was generalized in scope and
system complexity by a number of authors; for example, see Iglehart and
Whitt [14],[15], who study the multiple server case, for a review of this early
literature. The use of heavy traffic theory in the study of the behavior of
priority queues was initiated by the work of Whitt [32], Hooke [13], Harrison
[7] and Kyprianou [18]. The phenomenon of state space collapse, which was
originally observed in Reiman [28], [29], also occurs in our work. Specifically,
the lead-time profiles have the dimension of the number of customers in the
queue, which is unbounded. Nevertheless, in heavy traffic, those random
profiles converge to a deterministic manifold of profiles indexed by the queue
length, a one-dimensional parameter.

Heavy traffic queueing theory has evolved greatly over the last 25 years,
especially for queueing networks carrying multiple customer types. A great
increase in interest in this research area came with the work of Harrison
and co-authors, e.g., [8], [9], [10], [11], and Peterson [26]. The EDF queue
discipline studied in this paper is related to multi-class queues, although in
EDF there are an infinite number of distinct priority classes, and customers
change classes as they wait in the queue. Most of the work in heavy traffic
queueing networks studies the behavior of queue lengths and workloads,
rather than focusing on the lead-times of individual customers. We expect
that our results on the convergence of the lead-time profiles for the single
queue case will carry over to networks, but we do not study network behavior
in this paper. Similarly, we expect that one can apply optimal control



methods to real-time queues to control customers’ lateness in the way that
many researchers have used these methods to optimize inventory holding
costs; see, for example, Harrison and Wein, [11], [31].

There is some recent work on heavy traffic approximations for systems
handling customers with due dates. Of particular importance are the papers
by Van Mieghem [30], Markowitz & Wein [23], Doytchinov [4] and Lehoczky
[19, 20, 21]. Van Mieghem studies a single server multiclass queueing system
with k distinct customer classes. Each class has an associated convex cost
of delay, Ci(7), with derivative cgx(7). The objective is to minimize the
total delay cost incurred over a finite time horizon. The paper studies the
“generalized cu policy” which schedules the customer having maximum value
of prck(ak(t)), where py is the service rate for class k and a(t) is the age
of the oldest customer in class k. Customers are served in FIFO order in
each class, which is equivalent to EDF within each class. This policy is
shown to be asymptotically optimal in heavy traffic. Generalizations to a
countable number of customer classes and several homogeneous servers in a
nonstationary, deterministic or stochastic environment are also considered.

Markowitz and Wein [23] study the single machine scheduling problem
in a manufacturing context using heavy traffic methods. They give a unified
treatment which permits setup costs, customer due-dates and a mixture of
standardized and customized products. The analysis assumes a cyclic policy
in which different products must be produced in a fixed sequence, but the
machine busy/idle policy and lot-sizing decisions are dynamic. As such, the
system resembles a polling system. A heavy traffic averaging principle such
as characterized by Coffman, Puhalskii and Reiman [2] is assumed to hold,
and subject to this assumption, the optimal policy is determined. The paper
gives a detailed discussion of the interactions between the setup, due-date
and product mix factors.

Doytchinov [4] developed a partial differential equation-based approach
to the study of real-time M/M/1 queues in which the arrivals have constant
deadlines. In this case, the EDF and FIFO queue disciplines are identical.
His methodology proved that the lead-time profiles converge to a uniform
distribution in heavy traffic.

Lehoczky [19] gave an informal analysis for the M/M/1 queue based on
representing the lead-time profile as a measure-valued Markov process, and
then arguing, under heavy traffic conditions, that the generator converges to
that of a deterministic profile conditional on the queue length. This was done
both for EDF and for processor sharing. Lehoczky [20] used these results
to study the behavior of various queue control policies to reduce customer
lateness. Lehoczky [21] extended the analysis to Jackson networks.



This paper is organized as follows. In Section 2, we present the basic
model, assumptions and notation. Section 3 gives the major theorems de-
scribing the heavy traffic limiting behavior of EDF real-time single server
queueing systems. Section 4 presents simulation results illustrating the ac-
curacy of the theory. Section 5 presents some conjectures for the extension
of the theory of Section 3. Appendices A and B are included to set notation.
Appenidix A collects key definitions and theorems related to weak conver-
gence of measures on metric spaces, and Appendix B recalls classical heavy
traffic theorems.

2 The Basic Model, Assumptions and Notation

We first define the basic real-time queueing theory model. Because we shall
ultimately pass to a heavy traffic limit, we posit a sequence of queueing
systems, indexed by n. The assumptions on the n-th queueing system are
the following;:

A1l: There is a single station serving customers.

A2: Customer interarrival times are determined by the sequence of strictly
positive ii.d. random variables {ug-n)};?’;l with E[ug-n)] = L5 and

A(n)
Var[ug-")] = (a™)?,

A3: Customers have service requirements which are determined by the se-
quence of nonnegative i.i.d. random variables {v](.n)}‘;';l with E[v](-n)] =
5 and Var[o{”] = (60)>2.

A4: Each customer arrives with a hard deadline (initial lead-time) Lg.n).
These initial lead-times are i.i.d. with distribution given by

(n) —

P(L;" < v/ny) = G(y), (2.1)
where G is a right-continuous cumulative distribution function. We
define

y* £ min{y € R;G(y) = 1}, (2.2)

and assume that y* is finite.

Ab: The sequences {ugn)};‘;l, {vJ(.n)}fil and ~{L§.n)}j:1 are mutually inde-
pendent.



A6: Customers are served using the Earliest Deadline First (EDF) queue
discipline, i.e., the server always services the customer with the short-
est lead-time.

AT7: Preemption is permitted (we assume preempt-resume). There is no
setup, switchover or any other type of overhead.

A8: Late customers (customers with negative lead times) stay in the queue
until served to completion.

A9: The queue is empty at time zero.

The interarrival times, service times, initial lead times and queue disci-
pline completely determine the behavior of the queue. From them we can
derive the customer arrival times

k
n) A n
23l

j=1
with S, (n) 2 = 0, and the customer arrival process
A™ (1) £ max{k|S™ < t}.
The work arrival process
t)

1200) Z v;

records the amount of work which arrives with the first |¢] customers, and
the netput process

N®(1) £ V(AT (1) - ¢

measures the work remaining in queue at time ¢, provided that the server is
never idle up to time ¢. The cumulative idleness process

1™ (¢) 2_ 012i1<1t N (s),

gives the amount of time the server is idle, and adding this to the netput
process, we obtain the workload process

wm(t) & N () + 1M (2),



which records the amount of work in queue, taking server idleness into ac-
count. All the above processes are independent of the queue service dis-
cipline, provided that the server is never idle when there are customers in
queue. The queue length process Q(")(t), which is the number of customers
in queue at time ¢, depends on the queue discipline. All these processes are
right-continuous with left-hand limits (RCLL).

In order to obtain heavy traffic limits, we must scale and sometimes
center the above processes. The real-valued processes whose limits we shall
consider are the following:

A 1

AM ) 2 %(A(”)(nt)—)\(”)nt), (2.3)
P A %Té(%@_ﬁ), (2.4)
Nm@) 2 %(vW)(A(")(nt))—nt), (2.5)
e 2 %I(”)(nt), (2.6)
W 2 %W(")(nt) _ N8 + T ), (2.7)
AM© & 2. (2.8

Heavy traffic assumptions

Define the traffic intensity p(™ 2 % The following assumptions shall be
in force throughout:
i — oMy =
Jim v/n(1 - p™) v >0, (2.9)
lim A™ =X > 0, lim p(™ = ), (2.10)
n—o0 n—o0
lim o™ = q, lim g™ = 8. (2.11)
n—o0 n—oo

We also impose the usual Lindeberg condition on the interarrival and service
times:

. (n) 1)?
8| (4 5) g 212

2
= lim E (ug.”)—i) I = 0 Ve>0.
n—00 /,1,(") { >c\/ﬁ}

(n)_ 1
Yi T am)




It is a standard result (see Corollary B.4) that the triple (N(®), (™), W("))
converges weakly to (N*,I*, W*), where N* is a Brownian motion with drift
and

* A : *
ro = - N

W*t) 2 N*(¢)+I*(t). (2.13)

The process W* is a reflected Brownian motion with drift, and I* causes
the reflection. Furthermore, the scaled queue length process Q™ converges
weakly to AW™ (see Corollary 3.2).

Earliest-Deadline-First (EDF) related processes

With the EDF queue discipline, customers are served in order of increasing
lead-times. Any two customers in the queue will maintain their relative
order until they depart; however, arriving customers may preempt and move
directly into service if they have a sufficiently short initial lead-time. To
study the behavior of the EDF queue discipline, it is useful to keep track of
the lead-time of the customer currently in service and the largest lead-time
of all customers still in the system who have ever been in service. Some care
must be taken with these constructs when the queue becomes empty. To do
this, we first define:

L) (#) 2 ¢ — sup{s € [0, : WM(s) = 0},

the time elapsed since the last time the queue was empty. We define the
frontier

largest lead-time of any customer in the system
who has ever been in service,

or /ny* — 1(M(t), if this quantity is larger
than the former one, or if the queue is empty.

F™(¢) A

and the current lead-time

() A | lead-time of the customer in service,
~ | or y/ny* if the queue is empty ’

Under the EDF queue discipline, there is no customer in queue with lead-
time smaller than C(™)(¢), and there has never been a customer in service
whose lead time, if the customer were still present, would exceed F(")(t).



Furthermore, C(™(t) < F(®)(t) for all ¢ > 0. Both F(™) and C(™ are RCLL
processes.

At time t all customers in the system have lead-times equal to or greater
than C(™(t); if the queue is non-empty, C(™(t) is the left support point of
the random counting measure which puts a unit point mass at the lead-time
of each customer in queue at time £. In spite of this, the frontier is more
important than C(™)(t) in the analysis of the EDF queue discipline for two
reasons. The first reason is that in heavy traffic the number of customers
with lead-times between C(™)(t) and F(")(t) is negligible. Customers at
time ¢ with lead-times in the interval [C(™)(t), F(™)(t)), if any, are part of
a special type of busy period. For a non-empty queue, this busy period
was initiated by a customer arrival that preempted a customer, C, in service
(the preempted customer with current lead-time F(™)(t)). This busy period
was possibly sustained by other arrivals, each of which had, at the time
of its arrival, a lead-time shorter than C’s lead-time. Because C’s lead-
time decreases linearly with time, the traffic intensity associated with the
customers that sustain this special busy period decreases with time. As
shown in Proposition 3.5 below, under the heavy traffic scaling the number
of customers having lead-times at time ¢ taking values in [C(™(t), F(™)(t))
converges to 0 as n — oo. It follows that in heavy traffic the occupancy of
the queue consists essentially of customers with lead-times in [F(™)(t), 00).

The second feature of the frontier is that customers with lead times in
[F(")(t), 00) at time ¢ have never received any service; their lead-time profile
is determined entirely by the arrival process. Because only the arrival process
is involved, this profile can be determined and in heavy traffic converges to
a non-random function of the limit of the scaled queue length.

Although this paper focuses on a heavy traffic analysis of a single server
queue using the EDF queue discipline, it is worth noting that some of the
results can be expected to carry over in non-heavy-traffic conditions. For
example, if the traffic intensity were not near 1, but the queue length hap-
pened to be relatively long, then most of the customers in the system would
have lead-times taking values in [F(")(t), 00), and their profile would be de-
termined solely by the arrival process, not the service process. Consequently,
the lead-time profiles would be the same as those predicted for that queue
length under heavy traffic conditions.

Measure-valued processes
At any instant of time, the system consists of a set of customers, each of
which has a specific lead-time and a remaining work requirement. We wish



to characterize the instantaneous lead-time profile of the customers. It is
convenient to think of this profile as a counting measure on IR. In this
section, we define a collection of RCLL measure-valued processes that will
be useful in the analysis.

Lead-time measure:

Qm(1)(B) & {

Number of customers in queue at time ¢
having lead-times at time ¢t in B C IR

Workload measure:

W (1)(B) & {

Work at time t associated with customers in
queue having lead-times at time ¢t in B C IR

Lead-time arrival measure:

AP (1)(B) & {

Number of all arrivals by time ¢ having
lead-times at time ¢t in B C IR )

Workload arrival measure:

Y (1)(B) 2 {

Work associated with all arrivals by time
t having lead-times at time ¢t in B C IR

The following relationships easily follow:

QM(t) = QM ()(R), AT () = AP (1) (R), VI (AM(1) = V" (t)(RR),

A (1)
AN ()(B) = Z I{L(.")—(t—S(.n))eB}
]:1 J J

oo
= > I (n) g(m) 41
{8\MeB+t-LM, siM <t}

i=1

A (1)
VOWB) = 3 e soen

i=1

S, ()

n
= v; I (m) (n) () -
; i sMeBtt-L{M, siM <ty

Scaled EDF-Related Processes
For the processes just defined under the EDF queue discipline, we use the

10



following heavy traffic scalings:

Fmg 2 L pmny, G A in(,*(n)(nt),
Q") 2 QM m)(VaB), W) 2 W) (ne)(VaB)

We define also

ANy (B) = —=A™(nt)(vnB),

A (nt)

>

-~ n Zl 1{L§")—(nt—s§.">)eﬁ3}

j:

B

% Z 1{S§”)eﬁB+nt—L§”), s <ney
V™ (1)(B) —V® (nt)(vn B)

A(") (nt)

%\

- Z ” {Lg.")—(nt—S§"))e\/ﬁB}

%\

(n)
vy ’1 .
NG le J {s](.") eﬁB+nt—L§"), s§") <nt}

3 Heavy Traffic Analysis

We set

H(y) 2 /oo(l—G(n))dn={fy (L= Glmpdn, ity <y, (3

ify > y*.

The function H maps (—o0o,y*] onto [0,00) and is strictly decreasing and
Lipschitz continuous with Lipschitz constant 1 on (—o0, y*]. Therefore, there
exists a continuous inverse function H ! which maps [0, 00) onto (—oo,y*].
We next define what we shall ultimately show is the limiting scaled frontier
process

A

F*(t) = H Y (W*(t)), t >0, (3.2)

where W* is as in (2.13).

11



In this section, we prove weak convergence of W®) and @(”) as measure-
valued processes. Weak convergence of measure-valued processes is a special
case of weak convergence of metric-space-valued random objects, which is
reviewed in Appendix A. We summarize its salient features here.

Denote by M the set of all finite, nonnegative measures on B(IR), the
Borel subsets of IR. Under the weak topology, M is separable. We can
define a metric daq on M which is consistent with the weak topology on M.

We now define D [0, 00), the space of RCLL measure-valued functions
on [0,00). An RCLL measure-valued process is a random object taking values
in Daq[0, 00), where in Dp4[0, 00) we use the Borel o-algebra (generated by
the open sets under the Skorohod topology). A sequence {X,}52; of RCLL
measure-valued processes converges weakly to an RCLL measure-valued pro-
cess X if the measures induced on D 4]0, 00) by X, converge weakly to the
measure induced on Day[0, 00) by X, i.e., for every bounded, continuous (or
equivalently, uniformly continuous) function F': Day[0,00) — IR, we have

lim B, F(X,) = E*F(X).

The expectation operators IE, and IE* reflect the fact that each X,, may
be defined on a probability space with a probability measure depending on
the index n, and all these spaces may differ from the space on which X
is defined. In the application of this paper, the pre-limit processes are all
defined on the same space, and we write IE rather than IE,.

The main result of this section is the following.

Theorem 3.1 Let W* and O* be the measure-valued processes defined by

W*(t)(B) = / (1-Gly)dy, O (t)(B)=AW*t)(B), (3.3)

BA[F*(t),00)

for all Borel sets B = IR. Thfn the measure-valued processes 17\7\(”) and Q(")
converge weakly to W* and Q*, respectively.

Corollary 3.2 Under z/ffze earliest-deadline-first queue discipline, the scaled
queue length processes Q™ defined by (2.8) converge weakly to AW™*.

PROOF OF COROLLARY 3.2: We note that

WA ()(R) = H(F*(t) = W"(t),
Q' (B)(R) = AW(),
A e)(R) = Q).

12



The mapping from M into IR, which maps each u € M to its total mass
w(IR), is continuous. By Theorem 3.1 and the Continuous Mapping Theorem
A1,

OM(R) = O*(R),

or, equivalently, R
Q™ = axw*.

O

The proof of Theorem 3.1 is given at the end of this section. In order

to prove this result, we first examine the convergence of the measure-valued

process P and A™). Recall that these processes keep track of arrived work
and arrived customers, but not departures.

Proposition 3.3 Let —co <y < y* and T > 0 be given. As n — oo,

sup ‘V(”) t)(y,0) + H(y + v/nt) — y)‘ £ o, (3.4)
0<t<T
sup_ ‘.;l\(")(t)(y, 00) + AH(y + vnt) — )\H(y)‘ 20 (35)

PRrROOF: For (3.4), let € > 0 be given and choose a partition y =19 < 1 <
-+ <y = y* such that [pmi1 —nm| < € for every m =0,... ,M —1. Then
the following inequalities hold, for each m=1,... , M:

et mz_l (1 - ) Tt — (3.6)
m=0

nm
[ - cman
Y

< e+ Z (1 — G(nm+1))(77m+1 — M)
m=0

IN

To see why this is true, observe that for each m =0,... , M — 1 we have

NMm+1
/ (1 - G(n)) dn

< (1-Gm))(m+1 — m)
= (1= Gm+1))(m+1 — Mm) + (G(m+1) — G(Mm)) (Mm+1 — 1im)
< (1= GNmt1))Mm+1 — m) + €(G(Mmr1) — G(m))-

13



Summing up the above inequality for m = 0,... ,m — 1 and cancelling the
“telescoping” terms gives the right inequality in (3.6). The left inequality is
obtained in a similar way.

For 0 <t < T, we have

VO (t)(y, o)

8

v(-n)I
i Hntymy—L{M <™ <nt}

I

<
Il
-

S0
Zvj I{\/ﬁnmfl<L§-")Sﬁnm}ﬂ{nt—\/ﬁ(nm—y)<5§")Snt}

M= §l= §l-
NE

m=1j=1
—~ M —~
= )+ Y T,
m=1 m=1
where
g & L [mp 1 (o G
®) = %Z Yj {ﬁnm—1<L§”)§\/ﬁnm}_W< (m) — (nmfl))
j=1
'H{nt—\/ﬁ(nm—y)<5§")ént}’
T () £ ;i«;( ) — G( ))H
LN O Thm 1) )t — (=) <SS <ty
=1

To see that for each m, }/},,(Tn) = 0 as n — oo, we define the sequence of
nonnegative i.i.d. random variables

j (n) A vj ©OF s ()

{Vrnm-1<L; <Vanm}’ j=12,...

l
¥3
—~
S~
N—r
Il

[nt]
a1 3 @ - B
% ‘_1(’0‘7 —E’U] )

[nt)
_ L (n) 1 _
~ Vn ;[’”ﬁ L s <1$9 <anm} ~ ) (G("m) G(”m—l))]'

14



We may write
YO = VO (240m) - V0 (1400t — Vil - v))"))
- m(ﬁAM) +Am0
~(n)< L A (¢ — 2 (m — )T
+ (At = X (g — ) ).
Theorem B.1 (with v(n) replaced by v( )) implies that {Vn(z") ° , has a con-

tinuous weak limit Vn"; The Dlﬂ'erencmg Theorem A.3 and Theorem B.2
imply that " = 0on [0, 7], and hence

Z y(n)

For the analysis of ol )(t), we observe that

sup
0<t<T

G20 = = (G) = )[4t
— A" ((nt = v/ - 1)) )]
= 5 (60m) — 6 ) [A0) - AV (¢~ 3 (0~ 1))
AVt = X (Vrt— (m — 1)) ]
As 7 — 00, the sequence of processes
{AP (@) = A (¢~ Jx(mm — ) ")t > 0172,

converges weakly to zero. Hence, the weak limit of "M | A )( t) is the weak
limit of

M

> (G(m) = Gm-1)) [Vt — (Vat — (mm —y))*]. (3.7)

m=1
With n and ¢ fixed, we define

m(t) =max{m€ {0,1,... , M}t > %(nm—y)}.
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Then (3.7) becomes

m(t) M
D (Cm) = Gm-1))m —v)+ Y. (G(nm) — G(m-1))v/nt
m=1 m=m(t)+1
m(t) m(t)
< Z(l — G(nm—1))(m — y) — Z(l — G(1m)) (1hm — ¥)

+I{m(t)<M 1} (M1 — Y)(G (UM)—G(%(t)))
m(t)-1 m(t)—1

= > (1-Gm)mi1—y)— >, (1=GOm))(m — )

m=0 m=0
—(1 = G(Mm(e))) (Mm(e) — ¥)
+I{m(t)<M 1}( Nm(t)+1 — y)( (’f}—(t))).

If m(t) = M, then 1 — G(nm()) = 0 and we have

a(t)—1 "

S (1= G(m) (s — 1) < £+ / (1 - G(n))dn,

m=0
where we have used (3.6). If m(t) < M, we have again from (3.6) that

m(t) Mm(t)+1
S (1= Gll) (st — 1) < / (1- G(n)) dn

m=0

IN

e+ [ (1= Gw)an

Y

y+4/nt
< zs+/ (1- G(n))dn
Yy

In the former case, when m(t) = M, we have y++/nt > y*. Since G(n) =1
for n > y*, in both cases we have on (3.7) the upper bound

y+v/nt
26+/ (1—G(n))dn = 2 — H(y+ vat) + H(y).

We conclude that
+
ZU(“) )+ H(y+vnt)— H(y) - 2| 0.

sup
0<t<T

16



Since € > 0 is arbitrary, we have in fact shown

sup [P(8)(v,00) + Hly+ V1) - H(y)| T2

To complete the proof of (3.4), we use the lower bound

VO (1) (y, 00) Z Y™ (t) + Z UM (1)

where
IO Sl L - (G m) ~ Gl )
™ © Jn4 ) 7 {\/ﬁnm—1<L§")§\/ﬁnm} /J'(n) m Mm—1
J:
'I{nt*\/ﬁ(nm—ry)<s§.n)gnt}’
Ty A L B
050 2 7 22 (G0m) = GOm0 B st <oy
j=1

By the same argument used to show that ?,SL”) = 0, we may show that

7™ = 0. In place of (3.7), we have now

M

Z(G(ﬂm) - (nm 1)) [\/_t - (\/_t - (nm 1— y))+] ’ (3'8)

m=1

and we need to lower bound this quantity. With n and ¢ fixed, we define
m(t) as before, and (3.8) becomes

MA(m(t)+1) M
(Gm) = Cm-1))Mm-1—=9) + > (G(m) — G(thm-1))V/nt
m=1 m=m(t)+2
MA@m(t)+1) MA@m(t)+1)
> Y (1-CGm 1)m1-v)— Y, (1=GC0m)(m1-y)
m=1 m=1

iy <m—23 (M) — ¥) (G () — G(Mm(ey+1))
m(t) m(t)
= Y (1=Gmm)m —v) — Y (1= G(0m)) (-1 - )

m=1 m=1
Iy <m-13(1 = G(Mme)+1)) me) — ¥)
gy <m—23(1 — G(m(e)+1)) (Mm(e) — ¥)

17



(t)
= > (1= Gm)Wm — Mm1) — Tgay=ar—13(1 — G(nar)) (mar-1 — v)

m=1

Y

—e+ [ - amyay

Y

y++/nt
—2s+/+ (1-G(n))dn
= —2—H(y++/nt)+ H(y).

It follows that

M

sup ZU,(,?)(t)+H(y+\/ﬁt)—H(y)+2€ .
0<t<T | =
Since € > 0 is arbitrary, we have in fact shown
~ n - P
sup [V( )(t)(y, 00) + H(y + v/nt) — H(y)} — 0.
0<t<T

and (3.4) is proved.

The proof of (3.5) is accomplished by repeating the above proof, replacing
(n)
v

; and ﬁ = Evj(-n) everywhere by 1. O

Using a Glivenko-Cantelli type of argument, we can upgrade Proposition
3.3 to make the convergence uniform with respect to y on compact intervals:

Proposition 3.4 Let —0co < yo < y* and T > 0 be given. As n — oo,

sup sup [V ()(y,00) + H(y + Vat) — Hiy)| > 0, (39)
Yo <y<y* 0<t<T
sup  sup ‘ﬂ")(t)(y, 00) + AH(y + vnt) — )\H(y)‘ P, 0.3.10)
yo<y<y* 0<t<T

PROOF: Let € > 0 be given. We will produce an N such that, for alln > N,

P{ sup  sup ‘9(")(t)(y, o)+ H(y + v/nt) — H(y)‘ > a} <e.
Yyo<y<y* 0<t<T

To do this, we first choose a partition yy < y1 < -+ < yy = y*, such that
|Ym+1 — Ym| < €/2 for m=0,...,M — 1, and hence

0 < H(ym) — Hyms1) < % form=0,...,M—1. (3.11)

18



According to Proposition 3.3, we can find ng,ni,...na such that, for m =
0,1,...,M and for n > nn,

IP<{ su ‘9(")t m,0) + H(ym ++/nt) — H m‘zf <#.

{Ogt% (£)(¥m; 00) + H (ym + vnt) — H(ym)| 2 5 2T £ 1)
(3.12)

We choose N = max{ng,n1,...,np}. Using first the monotonicity of H(y)

and of \7(")(t)(y, o0) + H(y + +/nt) with respect to y, and then (3.11) and
(3.12) we see that for n > N,

JP{ sup  sup ‘9(")(t)(y, oo) + H(y + v/nt) — H(y)‘ > 6}
yo<y<y* 0<t<T

M

1
< ZJP{ sup  sup ‘17(")(t)(y,oo)+H(y+x/ﬁt)—H(y)‘26}

Ym <Y<yYm+1 0<t<T

3
=)

M-1
< 3P { sup_ [V(0) g, 00) + Hlym + V1) — H(ym1)| > }
o 0<t<T
M-1 R
- JP{ sup_ [V () (ym+1,00) + H(yms1 + vt) — Hiym)| > }
— 0<t<T
M €
< Y 2P sup [P (ym,00) + Hym +v/t) — H(ym)| > 5
— 0<t<T 2
€
This proves (3.9); the proof of (3.10) is analogous. O

The heavy traffic analysis of the queueing system with due dates depends
critically on the following proposition, which asserts that the number of
customers whose lead times lie between the current lead time C(™)(t) and the
frontier F(")(t) and the work associated with these customers are negligible.

Proposition 3.5 The processes QM [C™, F™) and W™[C®) F™)) con-
verge weakly to zero as n — oo.

PrROOF: We fix T' > 0 and establish the convergence on [0,7]. For this we
follow ideas of Peterson [26].
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Let y < y* be given. For t > 0, we set

|nt]
~(n Al n 1
T (¢) & 7 PO Ty gy ~ WG(y)).

j=1

According to Theorem B.1, (™) converges weakly to a Brownian motion.
Next define

7(M(t) 2 sup{s € [0,2];C(s) = F™)(s)}.

By assumption, C(™(0) = F(™)(0) = y* and so 7(™(¢) < ¢, i.e., the supre-
mum is not over the empty set. We first show that

t—7r™E) =0 (3.13)
and subsequently show that
Vvt — 7™ (t)) = 0, (3.14)

where the convergence in (3.13) and (3.14) is for processes on [0, T.
Recalling that W™ [C(™), F(")) is RCLL, we note that

W () (8) ) [C) () (1)), ) () (1))
= WO @)-)©@) =0, (3.15)
w<<mknww<w<» B (r) 1))

™
< .
- \/_ 1<ggﬁ'}»{) Ki
(M) (g} — N(™) (o
< gmax [N®)(s) ~ N®(s)] . (3.16)

So long as there are customers with lead-times in the unscaled interval
[C(™), F(™), the unscaled frontier F(") decreases at rate 1 per unit time.
Therefore, for s € (nT(™(t), nt],

FM(s) = F™(nr™ (1)) — (s — nr(™(2)). (3.17)
For what follows, it will be helpful to introduce some notation. We define

D™ (1) (3.18)

[e o]

(n)
_Z”j E{nr(")(t)<SJ(.")gnt}E{Lg-")—(nt—SJ(-"))<F(")(nr(")(t))—n(t—r(")(t))}

20



Observe that because of (3.17), whenever n7()(t) < J(.n) < nt, the condition

L — (nt — M) < F™ (nr™ (1)) — n(t — 7 (2))

is equivalent to

(n) n)( g(n)
" < F™M(s™).

In other words, D™ (t) counts the number of customers arrived within the
time interval (n7(™(t), nt] with lead times at arrival to the left of the current
frontier.

We now note that, on the time interval (n7(")(t), nt] the server is never
idle, which means that the workload is being decreased by the sever at a
constant rate 1. This gives us the estimate

0 < WM (nt)[C™(nt), F™ (nt))
= W (ar () [0 (a7 ™) (1)), FO (™ 1)
+DM (1) — n(t — 7™M (1)),

or, after scaling,

0 < WHE)CM (), F)(2))
)

= WO (O @)[CM (r(8)), FM (r™) (1)) (3.19)
+—=D0(t) — Vit = 7).

Next, we estimate the term ﬁD(”) (t). For y < y* we have
oo

1
—_p®) .(n)
\/ﬁD (t) < Vi 4 E :“J E{nr("‘)(t)<5§n)§n‘r(")(t)+\/ﬁ(y**y)}

o]

Z {n‘r(") vty —)<s <ty L <y
=1

- %Vw)(A(n)(m "(t) +vnly" ) (3.20)

__V(n)(A(n) (nr™(¢)))

NG
+fm)(%Amnnﬂ>
_ i) (% A (nr™ () + v/n(y* — y)))

+%}{W()AWWW@+ﬁW—W}
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= B0 (100 + = -) - F (+00) +4° -

+7) (%A\(”)(t) + m)

_m) <% e <T("> ) + \/Lﬁ(y* - y))
FA® ) 4 %@* - y>)
+ 89 [0 — & () + %@/* -)]
+G(y)p™Vn(t — 7™M (t)) — G(y)p™ (y* —y)
< [80 (00 + T -v) - F0 () |
+ |70 (A + A1)
) <% ) (T(m ) + \/Lﬁ(y* _ y)>
0 4 27 —y))}
GT a0 - a0 (s + Lo )]
)PVt — (1) — (1 - G)p™) " — ).

Continuing this inequality we may write

T2000) < g KO (s+ 6 -p) - FOG)|
+2 max
0<s<T+y*—y

vn 0<s<T
~ 1 ~
(n) [ —_ A(n) (n)
T (\/ﬁA (s)+ A s)
+ Y oy A(s) 1 G V(e - (1)
\/n 0<s<T

+(1 = Gy)p™) (" — ).

We now choose and fix a y < y*. Substituting the above inequality into
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(3.19), using (3.16), and dividing by (1 — G(y)p(™)+/n, we obtain
0 < t—7™()

1 -~ .
(n)(s) — N (g—

< i awv e [T - 8]

~ 1 ~

(n) (=) ) = N®

+ max [N (s+\/7_l(y y)) N (s)}

0<s<T
~ 1 ~
() [ — A(n) (n)
7 < \/ﬁA (s) + A s)

+2 max
0<s<T+y*—y

This establishes (3.13).
Now let an arbitrary y < y* be given. We substitute the inequality (3.20)
into (3.19), using (3.16), and dividing by (1 — G(y)p™) to get

0 Valt — (1)

<
< max | V(") (s) - N0(s—)]

(1 - G(y)p™) |o<s<T
)+ 5= —)) - F (1)

A () + /\(”)t>

=)

S
/N

\]/_\

R ON Q) <T(”) (t) + %(y* - y))

+ A () + %(y* - y))]

+(* —y)-

As n — o0, (3.13) and the Time Change and Differencing Theorems A.2
and A.3 imply that the right-hand side has limit y* — y, i.e.,

[Vat - @) - " ~9)] =o0.

Since y < y* is arbitrary, we must have (3.14).
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Using (3.16), (3.19) and the inequality (3.20) with y = y*, we obtain
0 < W™ (), F™ (1)
max [ﬁ(")(s) - ﬁ(")(s—)}

0<s<T
+ [f(n) <%2<n> ) + wn)

0 (% A0 (+00) + ,\(n)T(m(t))}
4= [0 - A (+ )]
—(1 = p™)y/n(t — 7™ ().

Once again the Time Change and Differencing Theorems A.2 and A.3 show
that the right-hand side has limit zero. This implies

INA

W [C™) F) = 0.
Similarly,

Qn(B)[C(t), (1))
T [1 + A (nt) — A (nr(™) (t))]

0

INA

IN

+ AP () — A (7()(1)) + APy /n(t — 7 (1)).

The Time Change and Differencing Theorems A.2 and A.3 and the conver-
gence (3.14) imply that the right-hand side has limit zero. This implies

GME™, By = .
O

Corollary 3.6 The processes Q™ [C(™, F(™)] and W) [C(™), F™] converge
weakly to zero as n — oco.

PROOF: In light of Proposition 3.5, it suffices to show that Q™ (£){F ™ (¢)}
and W™ {F(™)(t)} converge weakly to zero. But Q™ (t){F(™)(t)} < ﬁ and

WEHF™ (1)} < o).

= max
\/_ N 1<j<A®) (nt) 7

24



This latter term has limit zero because the limit of N(® appearing in (3.16)
is continuous. U

We next examine the limit of the scaled frontier process F(™). Since
Vny* —nt < F(™(nt) < \/ny* at all times, we have the bounds

Y =Vt < FM() <y*, t>0. (3.21)
The following lemma provides a tightness bound from below.

Lemma 3.7 For every T > 0 and € > 0, there exists y € (—o0,y*) such
that for all n,

inf F(
P {o%‘?é:rF (t) < y} <e.

PROOF: By definition,
W () = W () (IR) = W (1)[C™ (1), F™ (£)] + W (1) (F™(2), 00).
Scaling this equation, we obtain
W™ (t) = W™ (£)[CM)(2), F™) (2)] + W (1) (F™)(2), 00).

Corollary B.4 implies wm = W*, where /V[\/'* is a reﬂicted Brownian motion
with drift, and Corollary 3.6 shows that W(™[C(®), F(®)] = 0. Therefore,

W (FEM) o0) = W*. (3.22)

At time ¢, no customer with lead-time in (F(™)(t),00) has ever been
in service, so V™ (¢)(F(™(t),00) = W™ (t)(F(™(t),00). Relation (3.22)

implies
Y (FM) 00) = W*. (3.23)

Fix T > 0. The Continuous Mapping Theorem A.1 applied to (3.23)
yields
V@) (4 (F™) *(¢
(max VI(t)(FT(t), 00) = max W*(t),

~ ~ o0

and so the sequence of random variables {maxogth V) (1) (F™(¢), oo)} .
n—

is tight. Let € > 0 be given. Because limy_, o, H(y) = 0o, we may choose

y < y* so that for each n,
max V™ (£)(F")(t),00) < \/H(y) on Ay,

0<t<T
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where the event A, satisfies IP(A,) > 1 — 5. Proposition 3.3 and the
Continuous Mapping Theorem A.1 imply the existence of N such that for
every n > N,

Jmin, [v( )(t)(y,0) + H(y + v/nt)| > %H(y) on By,
where the event B, satisfies JP(B )>1-¢.
Now P(A, N B,) >1— 2%, and on 4, N B
H(y) > Jmax V(1) (FM(t), 00)
> Jex, ﬁ(")(t)(y,oo)ﬂ{ﬁ(n)(t)@}
> s [P0, + Hy+ vt Lz

because y + /it > y* on {FM(t) < y} (see (3.21)) and H(y + \/nt) = 0.
Continuing, we have on A, N B,, that

H(y) = —H(y) oax T 5o 1) <y

1
EH(y)I{infogth F()(t)<y}

which implies

2

H(y) z B [H{lnf0<t<T F(n)(t)<y}IA”mBn]
= IF [H{lnfo<t<T F(")(t)<y} ( E(AnﬂBn)r:):|
> P (f FO0 <y) - P (40 B))

P(mf F()t)<y>—23—E

0<t<T

v

In other words,

2
(n) s
P (OéItIETF () < y) 3 H(y)

and by choosing |y| larger if necessary, we may ensure that <g. O

vV (y)
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Proposition 3.8 Let —0co < yo < y* and T > 0 be given. As n — oo,

sup  sup ‘ﬂ")(t)(ﬁ(")(t) Vy,00) — H(F®(t) Vy)‘ P, 0,(3.24)
yo<y<y* 0<t<T

sup  sup ‘,Z(M(t)(ﬁ(n)(t) Vy,00) — AH(F®™ (1) Vy)‘ P, 0.(3.25)
yo<y<y* 0<t<T

PrROOF: Let T' > 0, yo € (—o0,y*], and € > 0 be given. According to
Proposition 3.4, there is an N such that for each n > N, there is an event
By, with IP(B,) > 1 — € and on the event B,, we have for all y € [yo,y"]
that

H@y) - < min [V, 00) + Hly + /)

max. [17(") (t)(y, 00) + H(y + vn t)] < H(y) +e.

IN

We now choose a partition y_; < yo < y1 < --- < yg = y* so that yx —
yg—1 < € for every k (and hence H(yx_1) — H(yx) < €). We observe that
whenever yj, > F(™(t), we have H(yg +/nt) = 0, because F(™(t) + /nt >
y*. On the event B, for y € [yo,y*],

K

H(F\(n)(t) \% y) -2 < ZH(ykfl)ﬂ'{yk_1<ﬁ(")(t)VySyk} — 2
k=0

AN

K
Y HW, | poguy<y) €
k=0

K

Z V(n) (t) (yk’ Oo)ﬂ'{yk71 <F(n) #)Vy<yr}
k=0

VO (@) (F™(2) v g, 00)

K
Z AR (#) (yr-1, Oo)l{yk_l <F(™ (t)vy<yi}
k=0

K

Y Hu- Iy, | povvy<yy TE
k=0
K

Z H (yk)ﬂ{yk—l PO (yvy<yd T2
k=0

H(F™(t) v y) + 2e.

IN

IN

INA

IN

IN

IN
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In other words, on the event B,,
V(@) (F™(t) V y,00) — 26 < H(F™(t) v y)
< VW@ EFM(#) Vy,00)+2, 0<St<T, yo<y <y’

The assertion (3.24) readily follows. The proof of (3.25) is analogous. O
Proposition 3.9 F(") = F* 2 H-1(W*).

PrROOF: Let T > 0 and € > 0 be given. Using Lemma 3.7, we may choose
Yo < y* so that A, 2 {infogth FM () > yo} satisfies IP(A,) > 1 — ¢ for
every n. According to Proposition 3.8, there is an N such that for each
n > N, there is an event B, with IP(B,) > 1 — ¢ and on the event B,, we
have

sup  sup ‘9(”) t)(F™(t) Vy,00) — HE™(t) v y)| < e.
Yo<y<y* 0<t<T

On the intersection A,, N By, we have in particular

sup_ |V (6)(F)(¢), 00) — H(F™ (1))
0<t<T

= sup [DOE)(F(E) v yo,00) — HEM (@) vyo)| < ¢
0<t<T

It follows that

sup_ [P ()(F)(2), 00) — H(F™ (1)) 0.
0<t<T

Relation (3.23) shows that
H(F™) = w*, (3.26)

Applying the continuous function H ~1 to both sides of (3.26), we obtain the
desired result F(™ = H 1(W*) from the Continuous Mapping Theorem
Al O

Proposition 3.10 Let T > 0 be given. As n — oo,

sup sup ‘W(")(t)(y,oo)—H(ﬁ(")(t)Vy)‘ £ o, (3.27)
yeRO<t<T
sup sup ‘Q\(n)(t)(y,oo)—/\H(ﬁ(")(t)Vy)‘ £ 0. (3.28)
yeR0<t<T
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ProoF: For y > y*,
W () (y, 00) = HE™(t) v y) = 0.
Fory <y*,0<t<T,

W)y, 00) = HE™(E) v y) (3.29)

< [WE() v y,00) - HE™ () v y)| + WO@E™ (1), B o)
= [PO@E() vy, 00) - HED (1) v y)| + WIOIE™ (6), ) @)

Let T > 0 and € > 0 be given. Using Lemma 3.7, we may choose yg < y*
so that A, 2 {infogth FM(4) > yo} satisfies IP(A,) > 1 — ¢ for every n.
According to Proposition 3.8, there is an Ny such that for each n > Ny,
there is an event B, with IP(B,) > 1 — € and on the event B, we have

sup  sup ‘17(”) () (F™ () V y, 00) — HE™ (1) v y)| < e.
yo<y<y* 0<t<T
According to Corollary 3.6, there is an Ny such that for each n > N, there

is an event D,, with IP(D,) > 1 — ¢ and on the event D,,, we have

sup W™ (#)[C™(t), F™ (1)) < e.
0<t<T

Using (3.29), we see that on the intersection A, N B, N D,, we have for
n > Ny V Na,

sup sup [W®)(8)(y, 00) — H(F™ () v y)|

y€IR 0<t<T

< sup sup {[WOOE () vy, 00) - HED) vy)
Yo<y<y* 0<t<T

+ W E (1), B (1)]}

< swp sup [D@RE() Vy,00) - HEM () Vy)|
Yo<y<y* 0<t<T

+ sup W) C™ (2), F™(2)]
0<t<T
< 2¢

This implies (3.27). The proof of (3.28) is analogous. O

We are now prepared to prove Theorem 3.1.
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Proor orF THEOREM 3.1: We define a mapping ¢ : IR — M by the formula
¥(z)(B) 2 / (1—G(n))dn, forzc R,B ¢ B(R).
BnN[z,00)

Observe that, for z1,z2 € IR,

1 VT2

sup [(e)(B) — $(en)(B)| < [ (L= Gn)dn <[z ],

BeB(IR) T1/\T2

which shows that the mapping 1 is continuous. According to Proposition
3.9,
F™) = F*,

By the Continuous Mapping Theorem A.1,
P(FM) = (F*) = W*. (3.30)

On the other hand, according to Proposition 3.10,

TA(n i(n P
sup sup (W™ (¢)(y, 00) — Y (F™(1))(y, 00)| — 0 (3.31)
yeRO<t<T
(this is a rewriting of (3.27)). Combining (3.30) and (3.31), we see that
W) = W*. The proof of O(") = Q* is analogous. O

4 Simulation Results

In this section, we use simulation to verify the predictive value of the theory
of the previous sections. In the previous sections, we actually considered
a sequence of queueing systems, indexed by n, whereas here we want to
consider a single queueing system. We imagine that this single system is a
member of the sequence of the previous sections corresponding to a large
value of n. We first recast the definitions of the previous sections in such a
way that this parameter n does not appear.

Suppressing the time variable ¢, we recall the definitions of Section 2. We
denoted the queue-length in the n-th system by Q(™ and the scaled queue-
length by @(") = ﬁQ(n), which, for large values of n, is approximately
equal to Q* = AW™ (Corollary 3.2). The workload and scaled workload,
respectively, are W™ and W™ = ﬁW("). The “frontier” (see Section 2

for the definition) is F(™), and the scaled frontier is F) = ﬁF(n). Fi-

nally, there are the measure-valued processes Q(") and é("). We shall be
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interested particularly in Q™ (z, oo), which tells us the number of customers
whose lead-times exceed x, and in Q™ (y, c0) = % Q™ (y/ny, 00), where we
continue to suppress the time-variable .

Recall that customers arrive with lead-time distribution given by (2.1):

(n)
P(L;” < +/ny) = G(y).
We define G, (z) = G(_fﬁ)’ so that
(n) —
P(L;” < z) = Gn(2) (4.1)

is the cumulative distribution function of the lead-times in the n-th queueing
system. The limit of Q() is characterized in terms of the function H of (3.1):

A o0
By 2 [ (- Gm)an
Yy
In this section, we will need the function

Ho(z) = Vi H (%) - [Ta-cae)as (42)

whose inverse is H;l(y) = \/ﬁHfl(%)
According to Theorem 3.1, for large values of n,

~

O(y, 00) ~ AH(y V F*). (4.3)

Moreover, F* = H-Y(W*) = H-! (QT) Multiplying (4.3) by /n and
replacing y by %, we obtain

Q™ (z, 00) ~ AHy(z V v/n F™). (4.4)

Because H,(y/n F*) = /nH(F*) = 4Q* ~ 1Q™), we also obtain

VnF* ~ H1 GQ(">) : (4.5)
We define
R 21 (5%), (46)



so that (4.5) becomes /nF* ~ F, and (4.4) becomes
Q™) (z,00) = A\H, (z V F¥), z > 0. (4.7)

Note that F,, is not the frontier F(® defined in Section 2. However,

1 1A ~
— (F,—F™) = g '(=0™) - F=
ﬁ(F" F®) = H <AQ ) F

= H'(W*)-F* = 0.

Relations (4.6), (4.7) connect the unscaled queue length Q(® with the num-
ber of customers whose unscaled lead-times exceed x, and the function H,
appearing in these relations can be computed from the cumulative distribu-
tion function G,, of the unscaled lead-time distribution. These relations can
be verified by simulation without knowledge of the parameter n.

The function of z appearing on the right-hand side of (4.7) is nonincreas-
ing, with limit Q™) at —oco and limit zero at co. Therefore,

Fipy(z) =1— H,(zV F,), z>0, (4.8)

A
om
is a cumulative distribution function. According to (4.7), Fipy(z) should
approximate the fraction of customers in queue whose lead-times are less
than or equal to z. Since the parameter n is irrelevant, we henceforth omit
it in our discussion of (4.8).

We present simulation results illustrating the accuracy this approxima-
tion. In the various experiments, we simulate an M/M/1 queue* using the
EDF queue discipline, usually with A = .95 or .99, u = 1.0, p = .95 or .99.
According to the theory developed in Section 3, if one were to randomly stop
the simulation at any point, observe the current number in the queue, @, and
find that @ is sufficiently large, then the corresponding instantaneous lead-
time profile, expressed as an empirical cdf, should be given approximately
by (4.8).

For real-time queueing theory to be useful in practice, it is important
that it can be applied in cases in which the queue length @ is moderate in
size. However, when @) is moderate, one would expect the lead-time profiles
to exhibit substantial variability, and it is not at all clear that the asymptotic
form given by (4.8) would be appropriate. The simulations presented in this
section are designed to address this issue.

“The theory applies to GI/G/1 queues, but only M/M/1 systems are simulated in
this section. Limited experience with the simulation of GI/G/1 queues suggests that the
accuracy of the approximations in this section are representative of more general systems.
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For each simulation run, a particular deadline distribution, G = G,,
and queue length, Q@ = Q™) is chosen. The run is initiated with an empty
queue and continues until the instant the local time at level Q reaches a
prespecified value, 10 for the results presented in this paper. At that instant,
the lead-time profile is recorded. This same experiment is repeated a total
of N times, hence the N profiles can be thought of as independent random
objects. We wish to assess how close they are to their predicted form given
by (4.8).

The deadline distribution G used in Figures 1-5 is a Uniform(30,70)
distribution. Figure 1 illustrates the variability in the lead-time profiles for
small to moderate values of (). This figure shows the first 4 lead-time profiles
recorded when @ = 20 (then when @ = 60) and the accumulated local time
is 10. The lead-time profiles are actually 20 (or 60) dimensional vectors, but
are plotted here as line segments for visual convenience. Notice that while
the profiles have similar shapes, they exhibit substantial variability.

4.1 Uniform Deadlines

The first deadline distribution considered was the Uniform(A,B). For this
distribution, the frontier F' = F,, is given by

p_ | B-V2W(B-4) ifw< 2324,
S\ EA-w it W > £:4,

where throughout we use the notation W = % The theoretical cdf defined
by (4.8) for this Uniform(A,B) deadline case is given by one of two forms
depending on the magnitude of W. If W > BT_A, then

0 if x < F,
Fipy(z) = - %(B(A%'ZB —z) if F<z<A,
1 - wEa if A<z < B,

whereas if W < B—EA, then

0 ifx <F,
2
Fpy(z)={ 1- (g%;) if F<z<B,
1 if B<uz.

If we substitute the simulated customer lead-times into Fya,y, the result-
ing empirical cdf should correspond to a Uniform(0,1). In addition, from
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Fyp,,, the quantiles of the lead-time distribution can be determined by solving

thgl;(p) =zpfor0<p<1For W > B%A this gives

oo [ FtoW if0<p<1-524,
P B—\21-pW(B-4) if1-EA<p<1.

whereas for W < % we have

2,=B—(B—F)\/1—p, 0<p<1.

The theoretical profiles for any particular @ and G in all the following
figures are obtained by connecting the points { (zp,p), p = ﬁ, ey 222% }

Interestingly, in spite of the substantial variability in each profile, if
one averages those profiles (by averaging each of the components of the N
distinct @-dimensional vectors), the result is a very smooth profile which is
nearly identical to the theoretical cdf given by (4.8). Figures 2-5 show the
mean profile, the component-wise minimum profile and the component-wise
maximum profile for the cases Q = 15,20,40 and 60, each component of
which is denoted by an “x”. The component-wise minimum and maximum
form an envelop for all N profiles generated by the particular simulation run.
In Figures 2 and 3, 95% confidence intervals for the mean are determined
for each of the @ quantiles. These confidence limits are denoted by “*”, and
have been constructed independently for each of the @) components. In the
subsequent figures, the confidence interval indications are omitted as they
become visually distracting. In all cases, the traffic intensity is .95, and the
profile is recorded when exactly 10 units of local time at the indicated queue
length have elapsed. The global time at which the last lead-time profile is
taken is recorded at the top of each figure.

The profile is approximately correct for Q = 15, but there are systematic
departures evident. Figures 3-5 suggest that the profile form given by (4.8)
is nearly exact as a mean value for @ > 20, as the theoretical curve is always
within the 95% confidence limits.

In considering the behavior of a real-time queueing system, it is impor-
tant to put bounds or confidence sets around the profiles described by (4.8)
which capture a large fraction of profiles. Such bounds could be used to
determine access control policies which would prevent customer lateness (at
the expense of losing customers through admission denial). The minimum
and maximum curves offer some idea of how wide such profiles must be and
how wide the confidence regions must be. Presumably, the bounds can be
constructed using large deviation theory; however, this is not studied any

34



further in this paper. While the minimum and maximum limits seem fairly
wide, we expect that nearly all of the empirical profiles will be within an
O(1) distance from the theoretical profile in which lead-times are O(1/n).
These plots are representative of many such plots for a variety of bounded
deadline distributions and traffic intensities. The greater the variability in
G, the larger @ must be for the average profiles to agree with (4.8). The
accumulated local time at which the profiles are recorded also has important
consequences. These issues are both addressed in the next section.

5 Future Research

In this section, we introduce additional simulation results which illustrate
potential generalizations of the real-time queueing theory developed in this
paper and some additional issues.

5.1 More General Deadline Distributions

The theory developed in Sections 3 and 4 used the assumption that the
deadline distribution was bounded above by some finite constant. Here,
we illustrate that this assumption appears to be unnecessary. Two distri-
butions which are not bounded above are considered: the exponential ()
distribution with mean 1 and the Pareto(a, B) distribution.

We begin with the exponential(c) distribution with mean 1. All mo-
ments of this distribution are finite, but it is not bounded above as in the
uniform case. For this distribution, the frontier is given by:

P —Llog(aW) W <
1 i-w ifW >

[

Q=R =

The theoretical cdf for the lead-time profiles for this exponential(a) case
takes on one of two forms depending upon whether W > é or not. For the
case in which W > é, we have

0 ifx < F,
Fipy(z) =< 1— ﬁ(l—aw) if F<z<0,
1—

ow exp(—azx) ifz >0,
whereas for W < é we have

0 ifx < F,
1— - exp(—az) ifz>F.

Fipy(x) = {
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For W > é, the quantiles are given by

o {a-Wl-p f0<p<l-—_p,
P —LloglaW(1-p) ifl1- 3 <p<]1,

whereas for W < é they are given by

1
Tp = —alog((l —plaW), 0<p<1.

For the simulation, we chose a = .02, giving a mean of 50. We again sim-
ulate 50 independent profiles taken when 10 units of local time have been
reached. Figure 6 shows the mean profile for = 20. Again, the shape is
generally correct, but systematic departures are evident. Because this dead-
line distribution will result in a few customers in the queue having very large
lead-times, it is more informative to use Q-Q plots to judge the agreement
between the empirical and the theoretical cdf. A Q-Q plot is obtained by
plotting {(Fthy(Li), ﬁ) , 1< < Q}. If the lead-times (Lq,... ,Lq) are
a random sample from Fypy, then these points should lie close to a 45-degree
line connecting (0,0) with (1,1). Figure 7 gives the Q-Q plot corresponding
to Figure 6. Figure 8 presents the Q-Q plot for the same exponential dead-
line case when (Q = 40. When @ = 20, systematic departures between the
average empirical cdf and the theoretical cdf are evident, especially in the
left hand tail. Nevertheless, when ) = 40, the agreement is nearly exact.

We next consider a Pareto(a,B) deadline distribution. This distribution
is characterized by the cdf

0 if <1
G(z) = ae B
(=) { 1- (B)™) 42>y

for B > 0 and a > 1. This distribution has no moments of order oo — 1 or
higher, hence it has a very heavy right-hand tail. Indeed, for 1 < a < 2,
the function H(y) = oo for all finite y, and the proposed lead-time profile
given by (4.8) does not exist. Nevertheless, we show simulation results for
a = 3 and a = 6 which demonstrate that there is a stable lead-time profile
associated with this family of distributions for a > 2. For a > 2, the frontier
is given by

1

B(1 B )E W< B

a—2"

=lB-W if w> 2.



The theoretical cdf for this Pareto(a,B) case is given by one of two forms
depending upon whether W > % or not. For the case in which W > :%2,
we have

0 ifx < F,
Fuy@)={ 1-# (23B-¢) ifF<a<B,
B B\*—2 .
l-way(z) ~ fz>B,

whereas for W < % we have

0 ifx <F,

Fthy(iﬂ) = { 1— ﬁ (2)0472 ifz>F

For W > % the quantiles are given by

elB-(1-pW if0<p<1—ﬁ,
Tp = B ﬁ . B
B (7(0‘72)W(17p)) if1- B <p<1,

whereas for W < % they are given by

"”’:B<<a—2>$<1—p>>ﬁ’ dsp<t

Figures 9 and 10 give Q-Q plots for the Pareto(6,40) distribution, a
distribution with mean 50 and a relatively heavy tail. The traffic intensity
was increased to .99, and the number of profiles was increased from 50 to 100.
Figure 9 corresponds to ) = 20, while Figure 10 corresponds to @@ = 40. The
variability in the Q-Q plots is quite large; however, there is good agreement
between the average profile and the theoretical distributions. For @ = 20,
there are some systematic departures in the tails, but for @ = 40, the
agreement is very good except in the upper tail.

Figures 11 and 12 present results for the more extreme Pareto(3,25), a
distribution with mean 50, but infinite variance. This distribution has an
extremely heavy right-hand tail, and very long lead-times will occur as @
increases. For this case, we considered longer queue lengths, with Figure
11 corresponding to Q = 40 and Figure 12 to Q = 60. Figure 11 shows
systematic departures in the left-hand tail, while Figure 12 shows near exact
agreement between the average profile and the theoretical distribution.
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5.2 FIFO Queue Discipline

This paper studies the EDF queue discipline; however, the results can be
used heuristically to determine lead-time profiles for the behavior of first-
in-first-out (FIFO) queues. Suppose that arriving customers have deadlines
given by distribution G, but are serviced in FIFO order. This queue dis-
cipline does not require knowledge of the customer deadlines, and a cus-
tomer’s instantaneous lead-time is equal to its initial deadline minus its
time in queue. The time in queue can be determined using (4.8) first by
assuming all customers have deadlines 0. If all customers have deadline 0,
then the EDF queue discipline is equivalent to FIFO, and any customer’s
instantaneous lead-time is equal to the negative of its time in queue. Profiles
of customers’ times in the queue can be approximated by using (4.8) with
deadline distribution corresponding to point mass at 0. In this case, the
resulting distribution will be Uniform(—W,0). By adding back their actual
deadlines to their time in queue, one can recover the customer lead-times.
Consequently, if one were to order the customers in a FIFO queue by lead-
time (the FIFO ordering is by time in queue), then the resulting lead-time
profile should be the convolution of G with a Uniform(—W,0) distribution.

Figures 13 and 15 illustrate the lead-time profiles for a FIFO queue as-
suming G is exponential(Sl—O), Q = 20 and Q = 40. Figures 14 and 16 present
the corresponding Q-Q plots for more accurate assessment of agreement. In
this case, the frontier is given by F = —W = —Q/\. The theoretical cdf is
given by

0 if z < =W,
Fpy(e) ={ 1+ &+ Jp(e oW 1) if W <z <0,
1-— 1_;‘_; e T if0 <z

There are two different cases associated Wit‘}},l finding the quantiles for this
distribution. First, when 0 < p < 1 — 1=22= then z, = £ — W where y is
the solution of the equation

y+e V=1+aWp.

_—aW
e <p<1,

For 1 —

(1 —p)aW> .

1
zp = —_ log <W

Again, the agreement is reasonable for @ = 20 and excellent for Q) = 40.
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5.3 Profiles at Hitting Times

Real-time queueing theory should be useful for developing and analyzing
control policies to reduce or eliminate customer lateness. One simple policy
would be a threshold policy in which arrivals would be denied admission
and be lost if ) reached some specified level. In principle, the threshold
could be chosen based on the predicted lead-time profiles, for example, by
choosing the threshold so that the frontier is bounded away from 0 by some
confidence margin. This analysis would use the profile when @ first hit the
threshold. Interestingly, the profile obtained at the time at which a level is
first hit can be systematically different from the profile predicted by (4.8).
Figure 17 gives a representative example. The simulation parameters are
identical to that presented in Figure 5 except that the profile is recorded
at the instant that Q = 60 rather than after 10 units of local time have
been accumulated at level 60. The mean empirical cdf curve is shifted away
from the theoretical profile. The introduction of the hitting time which
guarantees that the queue length has never exceeded the level in question
creates systematic distortions in the profiles. It will be important to develop
corrections to (4.8) which incorporate this stopping time bias.

5.4 The Non-Heavy Traffic Case

The theory presented in Section 3 is developed assuming the traffic intensity
approaches one as n — oo (see (2.9)). Interestingly, suppose one does not
assume this heavy traffic condition, but simulates an EDF system with mod-
erate traffic intensity. If the simulation is continued until a suitable amount
of local time (say 10 units) at a large enough queue level (say Q = 40)
is obtained and the lead-time profile is recorded, then that profile will be
essentially indistinguishable from those recorded under heavy traffic condi-
tions. Hence, it appears that for the EDF queue discipline, heavy traffic
theory calculations can be used to make accurate lead-time profile predic-
tions under moderate traffic conditions. Of course, if the traffic intensity is
moderate, long queue lengths are relatively infrequent compared with heavy
traffic conditions. Much more research is needed to assess the accuracy of
the conjectures presented in this section. Nevertheless, it appears that the
heavy traffic approximations developed for real-time queues will have many
important applications under non-extreme traffic conditions.
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A Weak Convergence

The following standard results can be found in or are easily derived from
assertions found in Parthasarathy [25], Chapter II and Billingsley [1], Section
17. In this appendix, we state version of these results needed for this paper.

Let S be a separable metric space, and let M(S) be the set of finite
measures defined on the o-algebra of Borel subsets of S. We endow M (S)
with the weak topology, whereby a sequence of finite measures {u, }5° ; con-
verges to a finite measure p if and only if lim, o0 [ggdpn = [ggdp for
every bounded, continous function g mapping S into IR. The weak topology
on M(S) is metrizable, and M(S) is locally compact.

Now let {X,,}52; be a sequence of S-valued random objects, defined on
respective probability spacees (Qy,, Fy, IP,) which may depend on n, and let
X be an S-valued random object defined on a probability space (Q*, F*, IP*).
We say X,, converges weakly to X, and we write X,, = X if the sequence
of probability measures u, induced on S by X, converges weakly to the
probability measure induced on S by X.

Theorem A.1 (Continuous Mapping Theorem.) Let {X,}°, be a se-
quence of S-valued random objects converging weakly to another S-valued
random object X. Let f: S — U be a measurable function from S to an-
other metric space U, and assume f is continuous on the support of X.
Then f(X,) = f(X).
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Let (S, p) be a locally compact separable metric space, and let T' > 0 be
given. A separable metric spaces which shall concern us is Dg[0, T, the
space of right-continuous functions with left-hand limits (hereafter called
RCLL functions) from [0,T] to S, equipped with the Skorohod metric

dT(m,y)=inf{ sup p(x(t),y(t)) + sup IA(t)—tl}, z,y € Dg[0,T],
A |o<i<T 0<t<T

where the infinimum is over all strictly increasing functions A mapping [0, T']
onto itself.

In this paper, most processes are in fact defined on [0,00). The space
Dg[0,00) of RCLL, S-valued functions defined on [0,00) has a metric doo
with the property that whenever z and y are in Dg[0,T] and their restric-
tions |jo. 7 and y|o7) to [0, 7] agree, then doo(z,y) < e T ([5], Chapter
3, Section 5). If {z,}32, is a sequence in Dg[0,00), = is another function
in Dg[0,00), and for every T' > 0 the sequence of restrictions {zn|o1}n>1
converges in Dg[0,T] to z|j 7], then {z,};2; converges in Dg[0,00) to z.
The converse holds if z is continuous.

Now let {X,(¢);0 <t < T}, be a sequence of RCLL, S-valued pro-
cesses defined on [0,7]. These induce a sequence of measures on Dg[0,T.
If this sequence converges weakly to the measure induced by another RCLL,
S-valued process {X (¢);0 < t < T'}, then we say that the sequence of pro-
cesses {X,}22, converges weakly to the process X and write X,, = X. The
definition of weak convergence of a sequence of RCLL, S-valued processes
on [0, 00) is similar. Such a sequence converges weakly to a continuous pro-
cess {X(¢);0 < t < oo} if and only if, for every T' > 0, the sequence of
restricted processes {X,,(¢);0 < ¢t < T} converges weakly to the restricted
process {X(¢);0 <t < T}.

Theorem A.2 (Time Change Theorem.) Suppose the sequence of RCLL,
S-valued processes {Xn(t);0 <t < 00}52; converges weakly to a continuous,
S-valued process {X (t);0 < t < oco}. Suppose further that the sequence of
RCLL, [0, 00)-valued processes {®,(t);0 < t < 00}, converges weakly to
a non-random continuous [0, 00)-valued process {®(t);0 <t < oo}. Then

Xno0®,=> Xod.

Theorem A.3 (Differencing Theorem.) Suppose the sequence of RCLL, S-
valued processes {X,(t);0 < t < 00}, converges weakly to a continuous,
S-valued process {X(t);0 < t < oo}. Suppose further that the sequences of
RCLL, [0, 00)-valued processes {®,(t);0 < t < 00}52; and {¥,(t);0 <t <
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00}, converge weakly to the identically zero process. Then the sequence of
processes

Yo(t) £ p(Xn(t + Bn(t)), Xn(t + Ta(t)))

converges weakly to the identically zero process.

B Functional Central Limit Theorem

This appendix summarizes classical heavy-traffic limit results for a sequence
of queues. It is included here primarily to establish notation for the main
body of the paper. Recall the definitions S £ 0 and for k > 1, S £
Z?:l ug-n), where for each n, {ug-")} 21 is a sequence of independent, iden-
tically distributed strictly positive random variables with mean ﬁ and
standard deviation a(®. In the n-th queue, S,(cn) is the arrival time of the
k-th customer. The number of customers arrived by time ¢ is A™(¢) 2
max{k > 0; S ,(cn) < t}. We define the centered and scaled arrival process
1

A () &
n

[A(") (nt) )\(")nt} , t>0.

Recall also the definition of the centered and scaled work arrival process

o2 L84 (1Y,
() \/’I_LZI J /J,(n)

where for each n, {v§n) };";1 is a sequence of independent, identically dis-

tributed random variables with mean p(™ and variance 3(™). The work
arrival process is

[mt]
(n)(4) A (n)
AOEDIE
j=1
and the centered and scaled netput process is
1

N &
n

mewmm—my
We impose the heavy traffic assumptions (2.9)-(2.11), which are in force
throughout.

Suppose B is a standard Brownian motion and y and ¢ are constants.
Then B*(t) = ut + o B(t) is a Browian motion with drift x4 and variance o2
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per unit time. We denote this by writing B* ~ BM(u,0?). The following
theorems are consequences of Prohorov [27], Theorem 3.1, used to extend
Billingsley [1], 17.3.

Theorem B.1 The sequence of processes {17(")}2":1 converges weakly to a
process V* ~ BM (0, 3?).

Theorem B.2 The sequence of processes {21\(“) o2 1 converges weakly to a
process A* ~ BM(0,a2)3).

Theorem B.3 The sequence N® converges weakly to %A* 4+ V*o e —~t,
where A* ~ B(0,a?)\3), V* ~ B(0,3%), A* and V* are independent, and e
is the identify function e(t) =t for all t € [0,1].

Corollary B.4 Let N* = %A* + V* o Xe — vt be the Brownian motion with
drift in Theorem B.3, and define

* é o . *
') = - min N*(s),

W*(t) 2 N*(t)+I*(t).

Then R R
(N("),ﬂ"),w(")) = (N*,I*, W*).
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M/M/1, EDF, Rho = .99, Queue lengths = 20, 60
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Figure 1: Sample lead-time profiles, Q = 20, Q = 60

M/M/1, EDF, Rho = 0.95, Level = 15, Global Time = 3.216e+04
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Figure 2: Profiles: Mean, Max, Min and Theory, @ = 15, N = 50
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M/M/1, EDF, Rho = 0.95, Level = 20, Global Time = 4.63e+04
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Figure 3: Profiles: Mean, Max, Min and Theory, @ = 20, N = 50

M/MI1, EDF, Rho = 0.99, Level = 40, Global Time = 9.755e+04
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Figure 4: Profiles: Mean, Max, Min and Theory, @ = 40, N = 50
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M/M/1, EDF, Rho = 0.99, Level = 60, Global Time = 1.971e+05
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Figure 5: Profiles: Mean, Max, Min and Theory, @ = 60, N = 50

M/M/1, EDF, Rho = 0.95, Level = 20, Global Time = 4.129e+04
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Figure 6: Profiles: Mean, Max, Min and Theory, @ = 20, N = 50
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Q-Q Plot, M/M/1, EDF, Rho = 0.95, Level = 20, Global Time = 4.129e+04
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Figure 7: Q-Q Profiles: Mean, Max, Min and Theory, @ = 20, N = 50

Q-Q Plot, M/M/1, EDF, Rho = 0.95, Level = 40, Global Time = 1.181e+05
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Figure 8: Q-Q Profiles: Mean, Max, Min and Theory, @ = 40, N = 50
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Q-Q Plot, M/M/1, EDF, Rho = 0.99, Level = 20, Global Time = 8.184e+04
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Figure 9: Q-Q Profiles: Mean, Max, Min and Theory @) = 20, N = 100

Q-Q Plot, M/M/1, EDF, Rho = 0.99, Level = 40, Global Time = 1.839e+05
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Figure 10: Profiles: Mean, Max, Min and Theory, Q = 40, N = 100
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Q-Q Plot, M/M/1, EDF, Rho = 0.99, Level = 40, Global Time = 1.839e+05
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Figure 11: Profiles: Mean, Max, Min and Theory, Q = 40, N = 100

Q-Q Plot, M/M/1, EDF, Rho = 0.99, Level = 60, Global Time = 4.219e+05
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Figure 12: Profiles: Mean, Max, Min and Theory, Q = 60, N = 100
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MIM/L, FIFO, Rho = 0.95, Level = 20, Global Time = 3.906e+04
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Figure 13: Profiles: Mean, Max, Min and Theory, Q@ = 20, N = 50

Q-Q Plot, M/M/1, FIFO, Rho = 0.95, Level = 20, Global Time = 3.906e+04
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Figure 14: Q-Q Profiles: Mean, Max, Min and Theory, Q = 20, N = 50

53



o o o o o o o
w N o > = o ©

Fraction of tasks with lead—times less than t

o
>

MIM/L, FIFO, Rho = 0.99, Level = 40, Global Time = 7.352e+04

I I I I
150 200 250 300

.
0 50 100
Deadlines = 50Exp(1), # of Excursions = 50, Local Time = 10

350

Figure 15: Profiles: Mean, Max, Min and Theory, Q@ = 40, N = 50

Fraction of tasks with lead—times less than t
o o o o o ) ° o
N @ = o > = © ©

o
[

Q-Q Plot, M/M/1, FIFO, Rho = 0.99, Level = 40, Global Time =7.352e+04

Figure 16: Q-Q Profiles: Mean, Max, Min and Theory,
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M/M/1, EDF, Rho = 0.99, Level = 60, Global Time = 1.005e+05
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Figure 17: Q-Q Profiles: Mean, Max, Min and Theory, Q = 60, N = 50
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