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Abstract. The adjoint method, introduced in [Eva] and [Tra], is used to construct

analogs to the Aubry-Mather measures for non convex Hamiltonians. More precisely,

a general construction of probability measures, that in the convex setting agree with

Mather measures, is provided. These measures may fail to be invariant under the

Hamiltonian flow and a dissipation arises, which is described by a positive semi-

definite matrix of Borel measures. However, in the important case of uniformly qua-

siconvex Hamiltonians the dissipation vanishes, and as a consequence the invariance

is guaranteed.
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1. Introduction

Let us consider a periodic Hamiltonian system whose energy is described by a smooth Hamil-

tonian H : T
n × R

n → R. Here T
n denotes the n-dimensional torus, n ∈ N. It is well known that

the time evolution t 7→ (x(t),p(t)) of the system is obtained by solving the Hamilton’s ODE















ẋ = −DpH(x,p),

ṗ = DxH(x,p).

(1.1)

Assume now that, for each P ∈ R
n, there exists a constant H(P ) and a periodic function u(·, P )

solving the following time independent Hamilton-Jacobi equation

H(x, P +Dxu(x, P )) = H(P ). (1.2)

Suppose, in addition, that both u(x, P ) and H(P ) are smooth functions. Then, if the following

relations

X = x+DPu(x, P ), p = P +Dxu(x, P ), (1.3)

define a smooth change of coordinates X(x, p) and P (x, p), the ODE (1.1) can be rewritten as















Ẋ = −DPH(P),

Ṗ = 0.

(1.4)
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Since the solution of (1.4) is easily obtained, solving (1.1) is reduced to inverting the change of

coordinates (1.3). Unfortunately, several difficulties arise.

Firstly, it is well known that the solutions of the nonlinear PDE (1.2) are not smooth in the

general case. For the convenience of the reader, we recall the definition of viscosity solution.

Definition 1.1. We say that u is a viscosity solution of (1.2) if for each v ∈ C∞(Rn)

• If u− v has a local maximum at a point x0 ∈ R
n then

H(x0, P +Dxv(x0)) ≤ H(P );

• If u− v has a local minimum at a point x0 ∈ R
n then

H(x0, P +Dxv(x0)) ≥ H(P ).

One can anyway solve (1.2) in this weaker sense, as made precise by the following theorem, due

to Lions, Papanicolaou and Varadhan.

Theorem 1.2 (See [LPV88]). Let H : T
n × R

n → R be smooth such that

lim
|p|→+∞

H(x, p) = +∞.

Then, for every P ∈ R
n there exists a unique H(P ) ∈ R such that (1.2) admits a Z

n-periodic

viscosity solution u(·, P ) : T
n → R.

We call (1.2) the cell problem. It can be proved that all the viscosity solutions of the cell

problem are Lipschitz continuous, with Lipschitz constants uniformly bounded in P .

A second important issue is that the solution u(·, P ) of (1.2) may not be unique, even modulo ad-

dition of constants. Indeed, a simple example is given by the HamiltonianH(x, p) = p·(p−Dψ(x)),

where ψ : T
n → R is a smooth fixed function. In this case, for P = 0 and H(0) = 0, the cell

problem is

Du ·D(u − ψ) = 0,

which admits both u ≡ 0 and u = ψ as solutions. Therefore, smoothness of u(x, P ) in P cannot

be guaranteed.

Finally, even in the particular case in which both u(x, P ) and H(P ) are smooth, relations (1.3)

may not be invertible, or the functions X(x, p) and P (x, p) may not be smooth or globally defined.

Therefore, in order to understand the solutions of Hamilton’s ODE (1.1) in the general case, it is

very important to exploit the functions H(P ) and u(x, P ), and to extract any possible information

“encoded” in H(P ) about the dynamics.
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1.1. Classical Results: the convex case. Classically, the additional hypotheses required in

literature on the Hamiltonian H are:

(i) H(x, ·) is strictly convex;

(ii) H(x, ·) is superlinear, i.e.

lim
|p|→+∞

H(x, p)

|p|
= +∞.

A typical example is the mechanical Hamiltonian

H(x, p) =
|p|2

2
+ V (x),

where V is a given smooth Z
n-periodic function. Also, one restricts the attention to a particular

class of trajectories of (1.1), the so-called one sided absolute minimizers of the action integral.

More precisely, one first defines the Lagrangian L : T
n ×R

n → R associated to H as the Legendre

transform of H :

L(x, v) := H∗(x, v) = sup
p∈Rn

{−p · v −H(x, p)} for every (x, v) ∈ T
n × R

n. (1.5)

Here the signs are set following the Optimal Control convention (see [FS93]). Then, one looks for

a Lipschitz curve x(·) which minimizes the action integral, i.e. such that

∫ T

0

L(x(t), ẋ(t)) dt ≤

∫ T

0

L(y(t), ẏ(t)) dt (1.6)

for each time T > 0 and each Lipschitz curve y(·) with y(0) = x(0) and y(T ) = x(T ). Under fairly

general conditions such minimizers exist, are smooth, and satisfy the Euler-Lagrange equations

d

dt
[DvL(x(t), ẋ(t))] = DxL(x(t), ẋ(t)), t ∈ (0,+∞). (1.7)

It may be shown that if x(·) solves (1.6) (and in turn (1.7)), then (x(·),p(·)) is a solution of

(1.1), where p(·) := −DvL(ẋ(·),x(·)). This is a consequence of assumptions (i) and (ii), that

in particular guarantee a one to one correspondence between Hamiltonian space and Lagrangian

space coordinates, through the one to one map Φ : T
n × R

n → T
n × R

n defined as

Φ(x, v) := (x,−DvL(x, v)). (1.8)

There are several natural questions related to the trajectories x(·) satisfying (1.6), in particular

in what concerns ergodic averages, asymptotic behavior and so on. To address such questions it

is common to consider the following related problem.

In 1991 John N. Mather (see [Mat91]) proposed a relaxed version of (1.6), by considering

min
ν∈D

∫

Tn×Rn

L(x, v) dν(x, v), (1.9)
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where D is the class of probability measures in T
n×R

n that are invariant under the Euler-Lagrange

flow. In Hamiltonian coordinates the property of invariance for a measure ν can be written more

conveniently as:
∫

Tn×Rn

{φ,H} dµ(x, p) = 0, ∀φ ∈ C1
c (Tn × R

n),

where µ = Φ#ν is the push-forward of the measure ν with respect to the map Φ, i.e., the measure

µ such that
∫

Tn×Rn

φ(x, p) dµ(x, p) =

∫

Tn×Rn

φ(x,−DvL(x, v)) dν(x, v),

for every φ ∈ Cc(T
n × R

n). Here the symbol {·, ·} stands for the Poisson bracket, that is

{F,G} := DpF ·DxG−DxF ·DpG, ∀F,G ∈ C1(Tn × R
n).

Denoting by P(Tn × R
n) the class of probability measures on T

n × R
n, we have

D =

{

ν ∈ P(Tn × R
n) :

∫

Tn×Rn

{φ,H} dΦ#ν(x, p) = 0, ∀φ ∈ C1
c (Tn × R

n)

}

. (1.10)

The main disadvantage of problem (1.9) is that the set (1.10) where the minimization takes

place depends on the Hamiltonian H and thus, in turn, on the integrand L. For this reason,

Ricardo Mañe (see [Mn96]) considered the problem

min
ν∈F

∫

Tn×Rn

L(x, v) dν(x, v), (1.11)

where

F :=

{

ν ∈ P(Tn × R
n) :

∫

Tn×Rn

v ·Dψ(x) dν(x, v) = 0 for every ψ ∈ C1(Tn)

}

.

Measures belonging to F are called holonomic measures. Notice that, in particular, to every

trajectory y(·) of the original problem (1.6) we can associate a measure νy(·) ∈ F . Indeed, for

every T > 0 we can first define a measure νT,y(·) ∈ P(Tn × R
n) by the relation

∫

Tn×Rn

φ(x, v) dνT,y(·)(x, v) :=
1

T

∫ T

0

φ(y(t), ẏ(t)) dt for every φ ∈ Cc(T
n × R

n).

Then, from the fact that

supp νT,y(·) ⊂ T
n × [−M,M ], for every T > 0, (M = Lipschitz constant of y(·))

we infer that there exists a sequence Tj → ∞ and a measure νy(·) ∈ P(Tn × R
n) such that

νTj ,y(·)
∗
⇀ µy(·) in the sense of measures, that is,

lim
j→∞

1

Tj

∫ Tj

0

φ(y(t), ẏ(t)) dt =

∫

Tn×Rn

φ(x, v) dνy(·)(x, v) for every φ ∈ Cc(T
n × R

n). (1.12)
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Choosing φ(x, v) = v ·Dψ(x) in (1.12) it follows that νy(·) ∈ F , since

∫

Tn×Rn

v ·Dψ(x) dνy(·)(x, v) = lim
j→∞

1

Tj

∫ Tj

0

ẏ(t) ·Dψ(y(t)) dt = lim
j→∞

ψ(y(Tj)) − ψ(y(0))

Tj

= 0.

In principle, since F is much larger than the class of measures D, we could expect the last

problem not to have the same solution of (1.9). However, Mañe proved that every solution of

(1.11) is also a minimizer of (1.9).

A more general version of (1.11) consists in studying, for each P ∈ R
n fixed,

min
ν∈F

∫

Tn×Rn

(L(x, v) + P · v) dν(x, v), (1.13)

referred to as Mather problem. Any minimizer of (1.13) is said to be a Mather measure. An

interesting connection between the Mather problem and the time independent Hamilton-Jacobi

equation (1.2) is established by the identity:

−H(P ) = min
ν∈F

∫

Tn×Rn

(L(x, v) + P · v) dν(x, v). (1.14)

Notice that problems (1.11) and (1.13) have the same Euler-Lagrange equation, but possibly

different minimizers, since the term P · v is a null Lagrangian. The following theorem gives a

characterization of Mather measures in the convex case.

Theorem 1.3. Let H : T
n×R

n → R be a smooth function satisfying (i) and (ii), and let P ∈ R
n.

Then, ν ∈ P(Tn × R
n) is a solution of (1.13) if and only if:

(a)

∫

Tn×Rn

H(x, p) dµ(x, p) = H(P ) = H(x, p) µ-a.e.;

(b)

∫

Tn×Rn

(p− P ) ·DpH(x, p) dµ(x, p) = 0;

(c)

∫

Tn×Rn

DpH(x, p) ·Dxφ(x) dµ(x, p) = 0, ∀φ ∈ C1(Tn),

where µ = Φ#ν and H(P ) is defined by Theorem 1.2.

Before proving Theorem 1.3 we state the following proposition, which is a consequence of the

results in [Mn96], [Fat97a], [Fat97b], [Fat98a], [Fat98b] and [EG01].

Proposition 1.4. Let H : T
n ×R

n → R be a smooth function satisfying (i) and (ii). Let P ∈ R
n,

let ν ∈ P(Tn × R
n) be a minimizer of (1.13) and set µ = Φ#ν. Then,

(1) µ is invariant under the Hamiltonian dynamics, i.e.

∫

Tn×Rn

{φ,H} dµ(x, p) = 0 ∀φ ∈ C1
c (Tn × R

n);



6 F. CAGNETTI, D. GOMES, AND H.V. TRAN

(2) µ is supported on the graph

Σ := {(x, p) ∈ T
n × R

n : p = P +Dxu(x)},

where u is any viscosity solution of (1.2).

We observe that property (2), also known as the graph theorem, is a highly nontrivial result.

Indeed, by using hypothesis (ii) one can show that any solution u(·, P ) of (1.2) is Lipschitz con-

tinuous, but higher regularity cannot be expected in the general case.

Proof of Theorem 1.3. To simplify, we will assume P = 0.

Let ν be a minimizer of (1.13). By the previous proposition, we know that properties (1) and

(2) hold; let us prove that µ = Φ#ν satisfies (a)–(c). By (1.14), we have

∫

Tn×Rn

L(x, v) dν(x, v) = −H(0).

Furthermore, because of (2)
∫

Tn×Rn

H(x, p) dµ(x, p) = H(0),

that is, (a). Since H(x, p) = −L(x,−DpH(x, p)) + p ·DpH(x, p), this implies that

∫

Tn×Rn

p ·DpH(x, p) dµ(x, p) = 0,

and so (b) holds. Finally, (c) follows directly from the fact that ν ∈ F .

Let now µ ∈ P(Tn × R
n) satisfy (a)–(c), and let us show that ν = (Φ−1)#µ is a minimizer of

(1.13). First of all, observe that ν ∈ F . Indeed, by using (c) for every ψ ∈ C1(Tn)

∫

Tn×Rn

v ·Dψ(x) dν(x, v) = −

∫

Tn×Rn

DpH(x, p) ·Dψ(x) dµ(x, p) = 0.

Let now prove that ν is a minimizer.

Integrating equality H(x, p) = −L(x,−DpH(x, p))+ p ·DpH(x, p) with respect to µ, and using

(a) and (c) we have

H(0) =

∫

Tn×Rn

H(x, p) dµ(x, p)

= −

∫

Tn×Rn

L(x,−DpH(x, p)) dµ(x, p) +

∫

Tn×Rn

p ·DpH(x, p) dµ(x, p)

= −

∫

Tn×Rn

L(x,−DpH(x, p)) dµ(x, p) = −

∫

Tn×Rn

L(x, v) dν(x, v).

By (1.14), ν is a minimizer of (1.13).

�
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1.2. The Non Convex Case. The main goal of this paper is to use the techniques of [Eva]

and [Tra] to construct Mather measures under fairly general hypotheses, when the variational

approach just described cannot be used. Indeed, when (i) and (ii) are satisfied H coincides with

the Legendre transform of L, that is, identity H = H∗∗ holds. Moreover, L turns out to be convex

and superlinear as well, and relation (1.8) defines a smooth diffeomorphism, that allows to pass

from Hamiltonian to Lagrangian coordinates.

First of all, we extend the definition of Mather measure to the non convex setting, without

making use of the Lagrangian formulation.

Definition 1.5. We say that a measure µ ∈ P(Tn × R
n) is a Mather measure if there exists

P ∈ R
n such that properties (a)–(c) are satisfied.

The results exposed in the previous subsection show that, modulo the push-forward operation,

this definition is equivalent to the usual one in literature (see e.g. [Fat], [Mn96], [Mat91]). We

would like now to answer the following natural questions:

• Question 1: Does a Mather measure exist?

• Question 2: Let µ be a Mather measure. Are properties (1) and (2) satisfied?

We just showed that in the convex setting both questions have affirmative answers. Before address-

ing these issues, let us make some hypotheses on the Hamiltonian H . We remark that without any

coercivity assumption (i.e. without any condition similar to (ii)), there are no a priori bounds for

the modulus of continuity of periodic solutions of (1.2). Indeed, for n = 2 consider the Hamiltonian

H(x, p) = p2
1 − p2

2 ∀ p = (p1, p2) ∈ R
2.

In this case, equation (1.2) for P = 0 and H(P ) = 0 becomes

u2
x − u2

y = 0. (1.15)

Then, for every choice of f : R → R of class C1, the function u(x, y) = f(x − y) is a solution

of (1.15). Clearly, there are no uniform Lipschitz bounds for the family of all such functions u.

Throughout all the paper, we will assume that

(H1) H is smooth;

(H2) H(·, p) is Z
n-periodic for every p ∈ R

n;

(H3) For every x ∈ T
n

lim
|p|→+∞

(

1

2
|H(x, p)|2 +DxH(x, p) · p

)

= +∞.
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Notice that if we have hypothesis (ii) of the previous subsection and a bound on DxH(x, p), e.g.

|DxH(x, p)| ≤ C(1 + |p|), then we have (H3).

First we consider, for every ε > 0, a regularized version of (1.2), showing existence and unique-

ness of a constant H
ε
(P ) such that

−
ε2

2
∆uε(x) +H(x, P +Duε(x)) = H

ε
(P ) (1.16)

admits a Z
n-periodic viscosity solution (see Theorem 2.1) . Thanks to (H3), we can establish a

uniform bound on ‖Duε‖L∞ , and prove that, up to subsequences, H
ε
(P ) → H(P ) and uε(·, P )

converges uniformly to u(·, P ) as ε → 0, where H(P ) and u(·, P ) solve equation (1.2). Then, for

every ε > 0, we define the perturbed Hamilton SDE (see Section 3) as











dxε = −DpH(xε,pε) dt+ ε dwt,

dpε = DxH(xε,pε) dt+ εD2uε dwt,

(1.17)

where wt is a n-dimensional Brownian motion. However, it is not necessary to use the stochastic

approach, since our techniques can also be introduced in a purely PDE way (see Section 3.3).

In the second step, in analogy to what is done in the convex setting, we encode the long-time

behavior of the solutions t 7→ (xε(t),pε(t)) of (1.17) into a family of probability measures {µε}ε>0,

defined by

∫

Tn×Rn

φ(x, p) dµε(x, p) := lim
Tj→∞

1

Tj

E

[

∫ Tj

0

φ(xε(t),pε(t)) dt

]

for every φ ∈ Cc(T
n × R

n),

where with E[·] we denote the expected value and the limit is taken along appropriate subsequences

{Tj}j∈N (see Section 3.1).

Using the techniques developed in [Eva], we are able to provide some bounds on the derivatives

of the functions uε. More precisely, defining θµε as the projection on the torus T
n of the measure

µε (see Section 3.2), we give estimates on the (L2, dθµε)-norm of the second and third derivatives

of uε, uniformly w.r.t. ε (see Proposition 4.1).

In this way, we show that there exist a Mather measure µ and a nonnegative, symmetric n× n

matrix of Borel measures (mkj)k,j=1,...,n such that µε converges to µ up to subsequences and

∫

Tn×Rn

{φ,H} dµ+

∫

Tn×Rn

φpkpj
dmkj = 0, ∀φ ∈ C2

c (Tn × R
n), (1.18)

with sum understood over repeated indices (see Theorem 5.1). As in [Eva], we call mkj the

dissipation measures. Relation (1.18) is the key point of our work, since it immediately shows the

differences with the convex case. Indeed, the Mather measure µ is invariant under the Hamiltonian

flow if and only the dissipation measuresmkj vanish. When H(x, ·) is convex, this is guaranteed by
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an improved version of the estimates on the second derivatives of uε (see Proposition 4.1, estimate

(4.4)). We give in Section 10 a one dimensional example showing that, in general, the dissipation

measures (mkj)k,j=1,...,n do not disappear.

We study property (2) in Section 8. In particular, we show that if (1.2) admits a solution

u(·, P ) of class C1, then the corresponding Mather measure µ given by Theorem 1.2 is such that

DpH(x, P +Dxu(x, P )) · (p− P −Dxu(x, P )) = 0

in the support of µ (see Corollary 8.2).

Finally, we are able to provide some interesting examples of non-convex Hamiltonians (see Sec-

tion 9), for which both properties (1) and (2) are satisfied, e.g. strictly quasiconvex Hamiltonians

(see Section 9.7).

2. Elliptic regularization of the cell problem

We start by quoting a classical result concerning an elliptic regularization of equation (1.2).

This, also called vanishing viscosity method, is a well known tool to study viscosity solutions. In

the context of Mather measures this procedure was introduced by Gomes in [Gom02], see also

[Ana04], [AIPSM05], [ISM05].

Theorem 2.1. For every ε > 0 and every P ∈ R
n, there exists a unique number H

ε
(P ) ∈ R such

that the equation

−
ε2

2
∆uε(x) +H(x, P +Duε(x)) = H

ε
(P ) (2.1)

admits a unique (up to constants) Z
n-periodic viscosity solution. Moreover, for every P ∈ R

n

lim
ε→0+

H
ε
(P ) = H(P ),

where H(P ) is given by Theorem 1.2. In addition, we have

uε → u uniformly,

where u is a Z
n-periodic viscosity solution of (1.2).

We call (2.1) the stochastic cell problem.

Definition 2.2. Let ε > 0 and P ∈ R
n. The linearized operator Lε,P : C2(Tn) → C(Tn)

associated to equation (2.1) is defined as

Lε,P v(x) := −
ε2

2
∆v(x) +DpH(x, P +Duε(x)) ·Dv(x),

for every v ∈ C2(Tn).
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Sketch of the Proof. We mimic the proof in [LPV88]. For every λ > 0, let’s consider the following

problem

λvλ +H(x, P +Dvλ) =
ε2

2
∆vλ.

The above equation has a unique smooth solution vλ in R
n which is Z

n-periodic.

We will prove that ||λvλ||L∞ , ||Dvλ||L∞ ≤ C, for some positive constant C independent on λ and

ε. By using the viscosity property with ϕ = 0 as a test function, we get ||λvλ||L∞ ≤ C. Let now

wλ =
|Dvλ|2

2
. Then we have

2λwλ +DpH ·Dxw
λ +DxH ·Dxv

λ =
ε2

2
∆wλ −

ε2

2
|D2

xxv
λ|2.

Notice that for ε < 1

ε2

2
|D2

xxv
λ|2 ≥

ε4

4
|∆vλ|2 = (λvλ +H)2 ≥

1

2
H2 − C.

Therefore,

2λwλ +DpH ·Dxw
λ +DxH ·Dxv

λ +
1

2
H2 − C ≤

ε2

2
∆wλ.

At x1 ∈ T
n where wλ(x1) = maxTn wλ

2λwλ(x1) +DxH ·Dxv
λ(x1) +

1

2
H2 ≤ C.

Since wλ(x1) ≥ 0, using condition (H3) we deduce that wλ is bounded independently of λ, ε.

Finally, considering the limit λ→ 0 we conclude the proof.

�

Remark 2.3. The classical theory (see [Lio82]) ensures that the functions uε(·, P ) are C∞. In

addition, the previous proof shows that they are Lipschitz, with Lipschitz constant independent

of ε.

3. Stochastic dynamics

We now introduce a stochastic dynamics associated with the stochastic cell problem (2.1). This

will be a perturbation to the Hamiltonian dynamics (1.1), which describes the trajectory in the

phase space of a classical mechanical system.

Let (Ω, σ, P ) be a probability space, and let wt be a n-dimensional Brownian motion on Ω. Let

ε > 0, and let uε be a Z
n-periodic solution of (2.1). To simplify, we set P = 0. Consider now the

solution xε(t) of










dxε = −DpH(Dxu
ε(xε),xε) dt+ ε dwt,

xε(0) = x,

(3.1)
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with x ∈ T
n arbitrary. Accordingly, the momentum variable is defined as

pε(t) = Dxu
ε(xε(t)).

Remark 3.1. From Remark 2.3 it follows that

sup
t>0

|pε(t)| <∞.

Let us now recall some basic fact of stochastic calculus. Suppose z : [0,+∞) → R
n is a solution

to the SDE:

dzi = ai dt+ bij w
j
t i = 1, . . . , n,

with ai and bij bounded and progressively measurable processes. Let ϕ : R
n×R → R be a smooth

function. Then, ϕ(z, t) satisfies the Itô formula:

dϕ = ϕzi
dzi +

(

ϕt +
1

2
bijbjkϕzizk

)

dt. (3.2)

An integrated version of the Itô formula is the Dynkin’s formula:

E [φ(z(T )) − φ(z(0))] = E

[

∫ T

0

(

aiDzi
φ(z(t)) +

1

2
bijbjkD

2
zizk

φ(z(t))

)

dt

]

.

Here and always in the sequel, we use Einstein’s convention for repeated indices in a sum. In the

present situation, we have

ai = −Dpi
H(Dxu

ε,xε), bij = εδij .

Hence, recalling (3.1) and (3.2)

dpi = uε
xixj

dxε
j +

ε2

2
∆(uε

xi
) dt = −Lε,Puε

xi
dt+ εuε

xixj
dw

j
t

= Dxi
H dt+ εuε

xixj
dw

j
t ,

where in the last equality we used identity (4.9). Thus, (xε,pε) satisfies the following stochastic

version of the Hamiltonian dynamics (1.1):











dxε = −DpH(xε,pε) dt+ ε dwt,

dpε = DxH(xε,pε) dt+ εD2
xxu

ε dwt.

(3.3)

We are now going to study the behavior of the solutions uε of equation (2.1) along the trajectory

xε(t). Thanks to the Itô formula and relations (3.3) and (2.1):

duε(xε(t)) = Dxu
εdxε +

ε2

2
∆uε dt = −Lε,Puεdt+ εDxu

ε dwt

=
(

H −H
ε
−Dxu

εDpH
)

dt+ εDxu
ε dwt. (3.4)
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Using Dynkin’s formula in (3.4) we obtain

E
(

uε(xε(T )) − uε(xε(0))
)

= E

[

∫ T

0

(

H −H
ε
−Dxu

εDpH
)

dt

]

.

We observe that in the convex case, since the Lagrangian L is related with the Hamiltonian by

the relation

L = p ·DpH −H,

we have

uε(xε(0)) = E

[

∫ T

0

(L+H
ε
) dt+ uε(xε(T ))

]

.

3.1. Phase space measures. We will encode the asymptotic behaviour of the trajectories by

considering ergodic averages. More precisely, we associate to every trajectory (xε(·),pε(·)) of

(3.3) a probability measure µε ∈ P(Tn × R
n) defined by

∫

Tn×Rn

φ(x, p) dµε(x, p) := lim
T→∞

1

T
E

[

∫ T

0

φ(xε(t),pε(t)) dt

]

, (3.5)

for every φ ∈ Cc(T
n ×R

n). In the expression above, the definition makes sense provided the limit

is taken over an appropriate subsequence. Moreover, no uniqueness is asserted, since by choosing

a different subsequence one can in principle obtain a different limit measure µε. Then, using

Dynkin’s formula we have, for every φ ∈ C2
c (Tn × R

n),

E [φ(xε(T ),pε(T )) − φ(xε(0),pε(0))] = E

[

∫ T

0

(

Dpφ ·DxH −Dxφ ·DpH
)

dt

]

+ E

[

∫ T

0

(ε2

2
φxixi

+ ε2uε
xixj

φxipj
+
ε2

2
uε

xixk
uε

xixj
φpkpj

)

dt

]

. (3.6)

Dividing last relation by T and passing to the limit as T → +∞ (along a suitable subsequence)

we obtain

∫

Tn×Rn

{φ,H} dµε +

∫

Tn×Rn

[

ε2

2
φxixi

+ ε2uε
xixj

φxipj
+
ε2

2
uε

xixk
uε

xixj
φpkpj

]

dµε = 0. (3.7)

3.2. Projected measure. We define the projected measure θµε ∈ P(Tn) in the following way:

∫

Tn

ϕ(x) dθµε (x) :=

∫

Tn×Rn

ϕ(x) dµε(x, p), ∀ϕ ∈ C(Tn).

Using test functions that do not depend on the variable p in the previous definition we conclude

from identity (3.7) that

∫

Tn

DpH ·Dxϕ dθµε =
ε2

2

∫

Tn×Rn

∆ϕdθµε , ∀ϕ ∈ C2(Tn). (3.8)
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3.3. PDE Approach. The measures µε and θµε can be defined also by using standard PDE

methods from (3.8). Indeed, given uε we can consider the PDE

ε2

2
∆θε + div (DpH(x,Dxu

ε) θε) = 0,

which admits a unique non-negative solution θε with

∫

Tn

θε(x) dx = 1,

since it is not hard to see that 0 is the principal eigenvalue of the following elliptic operator in

C2(Tn):

v 7−→ −
ε2

2
∆v − div(DpH(x,Dxu

ε) v).

Then µε can be defined as the unique measure such that

∫

Tn×Rn

ψ(x, p) dµε(x, p) =

∫

Tn

ψ(x,Dxu
ε(x)) dθε(x),

for every ψ ∈ Cc(T
n ×R

n). Finally, identity (3.7) requires some work but can also be proved in a

purely analytic way.

4. Uniform estimates

In this section we derive several estimates that will be useful when passing to the limit as ε→ 0.

We will use here the same techniques as in [Eva] and [Tra].

Proposition 4.1. We have the following estimates:

ε2
∫

Tn

|D2
xxu

ε|2 dθµε ≤ C, (4.1)

ε2
∫

Tn

|D2
Pxu

ε|2 dθµε ≤

∫

Tn

|DPu
ε|2 dθµε +

∫

Tn

|DpH −DPH
ε
|2 dθµε , (4.2)

ε2
∫

Tn

|Duε
xixi

|2 dθµε ≤ C

(

1 +

∫

Tn

|D2
xxu

ε|3 dθµε

)

, i = 1, . . . , n. (4.3)

In addition, if H is uniformly convex in p, inequalities (4.1) and (4.2) can be improved to:

∫

Tn

|D2
xxu

ε|2 dθµε ≤ C, (4.4)

∫

Tn

|D2
Pxu

ε|2 dθµε ≤ C trace (D2
PPH

ε
), (4.5)

respectively. Here C denotes a positive constant independent of ε.

Remark 4.2. Estimate (4.4) was already proven in [Eva] and [Tra].
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To prove the proposition we first need an auxiliary lemma. In the following, we denote by

β either a direction in R
n (i.e. β ∈ R

n with |β| = 1), or a parameter (e.g. β = Pi for some

i ∈ {1, . . . , n}). When β = Pi for some i ∈ {1, . . . , n} the symbols Hβ and Hββ have to be

understood as Hpi
and Hpipi

, respectively.

Lemma 4.3. We have

ε2
∫

Tn

|Dxu
ε
β |

2 dθµε = 2

∫

Tn

uε
β(H

ε

β −Hβ) dθµε , (4.6)

∫

Tn

(H
ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppHDxu
ε
β ·Dxu

ε
β) dθµε = 0, (4.7)

ε2
∫

Tn

|Dxu
ε
ββ|

2 dθµε = 2

∫

Tn

uε
ββ(H

ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β dθµε .

(4.8)

Proof. By differentiating equation (2.1) with respect to β and recalling Definition 2.2 we get

Lε,Puε
β = H

ε

β −Hβ , (4.9)

so that

1

2
Lε,P (|uε

β|
2) = uε

βL
ε,Puε

β −
ε2

2
|Dxu

ε
β|

2 = uε
β(H

ε

β −Hβ) −
ε2

2
|Dxu

ε
β|

2.

Integrating w.r.t. θµε and recalling (3.8) we get (4.6).

To prove (4.7), we differentiate (4.9) w.r.t. β obtaining

Lε,Puε
ββ = H

ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β . (4.10)

Integrating w.r.t. θµε and recalling (3.8) equality (4.7) follows. Finally, using (4.10)

1

2
Lε,P (|uε

ββ|
2) = uε

ββL
ε,Puε

ββ −
ε2

2
|Dxu

ε
ββ|

2

= uε
ββ(H

ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β) −

ε2

2
|Dxu

ε
ββ|

2.

Once again, we integrate w.r.t. θµε and use (3.8) to get (4.8). �

We can now proceed to the proof of Proposition 4.1.

Proof of Proposition 4.1. Summing up the n identities obtained from (4.6) with β = x1, . . . , xn

respectively, we have

ε2
∫

Tn

|D2
xxu

ε|2 dθµε = −2

∫

Tn

Dxu
ε ·DxH dθµε .

Thanks to Remark 2.3, (4.1) follows. Analogously, relation (4.2) is obtained by summing up (4.6)

with β = P1, P2, . . . , Pn, which yields

ε2
∫

Tn

|D2
Pxu

ε|2 dθµε = 2

∫

Tn

DPu
ε ·

[

DPH
ε
−DpH

]

dθµε .
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Let us show (4.3). Thanks to (4.8)

ε2
∫

Tn

|Dxu
ε
xixi

|2 dθµε

= −2

∫

Tn

uε
xixi

(Hxixi
+ 2DpHxi

·Dxu
ε
xi

+D2
ppH : Dxu

ε
xi

⊗Dxu
ε
xi

) dθµε .

Since the functions uε are uniformly Lipschitz, we have

|Hxixi
|, |DpHxi

|, |D2
ppH | ≤ C, on the support of θµε .

Hence,

ε2
∫

Tn

|Dxu
ε
xixi

|2 dθµε ≤ C

[
∫

Tn

|D2
xxu

ε| dθµε +

∫

Tn

|D2
xxu

ε|2 dθµε +

∫

Tn

|D2
xxu

ε|3 dθµε

]

≤ C

(

1 +

∫

Tn

|D2
xxu

ε|3 dθµε

)

.

Finally, assume that H is uniformly convex. Thanks to (4.7) for every i = 1, . . . , n

0 =

∫

Tn

(Hxixi
+ 2DpHxi

·Dxu
ε
xi

+D2
ppHDxu

ε
xi

·Dxu
ε
xi

) dθµε

≥

∫

Tn

(

Hxixi
+ 2DpHxi

·Dxu
ε
xi

)

dθµε + α‖Dxu
ε
xi
‖2

L2(Tn;dθµε),

for some α > 0. Thus, using Cauchy’s and Young’s inequalities, for every η ∈ R

α‖Dxu
ε
xi
‖2

L2(Tn;dθµε ) ≤ −

∫

Tn

Hxixi
dθµε + 2‖DpHxi

‖L2(Tn;dθµε)‖Dxu
ε
xi
‖L2(Tn;dθµε )

≤ −

∫

Tn

Hxixi
dθµε +

1

η2
‖DpHxi

‖2
L2(Tn;dθµε ) + η2‖Dxu

ε
xi
‖2

L2(Tn;dθµε ).

Finally,

(α− η2)‖Dxu
ε
xi
‖2

L2(Tn;dθµε ) ≤ −

∫

Tn

Hxixi
dθµε +

1

η2
‖DpHxi

‖2
L2(Tn;dθµε).

Choosing η2 < α we get (4.4).

Let i ∈ {1, . . . , n} and let us integrate w.r.t. θµε relation (4.10) with β = Pi:

0 =

∫

Tn

(H
ε

PiPi
−Hpipi

− 2DpHpi
·Dxu

ε
Pi

−D2
ppHDxu

ε
Pi

·Dxu
ε
Pi

) dθµε .

Since D2
ppH is positive definite,

α

∫

Tn

|Dxu
ε
Pi
|2 dθµε ≤

∫

Tn

(H
ε

PiPi
−Hpipi

− 2DpHpi
·Dxu

ε
Pi

) dθµε

≤

∫

Tn

(H
ε

PiPi
− 2DpHpi

·Dxu
ε
Pi

) dθµε .

Using once again Cauchy’s and Young’s inequalities and summing up with respect to i = 1, . . . , n

(4.5) follows. �
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5. Existence of Mather measures and dissipation measures

We now look at the asymptotic behavior of the measures µε as ε → 0, proving existence of

Mather measures. The main result of the section is the following.

Theorem 5.1. Let H : T
n × R

n → R be a smooth function satisfying conditions (H1)–(H3), and

let {µε}ε>0 be the family of measures defined in Section 3. Then there exist a Mather measure µ

and a nonnegative, symmetric n× n matrix (mkj)k,j=1,...n of Borel measures such that

µε ∗
⇀ µ in the sense of measures up to subsequences, (5.1)

and
∫

Tn×Rn

{φ,H} dµ+

∫

Tn×Rn

φpkpj
dmkj = 0, ∀φ ∈ C2

c (Tn × R
n). (5.2)

Moreover,

suppµ and suppm are compact. (5.3)

We call the matrix mkj the dissipation measure.

Proof. First of all, we notice that since we have a uniform (in ε) Lipschitz estimate for the functions

uε, there exists a compact set K ⊂ T
n × R

n such that

suppµε ⊂ K, ∀ ε > 0.

Moreover, up to subsequences, we have (5.1), that is

lim
ε→0

∫

Tn×Rn

φdµε →

∫

Tn×Rn

φdµ,

for every function φ ∈ Cc(T
n×R

n), for some probability measure µ ∈ P(Tn×R
n), and this proves

(5.1). From what we said, it follows that

suppµ ⊂ K.

To show (5.2), we need to pass to the limit in relation (3.7). First, let us focus on the second term

of the aforementioned formula:

∫

Tn×Rn

[

ε2

2
φxixi

+ ε2uε
xixj

φxipj
+
ε2

2
uε

xixk
uε

xixj
φpkpj

]

dµε. (5.4)

By the bounds of the previous section,

lim
ε→0

∫

Tn×Rn

[

ε2

2
φxixi

+ ε2uε
xixj

φxipj

]

dµε = 0.
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However, as in [Eva], the last term in (5.4) does not vanish in the limit. In fact, through a

subsequence, for every k, j = 1, . . . , n we have

ε2

2

∫

Tn×Rn

uε
xixk

uε
xixj

ψ(x, p) dµε(x, p) −→

∫

Tn×Rn

ψ(x, p) dmkj(x, p) ∀ψ ∈ Cc(T
n × R

n),

for some nonnegative, symmetric n × n matrix (mkj)k,j=1,...n of Borel measures. Passing to the

limit as ε → 0 in (3.7) condition (5.2) follows. From Remark 3.1 we infer that suppm ⊂ K, so

that (5.3) follows.

Let us show that µ satisfies conditions (a)–(c) with P = 0. As in [Eva] and [Tra], consider

∫

Tn×Rn

(

H(x, p) −H
ε
)2

dµε(x, p) =
ε4

4

∫

Tn×Rn

|∆uε(x)|2 dµε(x, p) −→ 0

as ε → 0, where we used (2.1) and (4.1). Therefore, (a) follows. Let us consider relation (3.7),

and let us choose as test function φ = ϕ(uε). We get

∫

Tn×Rn

ϕ′(uε)Dxu
ε ·DpH dµε + ε2

∫

Tn×Rn

(

ϕ′(uε)uε
xixi

+ ϕ′′(uε)(uε
xi

)2
)

dµε = 0.

Passing to the limit as ε→ 0, we have

∫

Tn×Rn

ϕ′(u) p ·DpH dµ = 0.

Choosing ϕ(u) = u we get (b). Finally, relation (c) follows by simply choosing in (5.2) test

functions φ that do not depend on the variable p.

�

We conclude the section with a useful identity that will be used in Section 9.

Proposition 5.2. For every λ ∈ R

∫

Tn×Rn

eλH
(

λHpk
Hpj

+Hpkpj

)

dmkj = 0. (5.5)

Proof. First recall that for any function f : R → R of class C1

{H, f(H)} = 0,

and, furthermore, for any ψ ∈ C1(Tn × R
n)

{H,ψf(H)} = {H,ψ} f(H).

Let now λ ∈ R. By choosing in (5.2) φ = ψf(H) with f(z) = eλz and ψ ≡ 1 we conclude the

proof. �
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6. Support of the dissipation measures

We discuss now in a more detailed way the structure of suppm.

Proposition 6.1. We have

suppm ⊂
⋃

x∈Tn

coG(x) =: K, (6.1)

where with coG(x) we denote the convex hull in R
n of the set G(x), and

G(x) := suppµ ∩ {(x, p) ∈ T
n × R

n : x = x}, x ∈ T
n.

Remark 6.2. We stress that the convex hull of the set G(x) is taken only with respect to the

variable p, while the closure in the right-hand side of (6.1) is taken in all T
n × R

n.

Sketch of the proof. For τ > 0 sufficiently small, we can choose an open set Kτ in T
n × R

n such

that K ⊂ Kτ , dist (∂Kτ ,K) < τ , and Kτ (x) := {p ∈ R
n : (x, p) ∈ Kτ} is convex for every x ∈ T

n.

Also, we can find a smooth open set K2τ ⊂ T
n × R

n such that, for every x ∈ T
n, K2τ (x) :=

{p ∈ R
n : (x, p) ∈ K2τ} is strictly convex, K2τ (x) ⊃ Kτ (x), and dist (∂K2τ (x),Kτ (x)) < τ .

Finally, we can construct a smooth function ητ : T
n × R

n → R such that for every x ∈ T
n:

• ητ (x, p) = 0 for p ∈ Kτ (x).

• p 7→ ητ (x, p) is convex.

• p 7→ ητ (x, p) is uniformly convex on R
n \K2τ (x).

In this way, ητ (x, p) = 0 on Kτ ⊃ K ⊃ suppµ. Therefore

∫

Tn×Rn

{ητ , H}dµ = 0.

Combining with (5.2),

∫

Tn×Rn

(ητ )pkpj
dmkj = 0,

which implies suppm ⊂
⋃

x∈Tn K2τ (x). Letting τ → 0, we finally get the desired result. �

As a consequence, we have the following corollary.

Corollary 6.3.

suppm ⊂ co{H(x, p) ≤ H}.
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7. Averaging

In this section we prove some additional estimates concerning averaging with respect to the

process (1.16). When necessary, to avoid confusion we will explicitly write the dependence on P .

Let us start with a definition.

Definition 7.1. We define the rotation number ρ0 associated to the measures µ and m as

ρ0 := lim
ε→0

lim
T→+∞

E

[

xε(T ) − xε(0)

T

]

,

where the limit is taken along the same subsequences as in (3.5) and (5.1).

The following theorem gives a formula for the rotation number.

Theorem 7.2. There holds

ρ0 =

∫

Tn×Rn

DpH dµ. (7.1)

Moreover, defining for every ε > 0 the variable Xε := xε +DPu
ε(xε), we have

E

[

Xε(T ) − Xε(0)

T

]

= −DPH
ε
(P ), (7.2)

and

lim
T→+∞

E







(

Xε(T ) − Xε(0) +DPH
ε
(P )T

)2

T






≤ 2n ε2 + 2

∫

Tn

|DPu
ε|2 dθµε

+ 2

∫

Tn

|DpH −DPH
ε
|2 dθµε .

Proof. Choosing φ(x) = xi with i = 1, 2, 3 in (3.6) we obtain

E

[

xε(T ) − xε(0)

T

]

= −E

[

1

T

∫ T

0

DpH(xε(t),pε(t)) dt

]

.

Passing to the limit as T → +∞

ρε := lim
T→+∞

E

[

xε(T ) − xε(0)

T

]

=

∫

Tn×Rn

DpH dµε.

We get (7.1) by letting ε go to zero.

To prove (7.2), recalling Itô’s formula (3.2) we compute

dXε = dxε +D2
Pxu

ε(xε) dxε +
ε2

2
DP ∆uε(xε) dt

=

(

−DpH(xε,pε)(I +D2
Pxu

ε(xε)) +
ε2

2
DP ∆uε(xε)

)

dt+ ε(I +D2
Pxu

ε(xε)) dwt,

where in the last equality we used (3.1). By differentiating equation (2.1) w.r.t. P we obtain

−DpH(xε,pε)(I +D2
Pxu

ε(xε)) +
ε2

2
DP ∆uε(xε) = −DPH

ε
(P ), (7.3)
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so that

dXε = −DPH
ε
(P ) dt+ ε(I +D2

Pxu
ε(xε)) dwt. (7.4)

Using the fact that

E

[

∫ T

0

ε(I +D2
Pxu

ε(xε)) dwt

]

= 0,

(7.2) follows.

Finally, using once again Itô’s formula (3.2) and relation (7.4) we can write

d

[

(

Xε(t) − Xε(0) +DPH
ε
(P )t

)2
]

= 2
(

Xε(t) − Xε(0) +DPH
ε
(P )t

)

(dXε +DPH
ε
(P ) dt) + ε2|I +D2

Pxu
ε(xε)|2 dt

= 2 ε
(

Xε(t) − Xε(0) +DPH
ε
(P )t

)

(I +D2
Pxu

ε(xε)) dwt + ε2|I +D2
Pxu

ε(xε)|2 dt.

Hence,

E

[

(

Xε(T ) − Xε(0) +DPH
ε
(P )T

)2
]

= E

[

∫ T

0

2 ε
(

Xε(t) − Xε(0) +DPH
ε
(P )t

)

(I +D2
Pxu

ε(xε)) dwt +

∫ T

0

ε2|I +D2
Pxu

ε(xε)|2 dt

]

= E

[

∫ T

0

ε2|I +D2
Pxu

ε(xε)|2 dt

]

.

Dividing by T and letting T go to infinity

lim
T→+∞

E







(

Xε(T ) − Xε(0) +DPH
ε
(P )T

)2

T






= lim

T→+∞
E

[

∫ T

0

ε2|I +D2
Pxu

ε(xε)|2

T
dt

]

= ε2
∫

Tn

|I +D2
Pxu

ε|2 dθµε ≤ 2n ε2 + 2 ε2
∫

Tn

|D2
Pxu

ε|2 dθµε

≤ 2n ε2 + 2

∫

Tn

|DPu
ε|2 dθµε + 2

∫

Tn

|DpH −DPH
ε
|2 dθµε ,

where we used (4.2).

�

We conclude the section with a proposition which shows in a formal way how much relation

(1.3) is “far” from being an actual change of variables. Let us set wε(x, P ) := P · x + uε(x, P ),

where uε(x, P ) is a Z
n-periodic viscosity solution of (1.16), and let k ∈ Z

n.

Proposition 7.3. The following inequality holds:

(k ·DPH
ε
)

∫

Tn

e2πik·DP wε

dθµε

≤ 2π|k|2
(

ε2 +

∫

Tn

|DPu
ε|2 dθµε +

∫

Tn

|DpH −DPH
ε
|2 dθµε

)

.
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Proof. Recalling identity (3.8) with

ϕ(x) = e2πik·DP wε(x,P )

we obtain

0 =

∫

Tn

Lε,P e2πik·DP wε

dθµε

= 2πi

∫

Tn

e2πik·DP wε [

Lε,P (k ·DPw
ε) − πiε2|Dx(k ·DPw

ε)|2
]

dθµε

= 2πi

∫

Tn

e2πik·DP wε
[

k ·DPH
ε
− πiε2|Dx(k ·DPw

ε)|2
]

dθµε ,

where we used (4.9) and the fact that wε = P · x+ uε. Thus, thanks to estimate (4.2)

∣

∣

∣

∣

(k ·DPH
ε
)

∫

Tn

e2πik·DP wε

dθµε

∣

∣

∣

∣

≤ πε2
∫

Tn

|Dx(k ·DPw
ε)|2 dθµε

≤ 2π|k|2
(

ε2 + ε2
∫

Tn

|D2
Pxu

ε|2 dθµε

)

≤ 2π|k|2
(

ε2 +

∫

Tn

|DPu
ε|2 dθµε +

∫

Tn

|DpH −DPH
ε
|2 dθµε

)

.

�

Remark 7.4. When H is uniformly convex, thanks to (4.5) the last chain of inequalities becomes

∣

∣

∣

∣

(k ·DPH
ε
)

∫

Tn

e2πik·DP wε

dθµε

∣

∣

∣

∣

≤ C|k|2ε2
(

1 + trace (D2
PPH

ε
)
)

.

Thus, if trace (D2
PPH

ε
) ≤ C, the right-hand side vanishes in the limit as ε → 0, and we recover

[EG01, Theorem 9.1].

8. Compensated compactness

In this section, some analogs of compensated compactness and Div-Curl lemma introduced by

Murat and Tartar in the context of conservation laws (see [Eva90], [Tar79]) will be studied, in

order to better understand the support of the Mather measure µ. Similar analogs are also consid-

ered in [Eva], to investigate the shock nature of non-convex Hamilton-Jacobi equations.

What we are doing here is quite different from the original Murat and Tartar work (see [Tar79]),

since we work on the support of the measure θµε . Besides, our methods work on arbitrary di-

mensional space R
n while usual compensated compactness and Div-Curl lemma in the context of

conservation laws can only deal with the case n = 1, 2. However, we can only derive one single

relation and this is not enough to characterize the support of µ as in the convex case. To avoid

confusion, when necessary we will explicitly write the dependence on the P variable.
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Let φ be a smooth function from T
n×R

n → R, and let ρε = {φ,H}θµε +
ε2

2
φpjpk

uε
xixj

uε
xixk

θµε .

By (3.7) and (4.1), there exists C > 0 such that

∫

Tn

|ρε|dx ≤ C.

So, up to passing to some subsequence, if necessary, we may assume that ρε ∗
⇀ ρ as a (signed)

measure.

By (5.2), ρ(Tn) = 0. We have the following theorem.

Theorem 8.1. The following properties are satisfied:

(i) for every φ ∈ C(Tn × R
n)

∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ =

∫

Tn

u dρ; (8.1)

(ii) for every φ ∈ C(Tn × R
n) and for every η ∈ C1(Tn),

∫

Tn×Rn

DpH ·Dη φ(x, p) dµ =

∫

Tn

ηdρ. (8.2)

Proof. Let wε = φ(x, P +Dxu
ε). Notice first that

∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ = lim
ε→0

∫

Tn

DpH(x, P +Dxu
ε) ·Dxu

εwεdθµε .

Integrating by parts the right hand side of the above equality we obtain

∫

Tn

DpH(x, P +Dxu
ε) ·Dxu

εwεdθµε = −

∫

Tn

uεdiv(DpHw
εθµε)dx

= −

∫

Tn

uε(div(DpHθµε)wε +DpH ·Dxw
εθµε)dx =

∫

Tn

uε(
ε2

2
∆θµεwε −DpH ·Dxw

εθµε)dx.

After several computations, by using (2.1) we get

DpH ·Dxw
ε = −{φ,H} +

ε2

2
φpi

∆uε
xi
.

Hence

ε2

2
∆θµεwε −DpH ·Dxw

εθµε =
ε2

2
∆θµεwε + {φ,H}θµε −

ε2

2
φpi

∆uε
xi
θµε

=
ε2

2
∆wεθµε +

ε2

2
(div(Dxθµεwε) − div(Dxw

εθµε)) + {φ,H}θµε −
ε2

2
φpi

∆uε
xi
θµε

=
ε2

2
(φpjpk

uε
xixj

uε
xixk

+φpjxi
uε

xjxi
+ φxixi

+ φpi
∆uε

xi
)θµε

+
ε2

2
(div(Dxθµεwε) − div(Dxw

εθµε)) + {φ,H}θµε −
ε2

2
φpi

∆uε
xi
θµε

=ρε +
ε2

2
φxixi

θµε+
ε2

2
φpjxi

uε
xjxi

+
ε2

2
(div(Dxθµεwε) − div(Dxw

εθµε)).
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Therefore
∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ

= lim
ε→0

∫

Tn

uε

[

ρε +
ε2

2
φxixi

θµε+
ε2

2
φpjxi

uε
xjxi

+
ε2

2
(div(Dxθµεwε) − div(Dxw

εθµε))

]

dx. (8.3)

Since uε converges uniformly to u,

lim
ε→0

∫

Tn

uερεdx =

∫

Tn

u dρ.

The second term in the right hand side of (8.3) obviously converges to 0 as ε→ 0. The third term

also tends to 0 by (4.1).

Let’s look at the last term. We have
∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn

uε(div(Dxθµεwε)−div(Dxw
εθµε))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn

−Dxu
ε ·Dxθµεwε +Dxu

ε ·Dxw
εθµεdx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn

div(Dxu
εwε)θµε +Dxu

ε ·Dxw
εθµεdx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn

(∆uεwε + 2Dxu
ε ·Dxw

ε)θµεdx

∣

∣

∣

∣

≤ lim
ε→0

Cε2
∫

Tn

|D2
xxu

ε|θµεdx ≤ lim
ε→0

Cε = 0,

which implies (8.1). Relation (8.2) can be derived similarly. �

As a consequence, we have the following corollary.

Corollary 8.2. Let u(·, P ) be a classical solution of (1.2), and let µ be the corresponding Mather

measure given by Theorem 1.2. Then,

DpH · (p− P −Dxu) = 0 in suppµ.

Proof. By (8.1) and (8.2)
∫

Tn

DpH · (p− P −Dxu)φdµ = 0,

for all φ. Therefore, the conclusion follows. �

9. Examples

In this section, we study non-trivial examples where the Mather measure µ is invariant under

the Hamiltonian dynamics. Notice that, by (5.2), the Mather measure µ is invariant under the

Hamiltonian dynamics if and only if the dissipation measures (mkj) vanish. An example in Section

10 shows that this is not always guaranteed. As explained in [Eva], the dissipation measures mkj

record the jump of the gradient Dxu along the shock lines.

We investigate now under which conditions we still have the invariance property (1). We provide

some partial answers by studying several examples, which include the important class of strongly

quasiconvex Hamiltonians (see [FS05]).
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9.1. H is uniformly convex. There exists α > 0 so that D2
ppH ≥ α > 0.

Let λ = 0 in (5.5) then

0 =

∫

Tn×Rn

Hpkpj
dmkj ,

which implies mkj = 0 for all 1 ≤ k, j ≤ n. We then can follow the same steps as in [EG01] to get

that µ also satisfies (2).

9.2. Uniformly convex conservation law. Suppose that there exists F (p, x), strictly convex

in p, such that {F,H}=0. Then m = 0.

9.3. Some special non-convex cases. The cases we consider here are somehow variants of the

uniformly convex case.

Suppose there exists φ uniformly convex and a smooth real function f such that either φ = f(H)

or H = f(φ). Then, by (5.2) we have mkj = 0 for all k, j. In particular, if H = f(φ) with f

increasing, then H is quasiconvex.

One explicit example of the above variants is H(x, p) = (|p|2 + V (x))2, where V : T
n → R is

smooth and may take negative values. Then H(x, p) is not convex in p anymore. Anyway, we

can choose φ(x, p) = |p|2 + V (x), so that H(x, p) = (φ(x, p))2 and φ is uniformly convex in p.

Therefore, µ is invariant under the Hamiltonian dynamics.

9.4. The case when n = 1. Let’s consider the case H(x, p) = H(p) + V (x).

In this particular case, property (H3) implies that |H | → ∞ as |p| → +∞. Let us suppose that

lim
|p|→+∞

H(p) = +∞.

Assume also that there exists p0 ∈ R such that H ′(p) = 0 if and only if p = p0 and H ′′(p0) 6= 0.

Notice that H(p) does not need to be convex. Obviously, uniform convexity of H implies this

condition.

We will show that m11 = 0, which implies that µ is invariant under the Hamiltonian dynamics.

From our assumptions, we have that H ′(p) > 0 for p > p0, H
′(p) < 0 for p < p0 and hence

H ′′(p0) > 0. Then there exists a neighborhood (p0 − r, p0 + r) of p0 such that

H ′′(p) >
H ′′(p0)

2
, ∀ p ∈ (p0 − r, p0 + r).

And since the support of m11 is bounded, we may assume

supp(m11) ⊂ T × [−M,M ],
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for some M > 0 large enough. We can choose M large so that (p0 − r, p0 + r) ⊂ (−M,M).

Since |H ′(p)|2 > 0 for p ∈ [−M,M ] \ (p0 − r, p0 + r) and [−M,M ] \ (p0 − r, p0 + r) is compact,

there exists γ > 0 such that

|H ′(p)|2 ≥ γ > 0, ∀ p ∈ [−M,M ] \ (p0 − r, p0 + r).

Hence, by choosing λ≫ 0

λ|H ′(p)|2 +H ′′(p) ≥
H ′′(p0)

2
, ∀ p ∈ [−M,M ],

which shows m11 = 0 by (5.5).

9.5. Case in which there are more conserved quantities. Let’s consider

H(x, p) = H(p) + V (x1 + ...+ xn),

where V : T → R is smooth.

For k 6= j, define Φkj = pk − pj . It is easy to see that {H,Φkj} = 0 for any k 6= j.

Therefore {H, (Φkj)2} = 0 for any k 6= j.

For fixed k 6= j, let φ = (Φkj)2 in (5.2) then

2

∫

Tn×Rn

(mkk − 2mkj +mjj) dxdp = 0.

The matrix of dissipation measures (mkj) is non-negative definite, therefore mkk−2mkj +mjj ≥ 0.

Thus, mkk − 2mkj +mjj = 0 for any k 6= j.

Let ε ∈ (0, 1) and take ξ = (ξ1, ..., ξn), where ξk = 1 + ε, ξj = −1 and ξi = 0 otherwise. We have

0 ≤ mkjξkξj = (1 + ε)2mkk − 2(1 + ε)mkj +mjj = 2ε(mkk −mkj) + ε2mkk.

Dividing both sides of the inequality above by ε and letting ε→ 0,

mkk −mkj ≥ 0.

Similarly, mjj −mkj ≥ 0. Thus, mkk −mkj = mjj −mkj = 0 for all k 6= j.

Hence, there exists a non-negative measure m such that

mkj = m ≥ 0, ∀ k, j.

Therefore, (5.5) becomes

0 =

∫

Tn×Rn

eλH
(

λ
(

∑

j

Hpj

)2
+

∑

j,k

Hpjpk

)

dm.

We here point out two cases which guarantee that m = 0. In the first case, assuming additionally

that H(p) = H1(p1) + ...Hn(pn) and H2, ..., Hn are convex, but not necessarily uniformly convex

(their graphs may have flat regions) and H1 is uniformly convex, then we still have m = 0.
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In the second case, suppose that H(p) = H(|p|), where H : [0,∞) → R is smooth, H ′(0) =

0, H ′′(0) > 0 and H ′(s) > 0 for s > 0. Notice that H is not necessarily convex. This example is

similar to the example above when n = 1. Then for p 6= 0

λ
(

∑

j

Hpj

)2
+

∑

j,k

Hpjpk
= n

H ′

|p|
+

(p1 + ...+ pn)2

|p|2

(

λ(H ′)2 +H ′′ −
H ′

|p|

)

,

and at p = 0

λ
(

∑

j

Hpj
(0)

)2
+

∑

j,k

Hpjpk
(0) = nH ′′(0) > 0.

So, we can choose r > 0, small enough, so that for |p| < r

λ
(

∑

j

Hpj

)2
+

∑

j,k

Hpjpk
>
n

2
H ′′(0) > 0.

Since the support of m is bounded, there exists M > 0 large enough

suppm ⊂ T
n × {p : |p| ≤M}.

Since mins∈[r,M ]H
′(s) > 0, by choosing λ≫ 0, we finally have for |p| ≤M

λ
(

∑

j

Hpj

)2
+

∑

j,k

Hpjpk
≥ β > 0,

for β =
n

2
min

{

H ′′(0),
mins∈[r,M ]H

′(s)

M

}

.

Thus m = 0, and therefore µ is invariant under the Hamiltonian dynamics.

9.6. Quasiconvex Hamiltonians: a special case. Let’s consider

H(x, p) = H(|p|) + V (x),

where H : [0,∞) → R is smooth, H ′(0) = 0, H ′′(0) > 0 and H ′(s) > 0 for s > 0.

Once again, notice that H is not necessarily convex. We here will show that (mjk) = 0. For p 6= 0

then

(λHpj
Hpk

+Hpjpk
)mjk =

H ′

|p|
(m11 + ...+mnn) +

(

λ(H ′)2 +H ′′ −
H ′

|p|

)

pjpkmjk

|p|2
.

For any symmetric, non-negative definite matrix m = (mjk) we have the following inequality

0 ≤ pjpkmjk ≤ |p|2 tracem = |p|2(m11 + ...+mnn).

There exists r > 0 small enough so that for |p| < r

H ′

|p|
>

3

4
H ′′(0);

∣

∣

∣

∣

H ′

|p|
−H ′′

∣

∣

∣

∣

<
1

4
H ′′(0).

Hence for |p| < r

(λHpj
Hpk

+Hpjpk
)mjk ≥

1

2
H ′′(0)(m11 + ...+mnn).
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Since the support of (mjk) is bounded, there exists M > 0 large enough

suppmjk ⊂ T
n × {p : |p| ≤M}, ∀ j, k.

Since mins∈[r,M ]H
′(s) > 0, by choosing λ≫ 0 we finally have for |p| ≤M

(λHpj
Hpk

+Hpjpk
)mjk ≥ β(m11 + ...+mnn),

for β = min

{

H ′′(0)

2
,
mins∈[r,M ]H

′(s)

M

}

> 0.

We then must have m11 + ...mnn = 0, which implies (mjk) = 0. Thus, µ is invariant under the

Hamiltonian dynamics in this case.

We now derive the property (2) of µ rigorously. Since the support of µ is also bounded, we

can use a similar procedure as above to show that φ(x, p) = eλH(x,p) is uniformly convex in

T
n × B̄(0,M) ⊃ supp(µ) for some λ large enough.

More precisely,

φpjpk
ξjξk ≥ eλHβ|ξ|2, ξ ∈ R

n, (x, p) ∈ T
n × B̄(0,M),

for β chosen as above. Then doing the same steps as in [EG01], we get µ satisfies (2).

There is another simple approach to prove (2) by using the properties we get in this non-convex

setting. Let’s just assume that u is C1 on the support of µ.

By Remark 8.2, it follows that DpH.(p − P −Du) = 0 on support of µ. And since DpH(x, p) =

H ′(|p|)
p

|p|
for p 6= 0 and H ′(|p|) > 0, we then have p.(p − P −Du) = 0 on support of µ. Hence

|p|2 = p.(P +Du) on supp(µ).

Besides, H(x, p) = H(x, P + Du(x)) = H(P ) on supp(µ) by property (a) of Mather measure

and the assumption that u is C1 on supp(µ). It follows that H(|p|) = H(|P +Du|). Therefore,

|p| = |P +Du| by the fact that H(s) is strictly increasing.

So we have |p|2 = p.(P + Du) and |p| = |P + Du| on supp(µ), which implies p = P + Du on

supp(µ), which is the property (2) of µ.

9.7. Quasiconvex Hamiltonians. We treat now the general case of uniformly quasiconvex

Hamiltonians. We start with a definition.

Definition 9.1. A smooth set A ⊂ R
n is said to be strongly convex with convexity constant

c if there exists a positive constant c with the following property. For every p ∈ ∂A there

exists an orthogonal coordinate system (q1, . . . , qn) centered at p, and a coordinate rectangle

R = (a1, b1)× . . .×(an, bn) containing p such that Tp∂A = {qn = 0} and A ∩ R ⊂ {q ∈ R :

c
∑n−1

i=1 |qi|
2 ≤ qn ≤ bn}.
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The previous definition can be stated in the following equivalent way, by requiring that for

every p ∈ ∂A

(Bpv) · v ≥ c|v|2 for every v ∈ Tp∂A,

where Bp : Tp∂A× Tp∂A→ R is the second fundamental form of ∂A at p.

We consider in this subsection strongly quasiconvex Hamiltonians. That is, we assume that

there exists c > 0 such that

(j) {p ∈ T
n : H(x, p) ≤ a} is strongly convex with convexity constant c for every a ∈ R and

for every x ∈ T
n.

In addition, we suppose that there exists α ∈ R such that for every x ∈ T
n

(jj) There exists unique p ∈ R
n s.t. DpH(x, p) = 0, and

D2
ppH(x, p) ≥ α.

Notice that the special case presented in Section 9.6, where the level sets are spheres, fits into this

definition. We will show that under hypotheses (j)–(jj) there exists λ > 0 such that

λDpH ⊗DpH +D2
ppH is positive definite.

From this, thanks to relation (5.5), we conclude that mkj = 0. First, we state a well-known result.

We give the proof below, for the convenience of the reader.

Proposition 9.2. Let (j)–(jj) be satisfied, and let (x∗, p∗) ∈ T
n×R

n be such that DpH(x∗, p∗) 6= 0.

Then

DpH(x∗, p∗) ⊥ Tp∗C and D2
ppH(x∗, p∗) = |DpH(x∗, p∗)|Bp∗ , (9.1)

where Bp∗ denotes the second fundamental form of the level set

C := {p ∈ R
n : H(x∗, p) = H(x∗, p∗)}

at the point p∗.

Proof. By the smoothness of H , there exists a neighborhood U ⊂ R
n of p∗ and n smooth func-

tions ν : U → Sn−1, τi : U → Sn−1, i = 1, . . . , n − 1, such that for every p ∈ U the vec-

tors {τ1(p), . . . , τn−1(p), ν(p)} are a smooth orthonormal basis of R
n, and for every p ∈ U ∩ C

τ1(p), . . . , τn−1(p) ∈ TpC. Let now i, j ∈ {1, . . . , n− 1} be fixed. Since

H(x∗, p) = a ∀ p ∈ U,

differentiating w.r.t τi(p) we have

DpH(x∗, p) · τi(p) = 0 ∀ p ∈ U ∩ C. (9.2)
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Computing last relation at p = p∗ we get that DpH(x∗, p∗) ⊥ Tp∗C. Differentiating (9.2) along

the direction τj(p) and computing at p = p∗

(

D2
ppH(x∗, p∗)τj(p

∗)
)

· τi(p
∗) +DpH(x∗, p∗) · (Dpτi(p

∗)τj(p
∗)) = 0. (9.3)

Notice that by differentiating along the direction τj(p) the identity τi(p) · ν(p) = 0 and computing

at p∗ we get

(Dpτi(p
∗)τj(p

∗)) · ν(p∗) = − (Dpν(p
∗)τj(p

∗)) · τi(p
∗).

Plugging last relation into (9.3), and choosing ν(p∗) oriented in the direction of DpH(x∗, p∗) we

have

(

D2
ppH(x∗, p∗)τj(p

∗)
)

· τi(p
∗) = −|DpH(x∗, p∗)| (Dpτi(p

∗)τj(p
∗)) · ν(p∗)

= |DpH(x∗, p∗)| (Dpν(p
∗)τj(p

∗)) · τi(p
∗) = |DpH(x∗, p∗)| (Bp∗τj(p

∗)) · τi(p
∗).

�

For every vector v ∈ R
n, we consider the decomposition

v = v‖v
‖ + v⊥v⊥,

with v‖, v⊥ ∈ R, |v‖| = |v⊥| = 1, v‖ ∈ Tp∗C, and v⊥ ∈ (Tp∗C)⊥. By hypothesis (jj) and by the

smoothness of H , there exist τ > 0 and α′ ∈ (0, α), independent of (x, p), such that

D2
ppH(x, p) ≥ α′ for every (x, p) ∈ {|DpH | ≤ τ}.

Let us now consider two subcases:

Case 1: (x, p) ∈ {|DpH | ≤ τ}

First of all, notice that

λDpH ⊗DpHv · v = λ|DpH · v|2 = λ v2
⊥ |DpH |2.

Then, we have

(λDpH ⊗DpH +D2
ppH)v · v = λ v2

⊥ |DpH |2 + (D2
ppHv · v) ≥ α′|v|2.

Case 2: (x, p) ∈ {|DpH | > τ}

In this case we have

D2
ppHv‖ · v‖ ≥ c|DpH |,
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which then yields

D2
ppHv · v = v2

‖(D
2
ppHv‖ · v‖) + 2v‖v⊥(D2

ppHv‖ · v⊥) + v2
⊥(D2

ppHv⊥ · v⊥)

≥ c v2
‖|DpH | + 2v‖v⊥(D2

ppHv‖ · v⊥) + v2
⊥(D2

ppHv⊥ · v⊥).

By (5.3) we have

|D2
ppH | ≤ C along suppµ.

Thus,

(λDpH ⊗DpH +D2
ppH)v · v

≥ λ v2
⊥ |DpH |2 + c v2

‖ |DpH | + 2v‖v⊥(D2
ppHv‖ · v⊥) + v2

⊥(D2
ppHv⊥ · v⊥)

≥ v2
⊥

(

λ |DpH |2 − C
)

− 2C|v‖||v⊥| + c v2
‖ |DpH |

> v2
⊥

(

λ τ2 − C
(

1 +
1

η2

))

+ v2
‖(c τ − Cη2 ).

Choosing first η2 < c τ
C

, and then

λ >
C

τ2

(

1 +
1

η2

)

,

we obtain

(λDpH ⊗DpH +D2
ppH)v · v ≥ α′′|v|2,

for some α′′ > 0, independent of (x, p).

General Case

In the general case, we have

(λDpH ⊗DpH +D2
ppH)v · v ≥ γ|v|2,

where γ := min{α′, α′′}.

Similar to the case above, we basically have that φ(x, p) = eλH(x,p) is uniformly convex on the

support of µ for λ large enough. Hence, by repeating again the same steps as in [EG01], we finally

get that µ satisfies (2).

10. A one dimensional example of nonvanishing dissipation measure m

In this section we sketch a one dimensional example in which the dissipation measure m does

not vanish. We assume that the zero level set of the Hamiltonian H : T × R → R is the smooth

curve in Figure 1, and that everywhere else in the plane (x, p) the signs of H are as shown in the

picture. In addition, H can be constructed in such a way that (DxH,DpH) 6= (0, 0) for every

(x, p) ∈ {(x, p) ∈ T × R : H(x, p) = 0}. That is, the zero level set of H does not contain any
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equilibrium point. Consider now the piecewise continuous function g : [0, 1] → R, with g(0) = g(1),

as shown in Figure 2. Then, set

x

p

H(x, p) > 0

H(x, p) < 0

10

Figure 1. {H(x, p) = 0}.

x

p

H(x, p) > 0

H(x, p) < 0

10

g(x)

{H(x, p) = 0}

Figure 2. g(x).

P :=

∫ 1

0

g(x) dx,

and define

u(x, P ) := −Px+

∫ x

0

g(y) dy.

One can see that u(·, P ) is the unique periodic viscosity solution of

H(x, P +Dxu(x, P )) = 0,

that is equation (1.2) with H(P ) = 0. Assume now that a Mather measure µ exists, satisfying

property (1). Then, the support of µ has necessarily to be concentrated on the graph of g, and

not on the whole level set {H = 0}. However, any invariant measure by the Hamiltonian flow

will be supported on the whole set {H = 0}, due to the non existence of equilibria and to the

one-dimensional nature of the problem, thus giving a contradiction.
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