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Abstract

We present Delaunay refinement algorithms for estimating local feature on the 0-skeleton of a 2D
piecewise linear complex (2D) and on the 1-skeleton of a 3D PLC. These algorithms are designed to
eliminate the need for a local feature size oracle in quality mesh generation of domains containing acute
input angles. In keeping with Ruppert’s algorithm, encroachment in these algorithms can be determined
through only local information in the current Delaunay triangulation. The algorithms are simple enough
to be implemented and several examples are given.

1 Introduction

The prototypical Delaunay refinement algorithm, given by Ruppert[18], is an elegant method for computing
a quality, conforming Delaunay triangulation of a non-acute 2D piecewise-linear complex (PLC). Initial at-
tempts to extend this algorithm to handle 3D PLCs with acute input angles have required the ability to eval-
uate the local feature size function on the 1-skeleton of the mesh[5]. As observed by Pav and Walkington[16],
Ruppert’s algorithm does not require local feature size and instead, it can be used to compute local feature
size. This can be seen by considering a simplified version of Ruppert’s algorithm: Algorithm 1 describes
Ruppert’s algorithm without any quality requirement on the output triangles.

Algorithm 1 Ruppert’s Algorithm - conformity only

Queue all encroached segments.
while the queue of segments is nonempty do

Insert the midpoint of the front simplex.
Update the queue based on changes in the Delaunay triangulation.

end while

Upon termination of Algorithm 1, the local feature size at any input point can be approximated well by
a quantity which is local in the Delaunay triangulation. This is summarized in the following theorem.

Theorem 1. Given any non-acute 2D PLC as input, Algorithm 1 terminates. Upon termination, for any
input point q0 in the mesh, the following estimates hold.

1

2
lfs(q0) ≤ N(q0) ≤

√
2lfs(q0).

Here, lfs(·) denotes the local feature size of the input PLC and N(·) denotes the distance to the nearest
neighbor in the resulting Delaunay triangulation. Complete definitions are given in Section 2.
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This result means that the distance from an input point to its nearest neighbor in the resulting Delaunay
triangulation is a good estimate for the local feature size of the input complex at that input point. This is
useful, as the distance to the nearest neighbor can be computed locally in a Delaunay triangulation while
generically local feature size depends on the entire input. (Local feature size is a local quantity in terms of
the Euclidean distance but, despite its name, is a global quantity with respect to the input data.)

While Ruppert’s algorithm can be used to compute both a conforming triangulation and approximate
local feature size, initial 3D Delaunay refinement algorithms for computing conforming Delaunay tetrahe-
dralizations required a local feature size oracle available to the algorithm[15, 8]. As these ideas were extended
to the problem of quality meshing of non-acute domains[5, 4], this requirement that local feature size must
be precomputed was preserved. Naively, computing local feature size requires a brute force O(n2) search
through the input data.

An algorithm of Pav and Walkington[16] removes this requirement. It produces a quality, conforming
Delaunay mesh without using local feature size. This algorithm does not quite preserve the original features
of Ruppert’s algorithm: the encroachment operations of the Pav-Walkington algorithm are local in the
Euclidean distance but not in the Delaunay triangulation.

While the algorithm of Pav-Walkington has not been implemented, two other meshing algorithms have
been implemented which avoid a brute force calculation of local feature size before performing the Delaunay
refinement. In both cases, the mesh produced is graded to an alternative sizing function which can be
computed locally in the Delaunay triangulation. The first is the constrained Delaunay refinement algorithm of
Si and Gartner[20, 19]. In this case, a constrained Delaunay tetrahedralization is computed and local feature
size is estimated at the input points. This is then interpolated incrementally on the edges as the refinement
progresses. The second is the algorithm of Cheng, Dey and Ramos[4, 3] with its recent improvements[9].
This algorithm creates weighted Delaunay meshes of smooth surfaces from only local information. However,
their algorithm still requires an user specified length scale parameter (as opposed to the full local feature
size function) and does not guarantee output is local feature size graded.

We give a Delaunay refinement algorithm for estimating local feature size based on only local information
in the current Delaunay triangulation. The result of the algorithm will be that local quantities in the
resulting Delaunay triangulation are equivalent to the local feature size function. This algorithm is suitable
to replace the brute force preproccess for existing Delaunay refinement algorithms for computing conforming
Delaunay meshes using existing algorithms[8, 5], and it has been practically implemented for quality mesh
generation[17].

The remainder of the paper is organized as follows. Section 2 gives the fundamental definitions and some
geometric results. In Section 3, a generic Delaunay refinement algorithm is described which the algorithms
for estimating local feature size specialize. Section 4 describes and analyzes a simpler 2D algorithm for
estimating local feature size which demonstrates the key concepts. Then, the full 3D version is analyzed in
Section 5. Finally, some examples of this algorithm are shown in Section 6.

2 Preliminaries

A piecewise linear complex is a pair of sets of input points and input segments in 2D, C = (P ,S) or a triple
of sets of input points, input segments and input faces in 3D, C = (P ,S,F). In two dimensions, a PLC
C′ = (P ′,S′) is a refinement of the PLC (P ,S) if P ′ ⊂ P and each segment in S is the union of segments
in S′. In three dimensions, a PLC (P ′,S′,F ′) refining (P ,S,F) must satisfy the additional condition that
each face in F must be the union of faces in F ′.

Definition 1. Consider a refinement (P ′,S′,F ′) of an input PLC (P ,S,F).

• An end segment is a segment in S′ for which at least one end point is an input point in P .

• An end triangle is a triangle in F ′ for which at least one vertex lies on an input segment in S.

• The spindle of segment s in S′, denoted Spind(s) is set containing
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Figure 1: Example of sizing functions in Definition 2 for a 2D PLC. The black points represent input points
while the white points represent vertices inserted during the refinement.

– s if s is not an end segment, or

– s and all end segments adjacent to s if s is an end segment.

For a simplex s, Rs denotes its circumradius. For a point q inserted into the mesh, rq denotes the
insertion radius of point q: this is the distance from q to its nearest neighbor when it is inserted into the
mesh. Denote the diametral ball of the segment between a and b by B(ab) and the circumball of the triangle

with vertices a, b, and c by B(âbc).
An appropriate notion of feature size is essential in the analysis of Delaunay refinement algorithms. The

standard definition of local feature size is given below as well as another sizing function (called mesh feature
size) which is used throughout the arguments.

Definition 2. Let C = (P ,S,F) be a PLC with refinement C′ = (P ′,S′,F ′).

• The i-local feature size at point x with respect to C, lfsi(x, C) is the radius of the smallest closed
ball centered at x which intersects two disjoint features of C of dimension no greater than i.

• The i-mesh feature size at point x with respect to C, mfsi(x, C) is the radius of the smallest closed
ball centered at x which intersects two features of C of dimension no greater than i.

• The nearest neighbor function, N(x,P ′) := lfs0(x, C′), returns the distance from x to its second
nearest neighbor in P ′.

Each of these functions is Lipschitz (with constant 1). For a fixed PLC, local feature size is strictly
positive while mesh feature size can equal zero.

If the argument supplied to any of the above feature size functions is a set of points, rather than a point,
then the result is defined to the be infimum of the function over the set. The dimension argument will be
omitted when considering the d − 1 dimensional feature sizes. For instance lfsi(s, C) := infx∈s lfsi(x, C) and,
in 3D, lfs(x, C) := lfs2(x, C).

Convention: Throughout the analysis, local/mesh feature size will always be evaluated with respect to
the input PLC. By adhering to this usage, the PLC argument can be omitted.

Finally, much of the analysis involves giving identical estimates for the local feature size of end segments
and the mesh feature size of non-end segments. It is useful to refer to these two cases with the same notation.

Definition 3. The i-feature size of segment s is defined as follows.

fsi(s) =

{
lfsi(s) if s is an end segment,

mfsi(s) if s is a non-end segment
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Given simplex s in C′, point x is called an i-feature size witness for s if x is contained in a feature of C of
dimension at most i which is disjoint from s. Given simplex s in C′, point x is called a local feature size

witness for s if x is contained in a feature of C which is disjoint from another feature of C containing s.
Simplex s′ is called a i-feature size witness for simplex s if every point of s′ is an i-feature size witness for s.

This definition is very similar to the local gap size used by Cheng and Poon[5]. The notion of i-feature
size witness is used by recognizing that if x is an i-feature size witness of segment s then

fsi(s) ≤ dist(x, s).

Finally, the following form of the Delaunay property is used often throughout the analysis.

Proposition 1. [Delaunay Property] Consider the Delaunay triangulation or tetrahedralization of a set of
points P. Let B be a ball with point q ∈ P on the boundary of B. If there is a point of P inside B, then q
has a Delaunay neighbor that is inside B.

3 The Generic Delaunay Refinement Algorithm

Each of Delaunay refinement algorithms which will be considered matches the form of Algorithm 2.

Algorithm 2 Delaunay Refinement

Queue all unacceptable simplices.
while the queue of simplices is nonempty do

if it is safe to split the front simplex then

Take an action based on the front simplex.
Queue additional encroached simplices.

end if

Remove the front simplex from the queue.
end while

This generic algorithm leaves four of operations to be specified in order to have a concrete algorithm.
These are described below.

Action Where should Steiner points be inserted to “split” a simplex?
Should this point yield to a lower dimensional feature?

Priority In what order should be queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

First, consider how Algorithm 1 (the simplified version of Ruppert’s algorithm that only considers splitting
segments based on conformity) specializes the generic algorithm.

Action When a segment is processed, its midpoint is inserted.
Priority Segments can be processed in any order.

Unacceptability A segment is unacceptable if it has a nonempty diametral disk.
Safety It is safe to split any simplex.

It is important to note that each of these specifications for the algorithm can be computed locally in
the Delaunay triangulation of the current point set. This is an essential property of Delaunay refinement
algorithms. In our view, any algorithm which matches the form of Algorithm 2 and can be updated based
on the local Delaunay triangulation is a Delaunay refinement algorithm and any algorithm that doesn’t fit
these to requirements is not.
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Some of these specifications for Ruppert’s algorithm are so simple that they can be easily overlooked.
However, it is important to generalize Delaunay refinement algorithms in each of the four ways considered
above for different purposes. Here is a brief description of how this has been done in the literature.

There are many different actions that the mesh can take to remove bad simplices. Inserting the cir-
cumcenter is a natural choice for Delaunay triangulations since this gives the furthest guaranteed distance
between the point and any others in the mesh based on only the simplex which is being split. Off-center
points and general selection regions have also been studied[21, 6, 11] using the same yielding procedure as
Ruppert’s algorithm. An example of a very different action taken by the algorithm can be seen with Chew’s
“second” Delaunay refinement algorithm[7]. This method maintains a constrained Delaunay triangulation,
involves a different yielding procedure and removes points from the mesh following circumcenter splits.

The priority queue for most algorithms involves prioritizing lower dimensional simplices before higher
dimensional ones[13]. For time efficient algorithms, this priority queue must be further specified[12, 10, 1],
often requiring simplices queued for quality to be processed before those queued based on encroachment.

There are typically two types of unacceptability criteria: encroachment criteria to ensure that the required
input features exist in the refined mesh, and quality requirements which are desirable of the output mesh.
Delaunay based methods usually look for a nonempty circumball to determine if a segment is acceptable.
The quality criteria is usually based on the circumradius-shortest edge ratio. Throughout this paper, we are
not concerned with this type of criteria and thus segments will be unacceptable only if they are encroached
in some sense. These two terms (unacceptability and encroachment) will be used interchangeably.

Meshing non-acute domains does not typically require any check that a simplex is safe to split. When
handling domains with small angles, typical approaches involve not splitting triangles based on quality if
they are near a skinny angle[14]. In 3D, the Tetgen code[20, 19] relies on a similar principle for determining
when to stop refining near small input angles.

In the Delaunay refinement algorithms we describe for estimating local feature size, it is important to
define unacceptability, priority and safety properties in a different fashion from previous examples. We
will always insert the circumcenter of the simplex to be split in all of the algorithms and thus the action
specification will not be discussed any further.

4 Estimating Feature Size in 2D

We give a Delaunay refinement algorithm which estimates the local feature size at input points in terms of
the distance to its nearest Delaunay neighbor. The refinement algorithm is similar to Algorithm 1, but care
must be taken to ensure that skinny angles to not prevent termination. The algorithm is summarized below.

Algorithm 3 Estimate Feature Size 2D

(Step 0) Compute the Delaunay tetrahedralization of the set of input points.
(Step 1) Estimate lfs at all input points via Delaunay refinement.

Step 1 of Algorithm 3 is a Delaunay refinement algorithm specified by the following four rules.

Action Insert the circumcenter of a segment.
Priority Simplices (only segments in this case) may be processed in any

order.
Unacceptability A segment s is unacceptable if it has an end point q with a

Delaunay neighbor p inside the diametral disk of s and either
p is a 1-feature size witness for s or s is more than twice the
length of the shortest segment in Spind(s).

Safety It is safe to split any simplex.

First, it is shown that the algorithm terminates and that the distance to the nearest neighbor provides
an appropriate upper bound on local feature size in the resulting mesh. This estimate is similar to those
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Figure 2: Diagram for proof of Theorem 3

shown in Ruppert’s analysis.

Theorem 2. Algorithm 3 terminates. At any point during the Algorithm 3, each input point q0 satisfies

1

2
lfs(q0) ≤ N(q0,P ′).

Proof. Initially, N(q0) = lfs0(q0) ≥ lfs(q0) so the base case holds. Suppose a point p is inserted in the mesh
and p is the closest neighbor to an input point q0. Then p must be the midpoint of a segment s. If s is disjoint
from q0, then lfs(q0) ≤ |q0 − p|. If p is on an adjacent segment, then (by the unacceptability rule) the point
encroaching s, denoted p′, must be on a segment which is disjoint from q0. Thus, lfs(q0) ≤ |q0−p′| ≤ 2|q0−p|.
This bound ensures the termination of the algorithm.

Next, it is seen that the distance from an input point to its nearest neighbor in the resulting mesh also
provides a lower bound on the local feature size.

Theorem 3. Upon the termination of Algorithm 3,

N(q0,P ′) ≤
√

2lfs(q0)

for all input points q0 ∈ P.

Proof. If N(q0,P) = lfs(q0) (i.e. the local feature size at q0 is realized by an input point), then the statement
follows by

N(q0,P ′) ≤ N(q0,P) = lfs(q0).

Otherwise, the local feature size of q0 is realized by a segment s. Let q be the nearest end point of s to
q0 and let x be the nearest point on segment s to q0 as in Figure 2. Suppose N(q0, cP

′) >
√

2lfs(q0). Then
the following inequalities hold.

2 lfs(q0)
2 < N(q0)

2

< |q0 − q|2

= lfs(q0)
2 + |x − q|2

< lfs(q0)
2 +

|s|2
4

Conclude that 2 lfs(q0) ≤ |s|. This inequality implies that q0 lies in the diametral disk of s. Thus s must be
encroached unless there is a point p in the B(q0q) which lies on a segment adjacent to s. If this p exists,

then |p− q| ≤ |x− q| ≤ |s|
2 as seen in Figure 3. Thus |s| is at least double the length of the segment between

p and q which is in the spindle of s. Thus s is unacceptable.
Since s is unacceptable and the any segment is considered safe to split, conclude that the algorithm has

not terminated. Thus, upon termination, the desired bound holds.

The constants in Theorem 2 and Theorem 3 are both sharp and independent of the smallest input angle
in the mesh. The exact same estimates which are achieved by Algorithm 1 for non-acute PLCs have been
shown for Algorithm 3 allowing general input.
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Figure 3: In the case that s is an end segment and q does not “see” q0, input point q0 must encroach s as

|p − q| ≤ |s|
2

5 Estimating Feature Size in 3D

In the 3D case, it becomes important to estimate local feature size and 1-feature size on all segments (the
d−2 dimensional features) of the input complex. While the distance to the nearest neighbor of the resulting
mesh was used to estimate feature size in 2D, the 3D analogy uses the length of segments to estimate the
feature size of those segments.

Algorithm 4 will yield the desired feature size estimates in terms of segment lengths. Step 1b and Step 2b
are specific Delaunay refinement algorithms which will be described later. Each of the other steps is a simple
procedure which occurs in a single pass over the Delaunay triangulation.

Algorithm 4 Estimate Feature Size 3D

(Step 0) Compute the Delaunay tetrahedralization of the set of input points.
(Step 1a) Split adjacent segments at equal lengths based on 0-local feature size.
(Step 1b) Estimate fs1 on all segments via Delaunay refinement.
(Step 2a) Split segments to refine the 1-feature size estimate.
(Step 2b) Estimate lfs on all segments via Delaunay refinement.

The following two theorems show that in the resulting PLC, the length of each segment is a good estimate
for the local feature size or 1-feature size of that segment.

First, the lower bound on segment lengths. This theorem will be shown by techniques used in the standard
analysis of Ruppert’s and other Delaunay refinement algorithms.

Theorem 4. At any point during Algorithm 4, all segment segments s ∈ S′ satisfy

min

(
1

16
fs1(s),

1

4
lfs(s)

)
≤ |s|.

The upper bound on segment lengths is an estimate which is generally not seen in previous analysis.

Theorem 5. Following Algorithm 4, all segment segments s ∈ S′ satisfy

|s| ≤ min

(√
2fs1(s),

5

3
lfs(s)

)
.

In order to show these two theorems, output conditions on the PLC are determined following each step
of the algorithm. The output conditions of Step 2b will be exactly the results of the theorems.

While describing this algorithm, the result at each step is considered on a simple example. The example
consists of three squares: one large square which is slightly below two coplanar, disjoint squares as seen in
Figure 4. Observe that the small feature size between the sides of the two small squares will be realized in
Step 1b, while the feature size between the small planes and the large plane will be realized in Step 2b.
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Figure 4: This descriptive example consists of 3 faces: one large square which is slightly below two smaller
squares which are side by side.

Figure 5: (Left) Example mesh following Step 0. (Right) Enlarged mesh of one of the smaller squares.

Step 0

The first step of the algorithm involves computing the Delaunay triangulation of the input point set in each of
the meshes to be maintained (typically with the Bowyer-Watson algorithm[2, 22]). In our running example,
this simply leads to the Delaunay triangulation of each of the squares as seen in Figure 5.

Then the following inequalities hold following this step for all points in the mesh.

lfs2(q0) ≤ lfs1(q0) ≤ lfs0(q0) = N(q0,P ′).

While this procedure does not admit an optimal run-time in the worst case, this is common part of to all
current Delaunay refinement algorithms which handle small angles in the input[13]. Algorithms which rely
on constrained Delaunay triangulation[20, 19] also typically begin with this step.

Step 1a

This step consists of a single pass of each of the input points. For each input point q0, split all segments

containing this point at a distance of N(q0)
3 away from q0.

The result of this step on our example can be seen in Figure 6. Notice that small faces are split at a
small distance on one side due to the close proximity of their corners to each other.

After completing Step 1a, a number of properties hold.
Following this step, the following properties hold.

• N(q0,P ′) = 1
3 lfs0(q0) holds for all input points q0 ∈ P .

• Adjacent segments cannot encroach each other.

• If sn is a non-end segment and se is an adjacent end segment, |sn| ≥ |se|.

• If se and s′e are end segments and s′e /∈ Spind(se), then dist(se, s
′
e) ≥ max(|se|, |s′e|).
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Figure 6: (Left) Example mesh following Step 1a. (Right) Enlarged mesh of one of the smaller squares.

Figure 7: Example mesh following Step 1b.

This final property is particularly important. Observe that after splitting any segments in the mesh,
this property continues to hold and thus will hold for the remainder of the algorithm. This ensures that
spindles of end segments corresponding to different input point will not interact at any point in the upcoming
arguments.

Step 1b

The goal of this stage is to bound the length of each segment in the mesh by the 1-feature size of that
segment. The Delaunay refinement algorithm is specified as follows.

Action Insert the midpoint of a segment.
Priority Longer segments are processed first.

Unacceptability Segment s is unacceptable if it there is an end point q of a
segment in Spind(s) with Delaunay neighbor p such that p is
a 1-feature size witness for q and |q − p| < |s|.

Safety It is safe to split any segment.

By the specification given, checking if a simplex is unacceptable requires that only Delaunay neighbors
of the endpoints of the segment in question need to be queried. This is an important property of Ruppert’s
algorithm that we are careful to maintain.

Consider the result of applying this step to the earlier example as seen in Figure 7. Notice that the main
effect is that the nearby edges of the two small squares refine to realize the feature size. The other segments
only need to split a few times.

First, see that the algorithm described terminates and that the length of each segment is bounded below
by its feature size. This argument uses the same arguments as the “usual” proofs of termination and grading
for Delauany refinement algorithms.
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Lemma 6. Throughout this Step 1b, the following bound on segment lengths holds.

1

4
fs1(s) ≤ |s|

Proof. Inductively, we show that the lower bound holds at all segments throughout this step.
Base Case. Following Step 1a, any end segment, se, containing input point q0 has length |se| = 1

3 lfs0(q0).
Notice

lfs0(q0) ≥ lfs1(q0) ≥ lfs1(se) = fs1(se)

Thus |se| ≥ 1
3 fs1(se).

For any initial non-end segment, sn, there is an adjacent end segment se such that |sn| ≥ |se|. Since se

contains an input point (which is a 1-feature size witness for sn), it follows that

|sn| ≥ |se| ≥ fs1(sn).

Thus, initial, the lower bound on segment lengths holds.
The inductive step is shown in two cases corresponding to splits of end and non-end segments.
Case 1. Consider an end segment se from q0 to q which is split at midpoint p, forming an new end

segment s′e and a non-end segment s′n. This means that there is a point q̄ on a disjoint feature to se which
is of distance at most |se| from some adjacent end segment to se.

fs1(s
′
e) ≤ dist(s′e, q̄) ≤ |se| + |se| = 4|s′e|

For the non-end segment sn, q0 becomes a 1-feature size witness.

fs1(s
′
n) ≤ dist(s′n, q0) = |s′n|

Case 2. Consider non-end segment sn which is split. This means that there is a feature size witness q̄
such that dist(sn, q̄) ≤ |sn|. Then for either of the new end segments created, denoted s′n,

fs1(s
′
n) ≤ dist(sn, q̄) ≤ |s′n| + |sn| = 3|s′n|.

Conclude that 1
4 fs1(s) ≤ |s| for all segments in the mesh created during Step 1b.

This lower bound on feature size of all segments ensures termination.

Next we seek to bound the length of each segment from above in terms of the feature size. In the previous
lemma, the ordering of the queue of segments is not necessary. In order to get the upper bound, an arbitrary
order does not work. To see this, consider a mesh including a portion similar to Figure 8(a). If segments
to the left are refined first, a situation similar to Figure 8(b) could arise. Then, there is a segment on the
right side which is longer than its distance to the input point which is not on the segment. This segment
may not see this nearby point on its Delaunay cavity. Note: this requires another point to block the long
segment from seeing the nearby disjoint point, but this point could be far away and thus not causing the
long segment to split.

By prioritizing the queue by segment length, this situation cannot arise, and it is possible to bound the
resulting segments lengths by 1-feature size. In order to prove this, a number of geometric facts are necessary.

Proposition 2. Let s and s̄ be segments with |s| ≥ |s̄|. If dist(s, s̄) < |s|√
2
, then there are endpoints p and p̄

such that |p − p̄| < |s|.
Proof. Suppose that all pairs of endpoints are such that |p − p̄| ≥ |s|. The Pythagorean theorem and the
fact that |s| ≥ |s̄| imply that

dist(p, s̄) ≥
√

3

2
|s|

for either endpoint of s. Again applying the Pythagorean theorem yields that

dist(s, s̄) ≥ |s|√
2
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(a) Possible partial initial mesh

Not Delaunay Neighbors
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(b) Possible refinement

Figure 8: Lemma 7 does not hold without specifying a refinement order.

sn
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qe

(a) Proposition 3

p

qs

x
q′

(b) Proposition 4

Figure 9: Diagrams for the proofs of two propositions.

The constant above is sharp. Consider two skew segments, the first with endpoints (−1, 0, 0) and (1, 0, 0)
and the second between (0,−1,

√
2) and (0, 1,

√
2). Then the distance between the two segments of

√
2 and

the distance between any pair of endpoints is 2.

Proposition 3. Suppose that all adjacent end segments have the same length. Let sn be a non-end segment

and se be an adjacent end segment to the input segment containing sn. If |se| > |sn| and dist(sn, se) ≤ |sn|√
2
,

then there are endpoints of sn and se, given by qn and qe, respectively, such that |qn − qe| ≤ |sn|.

Proof. This proof follows from the Pythagorean theorem. See Figure 9(a).

Proposition 4. Let s be a segment in the mesh with endpoint q such that

|s| = min
s′∈Spind(s)

|s′|

Let p be a Delaunay neighbor of q such that p is not a feature size witness for s, p is not an endpoint of any
segment in the spindle of s, and |q − p| < |s|. Then p belongs to a segment sp such that |sp| ≤ |q − p|.

Proof. If p lies on the same input segment as q, then there clearly exists sp between p and q such that
|sp| ≤ |p − q|.

Otherwise, s is an end segment and p lies on an adjacent input segment segment, denoted s0. Let x be
the nearest point on this adjacent input segment to q. Then |q − p| > |x − p| > |q′ − p| > |sp|. See Figure
9(b). Thus the result holds.

With these facts, it is possible to show the desired bound on segments following Step 1b.

Lemma 7. At the end of Step 1b, all segment satisfy

|s| ≤
√

2fs1(s).

Proof. The following statement is shown inductively.

Inductive Hypothesis: If segment s is not queued and |s| >
√

2fs1(s), then the following two statements
hold.
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1. If q0 is an input point and q is an endpoint of s, then |q − q0| ≥ |s|.

2. If s̄ is a 1-feature size witness for s such that dist(s, s̄) < |s|√
2
, q is an end point of s, and q̄ is an endpoint

of s̄, then |q − q̄| ≥ |s|.

The following property follows from the inductive hypothesis. From this property, it will be clear that
the inductive hypothesis is sufficient to imply the inequality in the lemma. Also, when proving the inductive
hypothesis, it will be useful to apply this property at earlier steps in the algorithm, rather than use the
inductive hypothesis directly.

Split Size Property. If the inductive hypothesis holds, any longest segment s such that |s| >
√

2fs1(s)
is on the queue.

Assuming the inductive hypothesis, we show that the split size property holds. Let s be a segment such
that |s| >

√
2fs1(s) and s is not on the queue. Then by the first property of the inductive hypothesis, the

feature size of s is not realized by an input point. Thus, there exists an segment s̄ which is a 1-feature size
witness for s and dist(s, s̄) = fs1(s). By Proposition 2, s̄ is longer than s (otherwise the segments would
have endpoints that are nearby, which violates the inductive hypothesis). The inductive hypothesis and
Proposition 3 imply that s must be a 1-feature size witness for s̄ (since otherwise s̄ must be an end segment
adjacent to the input feature containing non-end segment s). Combining these facts yields

|s̄| > |s| >
√

2fs1(s) ≥
√

2fs1(s̄).

Conclude that s is not the longest segment failing the feature size bound.
From the split size property, conclude that if the inductive hypothesis holds, then upper bound on feature

size of segments holds when the algorithm terminates. Thus the above inductive hypothesis is sufficient to
imply the lemma. Next, we show that the inductive hypothesis holds in the base case.

Base Case. First consider initial end segments. Let q0 be an input point contained in end segment se.
The construction ensures that for all other points q̄ at the end of Step 1a which are not on an end segment
adjacent to se, |q0 − q̄| ≥ 2|se|. Thus, the inductive hypothesis holds for all end segments. Next, consider
non-end segments. Let sn be a non end segment between end segments se and s′e. Any point in the mesh
which is not an endpoint of sn is a 1-feature size witness for sn. If there is another point in the mesh which
is of distance less than |sn| from an endpoint of sn, then sn must be queued by some 1-feature size witness
which is a Delaunay neighbor to an endpoint of sn.

Next, proceed to show the inductive step. The inductive hypothesis must be checked on all segments.
There are two types of segments for which this must be verified: segments that existed before the last
insertion and segments that where formed during the last insertion.

Case 1. Consider any newly formed segment s and suppose s violates the inductive hypothesis. So,
|s| >

√
2fs1(s), s is not on the queue, and there is an point q̄ and end point q of s such that |q − q̄| < |s|

and q̄ is a feature size witness for s. Since s is not queued, this means that q and q̄ cannot be Delaunay
neighbors.

Now by the Delaunay property there is some point p in B(qq̄) which is a Delaunay neighbor of q. Again,
p cannot be a 1-feature size witness for s, as this would cause s to be queued.

If s is an end segment, notice that no such p can exist. Every non-end segment adjacent to a segment in
the spindle of s has length of |s| or 2|s|, and thus there is no point p on one of these segments at a distance
of less than |s| which is not an end point of some segment in Spind(s).

If s is a non-end segment, consider the mesh at the step when p was inserted into the mesh. At this
point, s belonged to a segment of length at least 2|s| which also must have failed the feature size bound.
But a segment of length 2|q − p| < 2|s| was split to insert p. This violates the split size property.

Case 2. Consider any segment s which is not newly formed. Again, we assume this segment s fails
the inductive hypothesis and seek a contradiction. To fail the inductive hypothesis, s cannot be queued,
|s| >

√
2fs1(s), and there is a point q̄ is such that |q̄ − q| < |s| for some endpoint q of s such that q̄ is a

1-feature size witness for s. This point q̄ must be the most recent point added to the mesh since the inductive
hypothesis held at the previous step and thus applies to s. So, q̄ is an end point of a new segment s̄ such

that dist(s, s̄) ≤ |s|√
2
.

12



sq
p

q̄

Figure 10: Diagram for case 1 in which s is a non-end segment in and p prevents q and q̄ from being Delaunay
neighbors.

Let ŝ denote the supersegment of s̄ with midpoint q̄ and let q′ denote the unlabeled endpoint of s. Next,
we possibly relabel s and q if there is a better selection for our purposes.

• By possibly relabeling, s̄ can be selected to be the subsegment of ŝ which is closer to s. This swap can
be made because if the original selection of s̄ was incorrect, then the closer subsegment also satisfies
the same set of necessary properties. Then the nearest point on ŝ to s must be in the interior of ŝ since

dist(s, ŝ) ≤ |s|
2 while dist(q, ŝ) > |s|√

2
and dist(q′, ŝ) > |s|√

2
.

• Suppose q′ is the nearest point on s to s̄ and |q′ − q̄| ≤ |s|. Then replace q by q′.

Since s is not on the queue, then q and q̄ cannot be Delaunay neighbors. As in case 1, q must have a
Delaunay neighbor in B(qq̄), denoted p, which cannot be a 1-feature size witness for q. If p is the endpoint
of some segment on the spindle of s, the Delaunay property can be applied again since p and q̄ cannot be
neighbors. This can be repeated until a point p is found which is not the endpoint of a segment in Spind(s),
lies in B(qq̄) and is not a 1-feature size witness for s. This configuration is depicted in Figure 11.

s q

p

q̄

q′

sp

s̄

ŝ

Figure 11: Segment s fails the inductive hypothesis, q̄ is a nearby feature size witness to s and p is not a
feature size witness for s.

As p cannot be a 1-feature size witness for s, p cannot be an input point and thus p belongs to some
segment sp.

Next, we show that s is a 1-feature size witness for s̄. If not, s must be a non-end segment on an input
feature which is adjacent to s̄ (since s̄ is a 1-feature size witness for s). In this situation, no such p exists on
the input feature containing s. Thus s is a 1-feature size witness for s̄.

Now, we will utilize the Delaunay property, the split size property and a couple geometric facts to assert
the following inequalities.

|s| > |q − q̄| > |q − p| > |sp| ≥ |s̄| ≥ |s|
2

Each of these inequalities is now justified.

• |s| > |q − q̄| following from the assumption that s fails the inductive hypothesis.

• |q − q̄| > |q − p| follows from the construction of p and the Delaunay property.

• |q − p| > |sp| is a result of Proposition 4.

• |s̄| ≥ |s|
2 is a result of the split size property before q̄ is inserted in the mesh.
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s̄x̄q̄ q̂

≥ |s|

< |s|√
2

< |s|

(a) Subcase A

q′

s̄q̄ q̂

≥ |s|≥ |s|

< |s|√
2

(b) Subcase C

π(s) π(q)

s̄

x̄

q̄

q̂

D

r

a

b

(c) Subcase B

Figure 12: Arguments in Case 2 of Lemma 7

• |sp| ≥ |s̄| follows from the split size property at the time when p was inserted in the mesh.

Finally, a contradiction will be achieved by showing |s̄| > |q − q̄| in three different subcases.
Subcase A. Suppose that q is the nearest point on s to s̄. With x̄ as the nearest point on s̄ to s as in

Figure 12(a), observe that

|s|2
2

+ |x̄ − q̂|2 > |q − x̄|2 + |x̄ − q̂|2 = |q − q̂|2 ≥ |s|2

Thus, |x̄ − q̂| > s√
2

> |q − x̄|. See Figure 12(a). Then |s̄| can be estimated using the Pythagorean theorem.

|s̄|2 ≥ |q̄ − x̄|2 + |x̄ − q̂|2

> |q̄ − x̄|2 + |q − x̄|2

= |q − q̄|2

Thus |s̄| > |q − q̄|.
Subcase B. Let the nearest point on s to s̄, denoted x, be in the interior of s. In this case, note that the

nearest points between the lines containing s and s̄ occur in the segments s and s̄. This means that |x − x̄|
is orthogonal to s and s̄ as in Figure 12(c).

Let P be the plane containing s̄ which is orthogonal to |x − x̄| and let π denote the projection of points
into plane P . Let r be the radius of the disk D = P ∩ B(q, |s|) so r2 + |x − x̄|2 = |s|2. Observe that q̄ ∈ D
and q̂ /∈ D. Finally, observe that for an appropriate point p to exist, (x − q) · (q̄ − π(q) < 0. This is clear if
the segment s is a non-end segment since p cannot lie in the interior of the segment s. In the case of an end

segment, q′ is an input point and the distance from q′ to p must be at least 3
2 |s|, since |sp| ≥ |s|

2 . The law
of cosines gives that cos(∠pπ(q)π(q′)) ≤ − 1

4 and thus (x − q) · (q̄ − π(q) < 0 holds.
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Figure 13: Sequence of split segment lengths is not monotone.

Let a be the length of the component of q̄−q in the direction of s and let b be the length of the component
of q − q̄ which is orthogonal to both s and x − x̄. See Figure 12(c).

|q̄ − q̂|2 ≥ (r + a)2 + b2

≥ r2 + a2 + b2

≥ |s|2
2

+ a2 + b2

≥ |x − x̄|2 + a2 + b2

= |q − q̄|2

Thus we have achieved the desired inequality: |s̄| > |q − q̄|.
Subcase C. Suppose that q′ is the nearest point on s to s̄ as depicted in Figure 12(b). By the original

relabeling of q, we can conclude the distance from each of the end point of s̄ to q′ is at least |s|. Since the

minimum distance from q′ to s̄ is less than |s|√
2
, conclude that |s̄| > |s|. Using a previous inequality, this

implies that |s̄| > |q − q̄|. Note that |q′ − q̄| > |s| because, if not, q′ would be relabeled as q at the beginning
of this Case 2.

The inequality |s̄| > |q − q̄| holds in each of the three cases, and thus a contradiction has been reached
in each case. Conclude that the inductive hypothesis does hold and the lemma follows.

The estimates in the Lemma 11 will prove essential in the later steps. The current refinement ensures
that the length of each segment is a good estimate (up to a factor of 4

√
2) of the 1-feature size on the

segment.
The proof of the theorem in this step relies on an inductive hypothesis which implies that the longest

segment s such that |s| >
√

2fs1(s) is always on the queue. This implies that if s is such that |s| >
√

2fs1(s)
and s is not on the queue, then at all previous steps, any segment split had length of at least |s|. Naturally,
the proofs would be much simpler if it could be shown that the length of segments being split formed a
nonincreasing sequence.

Unfortunately, this is not the case. Consider a mesh as outlined in Figure 13(a). Notice that the length
two segment is not queued initially, as all points are sufficiently far from its endpoints. When the leftmost
of the length one segments is split, this midpoint causes the longer length two segment to be queued. See
Figure 13(b).

Still, this example does not break the inductive hypothesis! It is important to notice in this case that
the initial long segment (of length two which will be denoted by s) has a feature size of 1.99 meaning that
initially, |s| <

√
2fs1(s). The desired estimate had held from the start of the argument.
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Figure 14: Example mesh following Step 2a.

Step 2a

This step is a simple operation: split all segments into fourths. This is needed as the feature size bound on
the segment lengths found in the previous section are not quite strong enough for the algorithm in the next
step. Figure 14 shows the result of this step on our initial example.

This split strengthens to the bound determined in Step 1b which will be needed in the analysis of Step 2b.

Lemma 8. Following this step, for any segment in the mesh,

|s| ≤ 1

2
√

2
lfs1(s)

Proof. Following Step 1b, |s′| ≤
√

2fs1(s
′) ≤

√
2lfs1(s

′), for all segments s′ at the start of this stage. If s is a
subsegment of s′, then lfsi(s) ≤ lfsi(s

′). Now let s be one of the four segments created during this step from
segment s′.

|s| =
1

4
|s′|

≤
√

2

4
lfs1(s

′)

≤ 1

2
√

2
lfs1(s)

Note that the estimate |s| ≤ 1
2
√

2
fs1(s) does not hold on segments in the mesh produced during this step.

This is due to the fact that when end segments are split, newly formed non-end segments may have 1-feature
size which is much smaller than the 1-feature size of the original end segment .

The next lemma follows immediately from Lemma 6

Lemma 9. Following this step, for any segment s in the mesh,

1

16
fs1(s) ≤ |s|.

Step 2b

In this step, segments and triangles (in the current Delaunay triangulation of the faces) are split to get
estimate the local feature size on the segments.
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Figure 15: Example mesh following Step 2b.

Action Insert the circumcenter of a proposed segment or triangle.
Priority Triangles are given highest priority, in any order. Segments

are then prioritized by length.
Unacceptability A segment s is unacceptable if it has an endpoint q with a

Delaunay neighbor p such that |q − p| < |s| and either p is a
local feature size witness for s or p is a 1-feature size witness
for s. A triangle t is unacceptable if it has a vertex q with
Delaunay neighbor p such that |p − q| < 2Rt and p does not
lie in the face containing t.

Safety It is not safe to split a triangle in face f if its circumcenter c
will have a Delaunay neighbor q which is the end point of a
segment s in face f and |c − q| < |s|.

The mesh resulting from this step in our running example is given in Figure 15. This is the only step in
which points are added in faces rather than just on segments.

First, the lower bound on segment length is shown.

Lemma 10. Throughout Step 2b, the following estimate holds for any segment s.

min

(
1

16
fs1(s),

1

4
lfs(s)

)
≤ |s|

Proof. This lemma is shown by induction. Lemma 9 implies that |s| ≥ 1
16 fs1(s) and thus the base case holds.

It must be shown that any new segment s which is the result of a split also satisfies the bound. A segment
is only split if it is queued and segments are only queued if there is a nearby 1-feature size witness or local
feature size witness. In the first case, an identical argument to that in Lemma 6 imples that 1

4 fs1(s) ≤ |s|.
In the second case, a very similar argument yields 1

4 lfs(s) ≤ |s|.

The proof that segment lengths will bound local feature size from below requires a number of geometric
facts. These are stated first.

Proposition 5. Let t be a triangle, and let x ∈ t. Then there is a vertex of t, qt such that |x − qt| ≤ Rt.

Proof. Let ct be the circumcenter of triangle t. Observe that t is covered by the three diametral balls between
each vertex and the circumcenter. See Figure 16.

The next proposition ensures that if the nearest point on a face to a segment is in the interior of a face,
then the nearest point on the segment to that face occurs as an end point of the segment.

Proposition 6. Let s be a segment in a PLC. Then one of the following two holds.

• There exists s̄ on an input feature disjoint from s such that dist(s, s̄) = lfs(s).
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Figure 16: Given any triangle, the three diametral balls between vertices and the circumcenter cover the
triangle.

xx0

min circumradius

no vertices

(a) If point x is contained in the cir-

cumcircle of (Delaunay) triangle t

lies in a circle of radius r which con-
tains to vertices, then the circumra-
dius of t is bounded below by the dis-
tance from x to the boundary of the
empty ball.

xx0

min circumradius

no vertices

(b) If point x is contained in (Delaunay)
triangle t lies in a circle of radius R, then
the lower bound on the circumradius of t

corresponds to the radius of a larger cir-
cle.

Figure 17: Diagram for Proposition 7

• There is some endpoint q of s and x in the interior of a disjoint face such that dist(q, x) = lfs(s).
Moreover, in this case |q − x| is orthogonal to the face containing x.

The next proposition asserts a minimum circumradius on the Delaunay triangle containing a point x
given that x belongs to an empty disk in the face. See Figure 17 for the associated diagram.

Proposition 7. Consider a set of vertices P in a plane. Suppose ball B(x0, R) contains no vertices of P.
Consider x ∈ B(x0, R) and x in the convex hull of P. Let t be a triangle in the Delaunay triangulation of P
containing x. Then

Rt ≥
√

R2 − |x − x0|2.

Using the fact that B(x, R − |x − x0|) ⊂ B(x0, R) only ensures that Rt ≥ R − |x − x0|. This bound will
hold whenever x is in the circumdisk of t. The stronger bound comes from the fact that x is actually inside
triangle t. This is depicted in Figure 17.

Proof. Consider B(x, R′) where R′ <
√

R2 − |x − x0|2. Let {p1, p2} = ∂B(x, R′) ∩ ∂B(x0, R). Note, if this
intersection is empty or just one single point, then B(x, R′) ⊂ B(x0, R), which means that no t exists with
this B(x, R′) as its circumcircle (as B(x, R) contains no vertices). Now, |p1 − p2| ≤ 2R′. Let L be the line
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B(ct, Rt)

(a) Top view

ctx

q y

tqt

≤
√

3Rt

Rt

(b) Side view

Figure 18: Triangle t in Proposition 8

through p1 and p2. Note that x is on the opposite side of L from all of the points of B(x, R′) \ B(x0, R).
Since triangles are convex and B(x0, R) cannot contain any vertices, this means that x does not belong to
any triangle t with circumcircle B(x, R′).

Suppose that a vertex q is near a face f in some sense. Letting x be the projection of q onto the plane
containing f , the next lemma ensures that if the triangle t (in the Delaunay triangulation of f) containing
x is large enough, then one of the vertices of t has a nearby Delaunay neighbor (in the three dimensional
mesh) which is not in the face. In the algorithm, this will ensure that t was placed on the queue.

Proposition 8. Let t be a Delaunay triangle in a face f . Let q be a point which is not in the face such
that the nearest point to q on the plane containing t, denoted x, lies in t. If |q − x| <

√
3Rt, then there is a

vertex of t, qt, which has a Delaunay neighbor, p, such that p is not in the face with t and |qt − p| < 2Rt.

Proof. Let q, t, x be as in the statement of the proposition. Let ct be the circumcenter of t. Since x lies in t,
by Proposition 5, there is a vertex of t, denoted qt, such that |x− qt| ≤ Rt. See Figure 18. Let y = ct + q−x.
Then observe the following properties.

• B(qty) ∩ f is the diametral circle between ct and qt.

• q ∈ B(qty).

Finally, applying Proposition 1, it follows that qt must have a Delaunay neighbor p in B(qty), and thus
|qt − p| ≤ |qt − y| ≤ 2Rt. Moreover, p cannot be in the face f since the diametral circle of ct and qt must be
empty by the Delaunay property of t in f .

With these geometric facts in place, we seek the bounds in Theorem 5, which are given in two lemmas.

Lemma 11. Upon termination of Step 2b, each segment s satisfies

|s| ≤ 5

3
lfs(s).

Proof. This inequality is shown by induction. Specifically, we show the following inductive hypothesis.
Inductive Hypothesis Let s be a segment such that |s| > 5

3 lfs(s). If s is not on the queue then there
is some triangle t which is on the queue.
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Figure 19: Delaunay neighbors to point q are considered in different balls in the the two different cases.

First, it is clear that this inductive hypothesis is sufficient to ensure that the bound holds when the
algorithm terminates: if the desired bound fails, the inductive hypothesis ensures that there is still a triangle
on the queue which will be split and the algorithm has not reached termination.

Next, suppose that s is some segment such that |s| > 5
3 lfs(s) and s is not queued. We will show that this

implies that some triangle must be on the queue.
As edges have already been isolated from each other, we prove that the witness of the local feature size

of s must be a face. Following Step 2a, |s| ≤ lfs1s

2
√

2
. Since splitting a segment decreases its length and cannot

increase its local feature size, this bound will hold throughout the step. This ensures that no segment or
input point can be the witness to the local feature size of s. Thus, there must be some face such that
dist(s, f) = lfs(s). Using Proposition 6, conclude that there is some x in a face f and an endpoint q of s
such that lfs(s) = |x − q|, and the vector q − x is orthogonal to the plane containing f .

Let L denote the line containing s, P denote the plane containing f and π denote the projection function
into P . Suppose there is a segment s′ ∈ Spind(s) with endpoint q′ which is closer to P than q. First, estimate
the distance from x to the boundary of f , ∂f .

dist(x, ∂f)2 = dist(q, ∂f)2 − |x − q|2

≥ 8|s|2 − 9

25
|s|2

So dist(x, ∂f) ≥ 2|s|. Considering any point p ∈ s′,

|π(q′) − x| ≤ |q′ − q| ≤ 2|s|.

Thus π(q′) ∈ f . This means that it is reasonable to replace s and q with s′ and q′. Without loss of generality,
assume that s is the nearest segment in Spind(s) to P .

In two cases, we show that the triangle t in f which contains x has been placed on the queue.

Case 1. Suppose that q is an input point. Now, let B be the ball of radius |s|
2 with q on the boundary

and x on its diameter containing q as in Figure 19. The segment s is not on the queue, so q cannot have
any Delaunay neighbors in B which witness the feature size of s. Since q is an input point and the nearest
point on any segment containing q to face f , this means that B must be empty.

This means that x belongs to some triangle in f with circumradius of at least
√

2
3 |q −x| as in Figure 20.

By Proposition 8, this ensures that a vertex p of t must have a Delaunay neighbor which is not in the face

at distance of at most
√

5
3 |q − x| < 2Rt This ensures that t has been queued at some point.

Case 2. Suppose that q is not an input point. Let q0 be an input point on the segment containing s.
First, claim that |q0 − q| ≥ |s|. If s is an end segment, this is trivial. If s is the subsegment of an an end
segment which existed at the end of Step 0, then this holds because s must be produced by a sequence of
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Figure 20: Diagram for Case 1.
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(b) Estimating |x − x0|.

Figure 21: Diagrams for Case 2.

midpoint insertions. If s is a subsegment of a non-end segment which existed following Step 0, then q0 is a
1-feature size witness for s and Step 2a ensures that |s| ≤ 1

2
√

2
fs1(s) < |q − q0|.

Next, consider the angle θ between L and π(L) as in Figure 21(a). Since q is interior to an input segment,
claim that sin(θ) ≤ 3

5 . Let y = L∩P . If sin(θ) ≥ 3
5 then |q− y| ≤ |s| which means that y is contained in the

input segment containing s and thus cannot be contained in f . This means that there is some point z on
the segment xy contained in the boundary of f . Then the distance between z and q is less than |s|, meaning
lfs1(s) < |s|. This violates the bound given in Step 2a which is maintained by the algorithm.

Let B′ the be a ball of radius |s|
2 which has a diameter with one end point at q and this diameter intersects

π(L) as in Figure 19. We assert that if B′ is not empty, then the neighbor of q which lies in B′ must be a
local feature size witness for s. If s is a non-end segment, this is clear as B′ only touches the line containing
s at q. If s is an end segment, let q0 be the input point which is an endpoint of s. Observe that B′ is below
the cone formed by rotating L around the line containing q0 and π(q0). Since q is the nearest point to P on
the spindle of s, this implies that B′ does not intersect any input segment containing q0.

Since s is not queued and any point in B′ would serve as an appropriate witness to cause s to be queued,
B′ must be empty.

Next we seek to apply Proposition 7 based on the fact that B′ ∩ P is empty in f . Let c be the center of

B′ and let x0 = π(c). As seen in Figure 21(b), |x − x0| = |s| sin θ

2 and the radius of B′ ∩ P is

√
|s|2
4

sin2 θ − |q − x|2 + |q − x||s| cos θ.
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Using Proposition 7, conclude that the triangle t containing x has circumradius of at least

Rt ≥
√
|q − x||s| cos θ − |q − x|2.

Since |q − x| < 3
5 |s| and cos θ ≥ 4

5 ,

Rt ≥
√
|q − x||s| cos θ − |q − x|2

≥ |q − x|
√

5

3
· 4

5
− 1

≥ |q − x|√
3

Now, by Proposition 8, there is a vertex of triangle t which has a Delaunay neighbor which is not in the
face containing t and thus t has been queued.

In both cases, it was shown that t must have been put on the queue. If t is on the queue, then the
inductive hypothesis holds. If the triangle queue is empty, deduce that t was processed and its circumcenter
was rejected for being too close to a nearby edge based on the safety rule.

The circumcenter of t is only rejected if there was some segment ŝ with endpoint q̂, such that |ct− q̂| < |ŝ|
and ŝ lies in the face containing t. Since face f is disjoint from the input feature containing s, this means
that s must be a 1-feature size witness for ŝ and vice versa. The following estimate on the distance between
q and q̂ then holds.

|q, q̂|2 = |q − x|2 + |x, q̂|2

≤ 3R2
t + (|ct, q̂| + |x − ct|)2

≤ 3R2
t + (|ŝ| + Rt)

2

≤ 7|ŝ|2

Above, the fact |ŝ| > |ct − q̂| ≥ Rt was used to estimate Rt by |ŝ|. The second inequality holds since the
circumdisk of t must be empty by the Delaunay property.

By the condition following Step 2a which is maintained by the algorithm, we expect that dist(s, ŝ) ≥
2
√

2|ŝ|. This inequality contradicts the previous bound as
√

7 < 2
√

2 =
√

8.
Conclude that the inductive hypothesis holds and thus the upper bound on segment lengths holds.

Lemma 12. Upon termination of Step 2b, each segment s satisfies

|s| ≤
√

2fs1(s).

This lemma is immediate for most of the segments in the mesh. Any end segment must satisfy this bound
as |s| ≤ 1

2
√

2
fs1 following Step 2a and splitting an end segment can only increase its 1-feature size. Similarly,

for any segment which is a subsegment of a non-end segment which existed at the end of Step 1b, the same
argument applies. This leaves only newly formed non-end segments which are subsegments of end segments
of the mesh produced by Step 1b.

This proof is nearly identical to the proof of Lemma 7. In the base case, any segment which fails he
bound must be queued since adjacent segments have the same length and thus no points on the same input
segment can prevent the segment in question from being queued. In each step of the proof, nearby Delaunay
neighbors of the endpoints a segment are considered. In the Step 1b proof, either these neighbors are
appropriate feature size witnesses to cause the segment to be queued, or they lie on an input segment. In
Step 2b, this is still the case, due to the safety rule. This ensures that the endpoints of segment s will not
have any Delaunay neighbors in any plane containing s within a distance of |s|.
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Figure 22: Initial PLC input and final refined mesh for the pyramid example.

Figure 23: Base of the pyramid following steps 0, 1a, 1b, 2a, and 2b.

6 Examples

The following three examples are given to demonstrate the 3D algorithm for estimating local feature size.

Example 1. The first example is a square pyramid shown in Figure 22. The mesh of the square base produced
following each step of the algorithm can be seen in Figure 23. Similar output for one of the triangular sides
is given in Figure 24.

Example 2. This example consists of a wheel of 20 faces which lies slightly above a disjoint square as depicted
in Figure 25. The mesh of the square base produced following each step of the algorithm can be seen in
Figure 26. Similar output for one of the rectangular “spokes” of the wheel is given in Figure 27. Note that
the algorithm still terminates even in the presence of acute angles in the input. The number of vertices in
the mesh after each step is listed in Table 1.

Example 3. In the final example, we consider a PLC containing two non-convex faces shown in Figure 28.
The refinement of one of these faces is shown in Figure 29.

In these examples, nearby edges typically cause more refinement than nearby faces. This is a result of
Step 2a which causes segments to be split in fourths after they have been refined to realize fs1. This can
also be seen in Theorem 4 as each segment is guaranteed to have length of at least 1

4 lfs(s) or 1
16 fs1(s). A

small fs1 does in practice lead to more refinement than simply a small lfs as was suggested by the constants
in the proof.

The proof of Lemma 11 (and thus Theorem 5) uses Step 2a to ensure a bound on each segment’s length
by lfs1. For some segments, this is an over-refinement since they were refined based on mfs1 and not lfs1.
We continue to study an adaptive variant of Step 2a which attempts to only split segments in fourths when
absolutely necessary.

Figure 24: Side of the pyramid following steps 0, 1a, 1b, 2a, and 2b.
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Figure 25: Wheel example input.

Figure 26: Base plane of the wheel example following steps 0, 1a, 1b, 2a, and 2b.

Figure 27: One ”spoke” in the wheel example following steps 0, 1a, 1b, 2a, and 2b. The center of the wheel
is at the bottom while the disjoint square is to the left of this face.

Figure 28: Example containing non-convex input faces.

Figure 29: One of the faces in Example 3 following steps 0, 1a, 1b, 2a, and 2b.
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Table 1: Number of points in the mesh following each step of the algorithm for the wheel example.

Step 0 1a 1b 2a 2b
Vertices 72 202 518 2,051 11,351

In practice, the algorithm has been seen to terminate even after changing Step 2a to only split segments in
half (instead of fourths). This significantly reduces the output size (often by 50% or more in cases containing
small input angles between faces). In further studies, we will seek to justify this modification of the algorithm
in the proof or give a counterexample showing that the algorithm can fail without performing Step 2a as
specified.
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