
CAPTURE TIME IN VARIANTS OF COPS & ROBBERS GAMES

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Natasha Komarov

DARTMOUTH COLLEGE

Hanover, New Hampshire

July 30, 2013

Examining Committee:

Peter Winkler, Chair

Richard Nowakowski

Sergi Elizalde

Peter Doyle

F. Jon Kull, Ph.D.
Dean of Graduate Studies

Copyright by
Natasha Komarov

2013

Abstract

We examine variations of cops and robbers games on graphs. Our goals are to intro-

duce some randomness into their study, and to estimate (expected) capture time. We

show that a cop chasing a random walker can capture him in expected time n+ o(n).

We also discuss games in which the players move in the dark (showing that a cop can

capture an immobile hider in time n on any graph and any robber in time n on Kn)

and in which the players suffer various restrictions on their movements. Finally, we

consider open problems, including the idea of a patrolling scheme—that is, a plan for

the “beat” a cop ought to walk on a graph in order to maximize the danger for the

robber of committing a crime at any given location.

ii

Acknowledgements

I want to thank all of the people that made it possible for me to get through graduate

school. First of all, thank you to my parents: without your lifelong support I probably

wouldn’t have been in graduate school to begin with (an obvious understatement—I

would not have been here in many senses of the phrase without you). Thank you Asa:

you have always kept things running so smoothly while I worried about this thesis

and the work it contains that it’s taken me a few years to understand how amazing of

a partner you actually are; you’ve also changed for the better my entire mental layout

about life, math, and everything. Thank you Misha and Oliver, for being there.

Thank you to my advisor, Peter Winkler: you’ve been a great advisor, and I

don’t think there’s anything more for which I could have asked. Thank you also

to the rest of my thesis defense committee: Richard Nowakowski, Peter Doyle, and

Sergi Elizalde. And finally, thank you to all of the people I’ve spoken with over the

years who have given me ideas, directly or indirectly, that have fed into my work. In

particular, the work in Chapter 2 benefited from conversations at Microsoft Research

in Redmond, Washington with Omer Angel, Ander Holroyd, Russ Lyons, Yuval Peres,

and David Wilson.

iii

Contents

Abstract . ii

Acknowledgements . iii

1 Introduction 1

1.1 History of Pursuit and Evasion Games 3

1.2 Assumptions and Notation . 4

1.2.1 General assumptions . 4

1.2.2 Notation . 4

2 Cops & Drunks 6

2.1 Preliminaries . 7

2.2 The Smarter Cop . 11

2.2.1 Intuition . 11

2.2.2 Gross Progress . 13

2.2.3 Fine Progress . 15

2.3 Generalizations and Variations . 24

3 Cops in the Dark: Depth First Pursuit 26

3.1 Cops & Sitters . 26

iv

3.1.1 Player Strategies . 27

3.1.2 Value of the Cop vs. Sitter Game 33

3.2 Cops & Robbers on Kn . 42

3.2.1 Expected Capture Time . 43

3.3 Depth First Pursuit on a Binary Tree 47

4 Hunters & Moles 52

4.1 A Characterization of Hunter-Win Graphs 52

4.1.1 Some Hunter-Win Graphs . 53

4.1.2 Mole-win Graphs . 56

4.1.3 Characterization . 61

4.2 Optimality of the Hunter Strategy . 63

4.3 Hunter vs. Sneakier Mole . 65

4.4 Appendix to Chapter 4 . 76

4.4.1 Hunter vs. Mole: An Algebraic Approach and Hunter-Win Strat-

egy Generation . 76

4.4.2 Hunter vs. Mole: Winning Strategy Generating Code 78

5 Cops & Gamblers 81

5.1 Cop vs. gambler on Pn . 82

5.2 Cop vs. gambler on a tree . 83

5.3 Cop vs. gambler on a general graph 84

5.4 Cop vs. unknown gambler . 86

6 Capture Time in (Traditional) Cops & Robbers 96

6.1 Undirected Graphs . 97

v

6.2 Directed Graphs . 101

6.3 Graph Pairs . 103

6.4 Future Work . 104

7 Speculation and Future Directions 106

7.1 Summary of Results . 106

7.2 Further Investigations into Capture Time 109

7.2.1 Cop vs. Visible Robber . 109

7.2.2 Cop vs. Invisible Robber . 110

7.3 Patrolling Schemes . 113

7.3.1 Example: α-momentum cop on C4 113

7.3.2 Topology on the space of legal walks 117

7.3.3 Patrolling schemes . 118

7.3.4 Optimal patrolling schemes 122

7.3.5 Example: Optimal patrolling scheme on K3 127

References 130

vi

List of Tables

3.1 A table of the cop’s and robber’s heights during the first half of a DFP

on a tree of height 4 (where pt = P(capture at t)). 50

6.1 A table of the robber’s moves . 101

vii

List of Figures

2.1 The Ladder to the Basement . 11

2.2 At least 4 steps are required to secure a useful bound on a random

walk’s progress . 17

2.3 Our (alleged) counterexample G . 19

4.1 A diagram of the mole’s choices on Cn given any hunter move sequence 58

4.2 The graph S . 58

4.3 A diagram of the mole’s choices given any hunter move sequence . . . 61

4.4 A diagram of the mole’s choices after the hunter’s first arrival at the

loop . 68

4.5 An example of a lobster with a loop, separated into L and R 69

4.6 The graphs G1, G2, and G3 . 72

4.7 A diagram of the mole’s choices in G1 given any hunter move sequence 74

4.8 A diagram of the mole’s choices in G2 given any hunter move sequence 75

4.9 A diagram of the mole’s choices in G3 given any hunter move sequence 75

6.1 H: A cop-win graph with a unique corner 99

6.2 H(11) . 100

viii

6.3 The ring digraph R(7) . 102

6.4 A digraph with one cop edge . 104

7.1 The Ladder to the Basement . 109

7.2 The graph B12,4 . 110

7.3 The cycle C4. 114

7.4 Graph of the functions W1(α), W2(α), and W3(α). 116

ix

Chapter 1

Introduction

The game of cops and robbers on graphs was introduced independently by Nowakowski

and Winkler [41] and Quilliot [44], and has generated a great deal of study; see, e.g.,

[8, 11, 25, 27]. In the original formulation a cop and robber move alternately and

deliberately, with full information, from vertex to adjacent vertex on a (finite, con-

nected, undirected, and simple) graph G, with the cop trying to capture the robber

and the robber trying to elude the cop. The game continues until the cop has cap-

tured the robber, if such a time occurs. A graph is said to be “cop-win” if there is a

vertex u such that for every v, the cop beginning at u can capture the robber begin-

ning at v in finite time. Otherwise it is “robber-win.” In addition to their obvious

role in pursuit games, cop-win graphs—also known as “dismantlable” graphs—have

appeared in diverse places including statistical physics [13, 14].

Much work has been done in the study of the “cop number” of a graph [5, 8, 17]—

that is, the number of cops necessary in order to make the graph cop-win. For more

on the cop number, the reader is invited to read about Meyniel’s conjecture [21]

and, for instance, the study of cop number on special cases of graphs [33], in games

1

Introduction

in which the robber may have a different speed than the cop [20, 22, 40], in which

capture may occur from a distance [10], and many other variants. These results apply

in the deterministic version of the game originally presented—generally, games are

played with full visibility. We are largely interested in variations involving lacking

information in some way.

For instance, what happens in the version of the game in which the robber is

moving according to a random walk? Then one cop will certainly suffice (see the

introduction of Chapter 2), but now the question we would like to answer is how long

this game takes (in expected time)—and indeed find that the answer is still around

n (as it is in the original deterministic formulation). The question of capture time

in the original cops and robbers game has been thoroughly considered on undirected

graphs [8, 24]. For more on capture time in the original variation, including on more

general graphs, see Chapter 6.

What if both players remain in control of their fates and are free to choose their

respective strategies, but the games are played in the dark? The same question

interests us again. In the work that follows, we will discuss several different and

independent variations of this game, with varying restrictions being placed on either

player. However, we are (nearly) always going to be bound by this unifying theme

posed by the question—“How long does it take the cop to win?” Sometimes, this will

mean that we are considering a class of graphs on which the cop can win (an analog

of the dismantlable graphs in the original formulation to an alternate version of the

game, as in Chapter 4) and seeing how long this can take in the worst case. Much of

the time, we are going to be more interested in bounding the expected capture time

in the case of a game whose set-up allows a single cop to win with probability 1.

2

1.1 History of Pursuit and Evasion Games

1.1 History of Pursuit and Evasion Games

“Cops and Robbers” is an example of a class of games called “pursuit and evasion.”

The study of pursuit and evasion type games has its roots in the mathematical study

of military strategy dating back to destroyer vs. submarine problems during World

War I and later, missile guidance systems in the 1950’s ([30]). These were generally

set in a continuous-time setting. In 1976, Torrence Parsons first described a variant

of pursuit-evasion played on a graph [42]. Though there are many variations, they

are generally classified under the headings of continuous pursuit-evasion as in the

geometric formulation (e.g. hunter and rabbit [1], princess and monster [30], the

homicidal chauffeur problem [30], the Apollonius pursuit problem [31], and many

others) and discrete pursuit-evasion: the graph theoretic formulation. In the present

work, we will primarily be interested in the latter.

There are a number of applications of pursuit and evasion games. In addition to

the military work from which the concept originated, there are a number of applica-

tions in robotics (such as collison-avoidance [30], air-traffic control [7], and surveillance

[30]) and even search-and-rescue: in graph searching, we often have a searcher (who

acts much as the pursuer in a pursuit and evasion game) and a usually invisible hider

(one who may be mobile or immobile). For more on graph searching, see [3, 4, 19]

among others. An intimately related field is that of graph cleaning (see [35] and [39]

for the original formulation of this game). Graph cleaning generally consists of pipes

(edges) that must be cleaned of some contaminant (perhaps a contaminant that can

regenerate), and of brushes that sit at vertices and can be dispersed along the pipes to

clean them. The usual interest in graph cleaning is to determine the minimal number

of brushes needed to clean a graph. For some other examples of graph cleaning, see,

3

1.2 Assumptions and Notation

e.g. [2, 37, 38].

1.2 Assumptions and Notation

1.2.1 General assumptions

We will assume unless otherwise noted that all games are played on a graph G which

is finite, undirected, connected, and simple (that is, it contains no loops or multiple

edges). When not stated otherwise, any discussion of random walks may be assumed

to be about non-lazy random walks—that is, the walker is forced to move at each

step (and given the lack of loops in the graph on which he is walking, this means he

changes his location at each step).

We will have differing assumptions in various chapters about the progress of the

game in question. We will therefore point out in each chapter whether the players’

initial positions are known, whether their movements are visible to the other player,

and whether they move alternately or simultaneously. For a summary of the major

assumptions considered, please see the organizational chart in Section 7.1.

1.2.2 Notation

We will suppose that the graph G on which the games take place have vertex set V (G)

and edge set E(G), where |V (G)| = n and |E(G)| = m. The maximum degree of G

is denoted ∆(G) (or ∆ where there is no possibility of confusion) and for any vertex

v ∈ V (G), deg(v) = |NG(v)| denotes the degree of v (i.e. the number of neighbors v

has). We use the notation {1..n} to denote the integers between 1 and n (inclusive).

For any t ≥ 0, by ct and rt we will denote the positions of the cop/hunter and the

4

1.2 Assumptions and Notation

adversary (robber/mole/gambler/drunk), respectively.

5

Chapter 2

Cops & Drunks

We now consider a variation suggested by Ross Churchley of the University of Victoria

[34], in which the robber is no longer in control of his fate; instead, at each step he

moves to a neighboring vertex chosen uniformly at random. We may therefore imagine

that the robber is in fact a drunk—one who is too far gone to have an objective. As

in the original game, the players move alternately and with full information (though

this information is of course of no use to our inebriated adversary). In this variation,

a “move” (as in chess) will consist of a step by the cop followed by a (uniformly

random) step by the drunk. Capture or “arrest” takes place when the cop lands on

the drunk’s vertex or vice-versa, and the capture time T is the number of the move

at which this takes place.

On any graph, the drunk will be caught with probability one, even by a cop who

oscillates on an edge, or moves about randomly; indeed, by any cop who isn’t actively

trying to lose. The only issue is: how long does it take? The lazy cop will win in

expected time at most 4n3/27 (plus lower-order terms), since that is the maximum

possible expected hitting time for a random walk on an n-vertex graph [12]; the same

6

2.1 Preliminaries

bound applies to the random cop [16]. It is easy to see that the greedy cop who

merely moves toward the drunk at every step can achieve O(n2); in fact, we will show

that the greedy cop cannot in general do better. Our smart cop, however, gets her

man in expected time n+o(n). Note that when the adversaries play on a lollipop

graph consisting of a clique of size cn1/3 (for some constant c ∈ R) with a path of

length n−cn1/3 attached at one end, with the drunk starting in the clique and the

cop starting at the opposite endpoint of the path, the expected capture time will be

n−Θ(n1/3) = n− o(n), and we conjecture that this is worst possible.

2.1 Preliminaries

Let us consider some examples. (1) Suppose G is the path Pn on n vertices. Then

the cop will (using any of the algorithms we consider later) move along the path until

she reaches the drunk; this will take expected time about n−
√
n since a random walk

on a path will on average progress about distance
√
t in time t.

(2) Let G be the complete balanced bipartite graph Kbn/2c,dn/2e, with the cop and

the drunk beginning on the same side. Then the poor cop will find herself always

moving to the opposite side from her quarry until, finally, he runs into her; since the

latter event occurs with probability about 2/n, arrest takes on average n/2 steps.

The reader may feel with some justification that we are being unrealistic in not

allowing the cop to stay put; in example (2), sitting for one move would enable her

to catch the drunk on the next move. Ultimately, we force the cop to move at each

step in order to hold her to the same constraints as her quarry’s, and because it gives

us the strongest results. Our bounds still apply when the cop, the drunk, or both are

allowed to stay put on any move.

7

2.1 Preliminaries

Even when the cop is permitted to idle, she cannot expect to catch the drunk

in time bounded by a function of the diameter of G. For example (3), let G be the

incidence graph of a projective plane of order n. A projective plane P of order n is

a collection of objects called “points” and sets of points called “lines” satisfying the

following conditions:

(a) Two points determine a unique line.

(b) Two lines intersect in a unique point.

(c) Every line consists of exactly n+1 distinct points.

(d) Every point lies on exactly n+1 distinct lines.

Furthermore [28],

(e) P contains exactly n2 + n+ 1 distinct points.

(f) P contains exactly n2 + n+ 1 distinct lines.

Projective planes of order n are known to exist for n = pa for any prime number

p and positive integer a [15]. The incidence graph G of P is therefore a graph with

2(n2 + n + 1) vertices, with adjacency relation u ∼ v if u is a point in P and v is

a line that goes through u, or vice versa. Such graphs have bounded diameter but

unbounded expected capture time:

Claim 1. diam(G) = 3.

Proof. Let a, b be two points in P . By condition (1) above, a and b both

lie on a common line, so d(a, b) = 2. If a, b are instead two lines in P ,

then condition (2) says that a and b intersect at a common point. Finally,

8

2.1 Preliminaries

if a is a point and b is a line in P , then either a lies on b and so d(a, b) = 1

or there is another point, c, which does lie on b. But by the previous

argument, d(a, c) = 2 and so d(a, b) = 3.

Claim 2. The girth of G is 6.

Proof. Note that G has no odd cycles by the independence of the set of

points (and respectively, set of lines). Now assume for sake of contra-

diction that G contains a cycle of length 4. Then there are two points

p1, p2 and two lines `1, `2 such that p1, `1, p2, `2, p1 forms a cycle. But this

contradicts condition (2) since `1 and `2 must intersect in p1 as well as

p2.

Claim 3. G is regular of degree r = n+1 (approximately
√
|V (G)|/2).

Proof. By conditions (3) and (4).

Claim 4. The expected capture time on G is at least r.

Proof. When the cop gets to distance 2 away from the drunk, the drunk

has only one bad move out of r; the rest keep him at distance at least 2.

(Similarly, if the cop gets to distance 1, bypassing ever being at distance

2, the drunk still has only one bad move out of r, the rest of which keep

him at distance 1.) Hence the cop’s expected capture time cannot be any

lower than r (the expected number of independent Bernoulli trials, each

with success probability 1/r, until success is achieved).

9

2.1 Preliminaries

On the other hand, it is not hard to verify that on any regular graph, the greedy

cop—who minimizes her distance to the drunk at each move—wins in expected time

at most linear in n. If G is regular of degree r, its diameter cannot exceed 3n−r−3
r+1

[45]. Since the drunk will step toward the cop with probability at least 1/r at each

move, resulting (after her response) in a decrease of 2 in their distance, the expected

capture time is bounded by r · diam(G)/2 < 3n/2.

The linear bound also holds on trees. To see this, we proceed by induction on

the size of the tree, n. When n = 2, the capture time is clearly less than n (since

the drunk will run into the cop on his first move). Now suppose that on any tree

with t < n vertices, the expected capture time is at most t, and let T be a tree

on n vertices, rooted at c0 (the cop’s initial position). For all descendants v of c0,

let Tv be the subtree of T consisting of v and all of its descendants. So the game

begins on T = Tc0 , and after the first move, since the drunk cannot get “behind”

the cop without being caught, the game is being played on Tc1 where c1 is the cop’s

position after one step. (Note that by the greedy strategy, c1 is the unique neighbor

of c0 which is on the path from c0 to r1, the drunk’s position after he takes his first

step.) |V (Tc1)| ≤ |V (Tc0)|− 1 = n− 1 so by the induction hypothesis, the game takes

expected time less than n−1 on Tc1 and therefore less than n on T .

For general G, one can guarantee only that at a given point in time the drunk

will step toward the cop with probability at least 1/∆, giving a bound of order n2

for the greedy cop. That may appear to be a gross overestimate, especially in light

of the special cases discussed above, but a graph with many high-degree vertices can

still have large diameter. For example (4), consider the following graph.

The “ladder” in this graph consists of two copies of the path Pn/4 with each pair of

10

2.2 The Smarter Cop

Figure 2.1: The Ladder to the Basement

corresponding vertices connected by an edge. The “basement” consists of a complete

bipartite graph, Kbn/4c,dn/4e. We begin with the drunk inside the basement, and the

cop on the far end of the ladder. While the drunk is meandering inside the basement,

the cop—staying true to her goal of minimizing the distance between her and the

drunk at each step—is alternating between the two paths. Note that we assume she

makes the foolish choice when she is presented with several options by her algorithm.

It takes the drunk n/4 moves on average to leave the basement, and each time this

occurs, the cop will decrease the distance by 2 by traveling along her current path.

Therefore the capture will require an average of about (n/4)2/2 steps.

2.2 The Smarter Cop

2.2.1 Intuition

As noted in example (4) with the “ladder to the basement” graph, a foolish greedy

cop can be foiled by her desire to “retarget” too often. That is, since she updates the

target vertex (to which she is trying to minimize her distance) at each step, she is

made indecisive by an indecisive drunk. One natural solution to this problem would

be to walk directly toward the robber’s initial position in the basement for several

11

2.2 The Smarter Cop

steps before retargeting. Continuing in this way, the cop makes steady progress,

ultimately catching the drunk in time less than n.

In general, if a cop and drunk begin at distance d on a graph, and the cop proceeds

by retargeting every four steps, then by Lemma 2.2 below, it would take

4(4n2/3)(d− 3) (2.1)

moves to get down to distance less than four. Since d can be as large as n − 1, this

would not suffice to yield our promised bound of n+o(n), so the cop must first do

something else to get her distance to the drunk down without spending too much

time doing so—hence the following four-stage strategy.

For i ∈ [4], let Ti be the time spent in Stage i and Di be the distance between the

two players at the end of Stage i. In the first stage, the cop heads directly for the

drunk’s initial position, x, so that T1 ≤ diam(G). In the meantime, the drunk has

gone somewhere else, and so suppose that by the time that the cop reaches x, the

drunk is at y. Now we are in Stage 2, and the cop heads for y. We show E[T2] = o(n).

During Stage 3, the cop updates her “target” every four steps, and we show that the

expected time for this stage, E[T3], is again bounded by o(n). This stage ends when

we are at distance at most three from the drunk. In Stage 4, the cop waits for the

drunk to make an error, which happens in expected time at most ∆ and results in

the capture of the drunk. All together, this cop captures the drunk in expected time

n + o(n). We will refer to the progress made by the cop in the first two stages as

“gross progress,” and in the last two stages as “fine progress.” In order to prove the

bounds claimed above, it will be beneficial to have a few lemmas.

12

2.2 The Smarter Cop

2.2.2 Gross Progress

Suppose that the drunk starts on vertex u and the cop starts at v. As noted in the

set-up of the previous section, in the first stage of the cop’s strategy, she is concerned

only with getting to u (even if this may not decrease her distance from the drunk at

the end of the stage). Clearly the time this takes is equal to T1 = d(v, u) ≤ diam(G).

We would like to get a bound on E[D1], the expected distance between the cop and

the drunk at the end of this stage. For that, the following lemma will prove quite

useful.

Lemma 2.1. Let Tn,t be the distance covered in time t by a random walk on a (con-

nected) graph with n vertices. Then E[Tn,t] < 1 +
√
t
√

1 + 5 log n.

Proof. Let pt(x, y) be the probability that a random walk that starts at vertex x will

be at vertex y in exactly t steps. The Varopoulous-Carne bound [47], as formulated

in [43], says

pt(x, y) ≤
√
e

√
deg(y)

deg(x)
exp

(
−d(x, y)2

2t

)
where d(x, y) is the graph distance between the two vertices. Therefore, if we consider

the random walk x0, x1, . . . , xt on a graph of size n and let c ∈ R be any constant, we

have the following bound as a corollary of Varopoulos-Carne:

P(d(x0, xt) ≥ c
√
t) =

∑
y:d(x0,y)≥c

√
t

pt(x0, y)

≤
∑

y:d(x0,y)≥c
√
t

√
e

√
deg(y)

deg(x0)
exp

(
−d(x0, y)2

2t

)

13

2.2 The Smarter Cop

<
∑

y:d(x0,y)≥c
√
t

√
e
√
n exp

(
−c

2t

2t

)

< n3/2 exp

(
1− c2

2

)

Letting c =
√

1 + 5 log n therefore yields that P(d(x0, xt) ≥
√

1 + 5 log n
√
t) <

1

n
.

Note that E[d(x0, xt)] < pn + (1 − p)c
√
t, where p = P(d(x0, xt) ≥ c

√
t), so we

have

E[d(x0, xt)] ≤
1

n
n+ c

√
t

= 1 +
√
t
√

1 + 5 log n

as desired.

This bound is not tight, but it will be good enough to give us the o(n) bound we

seek on E[T2].

Recall that D1 is the distance between the two players at the end of Stage 1.

Note that this is equivalent to the distance between the drunk’s initial position and

his position at the end of Stage 1. We have the following immediate corollary of

Lemma 2.1.

Corollary 2.1. E[D1] ≤ 1 +
√
n
√

1 + 5 log n.

Now the cop enters Stage 2. We would like to bound E[D2]. Note that this is

equivalent to the expected distance traveled by the drunk in Stage 2.

Corollary 2.2. E[D2] < (5 log n)3/4n1/4

14

2.2 The Smarter Cop

Proof. Using Lemma 2.1, Jensen’s inequality for concave functions, and Corollary 2.1,

we get

E[D2] ≤
n∑
k=0

P(D1 = k)(1 +
√
k
√

1 + 5 log n)

= 1 +
√

1 + 5 log nE[
√
D1]

≤ 1 +
√

1 + 5 log n
√
E[D1]

≤ 1 +
√

1 + 5 log n

√
1 +
√
n
√

1 + 5 log n

< (5 log n)3/4n1/4

Now we are done with the “gross progress” that the cop makes in Stages 1 and 2.

Note that the total expected time to complete these two stages is bounded by

E[T1] + E[T2] ≤ diam(G) + 1 +
√
n
√

1 + 5 log n.

2.2.3 Fine Progress

At the conclusion of stage 2, the cop’s approach changes. Now she retargets every

4 moves. We make this notion precise in the following manner.

For each integer j ≥ 1 let xj, yj be the drunk’s and cop’s positions, respectively, at

time j (with it being the drunk’s turn to move). Then in Stage 3, while d(xj, yj−1) ≥ 4,

for all j of the form 4i+1 for some nonnegative integer i, the cop chooses x4i+1 as

her target and proceeds along a geodesic toward that target for the next four steps.

Consequently, the cop’s target changes every 4 moves, so that for each integer i ≥ 0,

15

2.2 The Smarter Cop

she has target x4i+1 at times 4i + 1, 4i + 2, 4i + 3, and 4i + 4. If at time j = 4i + 1,

d(xj, yj−1) < 4, Stage 3 terminates and the cop’s strategy moves into Stage 4, which

will be described after the following lemma.

Lemma 2.2. Let G be any graph and let x0 ∈ V (G) be any vertex in G. Let

{x0, x1, x2, . . . } be any random walk on G beginning at x0. Then P(d(x0, x4) < 4) ≥

1/s, where s = 4n2/3.

Before we prove this lemma, note that we could not get away with looking at the

first three steps of a random walk. That is, we could not get a bound for P(d(x0, x3) <

3) that would be useful in Equation 2.1. Consider the following example: we have a

graph G with a vertex x0. Let Ak be the set of vertices at distance k from x0. Suppose

that G looks like Figure 2.2. That is in G, |A1| = 1 and |A2| = |A3| =
n− 2

2
. Assume

also that there are no edges within Ak for any k—that is,

|NG(v) ∪ Ak| = ∅

for all v ∈ Ak. Call any step by the random walker that guarantees d(x0, x3) < 3 a

“stall.” Then the probability of a stall occurring at the second step is
1

(n− 2)/2 + 1
=

2

n
, and the probability of a stall occurring at the third step is

(
1− 2

n

)(
2

n

)
since for

each vertex in A2 and A3, there is one edge on the path toward x0 and
n− 2

2
edges

leading farther away from x0. So then P(d(x0, x3) < 3) =
2

n
+

(
1− 2

n

)
2

n
<

4

n
.

We now begin the proof of Lemma 2.2.

Proof. We proceed by assuming a graph G and a vertex x0 ∈ V (G) exist such that

there is a random walk {x0, x1, . . . } with the property P(d(x0, x4) < 4) < 1/s, and

we shall derive a contradiction.

16

2.2 The Smarter Cop

|A2| = n/2-1 |A3| = n/2-1

Figure 2.2: At least 4 steps are required to secure a useful bound on a random walk’s
progress

Let Ak be the set of vertices at distance k from x0, and let ak = |Ak| for all k. We

adapt the terms in-degree and out-degree to mean the following:

Let v ∈ Ak. Then the in-degree of v is deg−(v) = |NG(v) ∩ Ak−1| and the out-

degree of v is deg+(v) = |NG(v) ∩ Ak+1|. The corresponding term of out-edges of v

will mean the number of edges with one end at v and the other end in Ak+1. We will

use the notation pG for the quantity under investigation, P(d(x0, x4) < 4), and for a

vertex v ∈ V (G), we define pk(v) to be the quantity P(d(x0, x4) < 4|xk = v). Note

that p0(x0) = pG and pk(v) = 1 if v ∈ Aj for some j < k. Finally, we call any step by

the random walker that guarantees d(x0, x4) < 4 a “stall.”

We will break this proof into several statements.

Claim 2.1. Let G′ be the graph defined by removing all edges between x0 and all but

one vertex, x1, where p1(x1) = min
v∈A1

p1(v). Then pG′ ≤ pG.

Proof. Since pG < 1/s, there must exist a vertex v ∈ A1 with p1(v) < 1/s. Choose x1

such that p1(x1) = min
v∈A1

p1(v) and define G′ as in the statement of the claim. Then

pG′ = p1(x1) ≤ 1

a1

∑
v∈A1

p1(v) = pG.

17

2.2 The Smarter Cop

Claim 2.2. Let G′′ be the induced subgraph of G′ with V (G′′) = V (G′)−
⋃
k>4

Ak and

with all edges removed except those that are between a vertex in Ak−1 and a vertex in

Ak for k ∈ {1, 2, 3, 4}. Then pG′′ ≤ pG′.

Proof. Let Ĝ′ be the induced subgraph of G′ on the vertices V (G′)−
⋃
k>4

Ak for k > 4.

Then since P(xt ∈ Ak) = 0 when t ≤ 4 and k ≥ 5 (so in particular, pĜ′ and pG′

depend only on the first four steps of a random walk originating at x0), we have that

pĜ′ = pG′ .

Let k ∈ {1, 2, 3, 4} and let v ∈ Ak be a vertex in V (Ĝ′) with NĜ′(v) ∩ Ak 6= ∅. If

no such vertex exists then Ĝ′ = G′′. Otherwise, let deg−(v) = q, deg+(v) = r, and

|NĜ′(v) ∩ Ak| = t > 0. pk(v) ≥ q + t

q + r + t
. Removing the t vertices in NĜ′(v) ∩ Ak

decreases pk(v) to
q

q + r
, since:

t > 0 =⇒ q2 + q + qr + tr > q2 + q + qr

=⇒ (q + t)(q + r) > q(q + r + t)

=⇒ q + t

q + r + t
>

q

q + r

Now let G′′ be derived from Ĝ′ by removing all edges except for those that are

between Ak−1 and Ak. (In particular, this means that for all k ∈ [4], for all v ∈

Ak ∩ V (G′′), NG′′(v)∩Ak = ∅.) This decreases pk(v) for all vertices v with neighbors

w such that d(x0, v) = d(x0, w) and does not change pk(v) for all vertices v with no

such neighbors. Since

pG′′ ≤
1

|NG′′(x1)|
∑

u∈NG′′ (x1)

1

|NG′′(u)|
∑

v∈NG′′ (u)

1

|NG′′(v)|
∑

w∈NG′′ (v)

p4(w)

18

2.2 The Smarter Cop

we have that pG′′ ≤ pĜ′ .

In view of Claims 2.1 and 2.2 above, we may assume that G has the following

properties: NG(x0) = x1, the only edges in G are between Ak−1 and Ak for k ∈ [4],

and Ak = ∅ for all k > 4.

Figure 2.3: Our (alleged) counterexample G

Now define Gk ⊆ G to be the induced subgraph of G on the vertices Ak ∪ Ak+1

and let ek = |E(Gk)|.

Claim 2.3. e2 > s(s− 1).

Proof. We claim that the average degree of vertices in A2 is greater than s: Let

{di}a2i=1 be the degrees of the vertices in A2 and let d =

a2∑
i=1

di. The vertex x2 is

chosen uniformly at random in A2, and the probability of stalling at a vertex with

degree di is
1

di
. Therefore the probability of stalling at A2 is

1

a2

a2∑
i=1

1

di
. We have

1/s >
1

a2

a2∑
1

1

di
=

1

H({di})
≥ a2/d

19

2.2 The Smarter Cop

where H({di}) is the harmonic mean of the di. (Note that this follows from the

fact that the harmonic mean is always less than or equal to the arithmetic mean.)

Consequently, d/a2 > s. Thus the average out-degree from A2 is greater than s− 1,

which implies that there are more than s(s− 1) edges between A2 and A3.

Claim 2.4. Let B be the subset of A2 consisting of vertices with more than half of

their outedges going to C, the subset of A3 consisting of vertices with in-degree less

than n1/3. Let b = |B| and c = |C|. Then b < 1
2
a2.

Proof. Define eB to be the number of edges with one endpoint in B and the other in

A3. Note that c ≤ a3 < n − a2 ≤ n − 4n2/3 and consequently the number of edges

with one endpoint in A2 and the other in C is less than n(n1/3 − 4n2/3). Since more

than half of the outedges of each vertex in B terminate in a vertex in C, this says

that eB < 2n1/3(n− 4n2/3) = 2n4/3 − 8n.

Now assume, for sake of contradiction, that b ≥ 1
2
a2. Then

P(x2 ∈ B) = P(x2 ∈ B|x2 ∈ A2)P(x2 ∈ A2) ≥ 1

2

s−1

s

so we have

1/s > pG

= P(d(x0, x4) < 4|x2 ∈ B)P(x2 ∈ B) + P(d(x0, x4) < 4|x2 /∈ B)P(x2 /∈ B)

>
s−1

2s
P(d(x0, x4) < 4|x2 ∈ B)

which says that P(d(x0, x4) < 4|x2 ∈ B) <
2

s− 1
.

Let f =
b∑
i=1

di where {di}bi=1 are the degrees of the vertices in B. For each vertex

20

2.2 The Smarter Cop

in B, P(d(x0, x4) < 4|x2 ∈ B; deg(x2) = di) =
1

di
. Since x2 is chosen uniformly at

random, we have

2

s− 1
> P(d(x0, x4) < 4|x2 ∈ B) =

1

b

b∑
i=1

1

di

=
1

H({di}b1)

≥ 1

(1/b)f
=
b

f

The average out-degree from B is
f

b
− 1 and so we get eB ≥ b

(
f

b
− 1

)
≥

s

2

(
s−1

2
− 1

)
= 4n4/3 − 3n2/3. This is a contradiction since

eB < 2n4/3 − 8n < 4n4/3 − 3n2/3

for all integers n ≥ 1.

Consequently, b < 1
2
a2.

Claim 2.5. The probability that x3 ∈ A3\C (given x3 ∈ A3) is greater than 1/4.

Proof. If x2 ∈ A2 then with probability greater than 1/2, x2 ∈ A2\B. By definition,

more than half of the out-edges of a vertex in A2\B terminate in A3\C, and x3 is

chosen uniformly at random from the neighbors of x2. This yields

P(x3 /∈ C|x3 ∈ A3) = P(x3 /∈ C|x2 ∈ B)P(x2 ∈ B) + P(x3 /∈ C|x2 /∈ B)P(x2 /∈ B)

and therefore

P(x3 /∈ C|x3 ∈ A3) ≥ P(x2 /∈ B|x2 ∈ A2)P(x3 /∈ C|x2 /∈ B) > (1/2)(1/2) = 1/4,

21

2.2 The Smarter Cop

as desired.

Note that P(d(x0, x4) < 4|x3 ∈ A3\C) =
deg+(x3)

deg(x3)
>
n1/3

n
. Therefore the proba-

bility of stalling at step 3 is greater than (1/4)
n1/3

n
= 1/s, yielding a contradiction.

Let j = 4i + 1 be such that the game is in Stage 3 at time j, and let xj, yj be

the positions of the drunk and cop, respectively, after both have moved (so that it is

the drunk’s turn). By Lemma 2.2 we have that d(xj, xj−4) < 4 with probability at

least 1/s, where s = 4n2/3. Consequently, since the cop had xj−4 as her target, we

now have d(yj, xj) < d(yj−4, xj−4) (so the distance has decreased by at least 1) with

probability at least 1/s. Let Yi be a random variable which equals the decrease in

distance between time 4(i− 1) and 4i. Yi is 0 with probability less than 1− 1/s and

is ≥ 1 with probability at least 1/s.

Consider the 0-1 random variable Xi with P(Xi = 1) = 1/s for all i (note E[Xi] ≤

E[Yi] for all i). Let Sn = X1 + · · ·+Xn, for all n ∈ N. Consider the random process

{Xi : i ∈ N} with the stopping rule that says the process terminates at time τ if

Sτ = D2−3. By Wald’s identity [48], E[Sτ] = E[τ]E[Xi]. Since E[Sτ] = E[D2]−3, we

have that the expected stopping time E[τ] =
E[D2]− 3

1/s
. This is the expected number

of retargetings needed to get Sτ = D2 − 3, so we have

E[T3] ≤ 4E[τ] = 4s(E[D2]− 3) < 4((5 log n)3/4n1/4 − 3)(4n2/3)

Stage 3 terminates when the distance between the cop and the drunk is less

than four, and it is the cop’s turn. In Stage 4, which terminates when the drunk

is captured, the cop uses the greedy strategy, defined as follows. Suppose that the

strategy enters Stage 4 at time t, during which time the drunk is at vertex xt and the

22

2.2 The Smarter Cop

cop is about to move from vertex yt−1. Then d(xt, yt−1) ≤ 3, and the cop moves such

that d(xt, yt) ≤ 2. Now for any r > t, if the drunk moves such that d(xr, yr−1) = 3,

the cop can choose yr to ensure that d(xr, yr) = 2. For each r, with probability at

least 1/∆, the drunk moves “toward” the cop—i.e., such that d(xr, yr−1) = 1; if that

happens, the cop can choose yr = xr, capturing the drunk. This takes at most ∆

expected moves, so E[T4] ≤ ∆ where T4 is the expected time spent in Stage 4.

Adding together our results about the expected time to complete each of the four

stages yields the following bound on the expected capture time:

4∑
i=1

E[Ti] ≤ diam(G) + E[D1] + 16n2/3(E[D2]− 3) + ∆

< diam(G) + 1 +
√
n(1 + 5 log n) + 4((5 log n)3/4n1/4 − 3)(4n2/3) + ∆

= diam(G) + ∆ + o(n)

In fact, we can bound diam(G)+∆ with a bit of graph theory.

Lemma 2.3. For any graph G with |V (G)|=n, diam(G) + ∆ ≤ n+ 1.

Proof. Assume, for sake of contradiction, that there is a graph G such that diam(G) >

n − ∆ + 1. Let u, v, w ∈ V (G) be (not necessarily distinct) vertices in G such that

deg(v) = ∆ and d(u,w) = d ≥ n−∆ + 2. Now we break this proof into two cases:

Case 1: v lies on a shortest path between u and w.

Let P1 be a shortest u − − − w path containing v. At most two neighbors of v

may lie on P1, so there are at least ∆− 2 vertices not on P1. Since the length of P1

is at least ≥ n−∆ + 2, there are at least n−∆ + 3 vertices in P1. But now we have

that |V (G)| ≥ ∆− 2 + n−∆ + 3 > n, which is a contradiction.

Case 2: v is not on any shortest u−−− w path.

23

2.3 Generalizations and Variations

Let P2 be a shortest u−−−w path. If more than 2 neighbors of v are in P2, then

v is also on a shortest u − − − w path (let x1, x2, and x3 be the neighbors of v on

P2, appearing in that order; then the section involving the three neighbors of v could

be replaced with x1 − v − x3 to create another shortest u−−− w path). Therefore

there are at least ∆− 1 vertices not on P2 (v and ∆− 2 of its neighbors), and at least

n − ∆ + 3 vertices on this path. So once again, |V (G)| ≥ ∆ − 1 + n − ∆ + 3 > n,

which is a contradiction.

Therefore diam(G) ≤ n−∆ + 1 for all graphs G.

Therefore we have the following theorem about the expected capture time.

Theorem 2.1. On a connected, undirected, simple graph on n vertices, a cop with

the described four-stage strategy will capture a drunk in expected time n+o(n).

2.3 Generalizations and Variations

The reader may, for instance, have noticed that in Example (4) in Section 2.1, we

considered a cop who was not only greedy but also rather insistently foolish. What

about the greedy cop who makes distance-minimizing decisions at random? The

“ladder to the basement” graph is no longer a problem for her, (the expected capture

time in this example is now less than n). Is it possible that the greedy algorithm with

disputes settled by a random decision between choices is enough to guarantee time

n+o(n)?

It is also possible that a deterministic greedy cop who breaks ties by considering

her distance to vertices previously occupied by the drunk will capture in expected

time at most n+o(n).

24

2.3 Generalizations and Variations

An alternative greedy strategy, suggested by Andrew Beveridge [9], concerns itself

with minimizing the drunk’s expected hitting time to the cop at every step. It would

be interesting to see if this strategy also has expected capture time at most n+ o(n).

Another problem to consider is that of the “invisible” drunk. That is, we are

once again in the cop vs. drunk situation, but this time, the cop has no information

about her opponent’s whereabouts until she captures him, again by simultaneously

occupying the same vertex. For more thoughts on this variation, see Chapter 7.

25

Chapter 3

Cops in the Dark: Depth First

Pursuit

In this chapter, we consider a version of Cops and Robbers played in the dark—

that is, the players are invisible to each other. We consider a particular strategy for

the cop: depth first pursuit. We investigate how well this strategy performs against

invisible adversaries in several different environments.

3.1 Cops & Sitters

In this section we discuss a variant of the game in which the cop moves as originally

designed, but the robber—now a “sitter” or “immobile hider”—chooses a vertex of

the graph and stays there until the cop captures him. The cop’s initial position is

known to the sitter (which we encode by selecting a vertex of the graph to be the

“root”). The players do not know each other’s strategies (in particular, the cop does

not know the sitter’s position, or this game would be over quicker than the sitter

26

3.1 Cops & Sitters

might like). The sitter chooses his hiding vertex according to his strategy (which is

a probability distribution on the vertex set) and the cop performs a walk beginning

at the root according to her strategy (which is a probability distribution on walks

that begin at the root). Note that a priori, one or both of these strategies may be

deterministic (i.e. a probability distribution that gives probability 1 to one option

and 0 to every other). This variation was discussed in [23] on a network, where the

author notes that the value of the game ν is |E(G)| on a tree, |E(G)|/2 on an Eulerian

graph G, and in general satisfies

1

2
µ ≤ ν ≤ 1

2
L(S∗)

where µ is the length of the network (in our case, this is the number of edges in our

graph) and L(S∗) is the minimum length of a closed curve passing through all of the

points of the network (on a graph, this is the minimum length of a walk that begins

and ends at the same vertex and visits every vertex in the graph at least once). Note

that L(S∗) ≤ 2µ for any network and so the value of the game on a graph is between

|E(G)|/2 and |E(G)|. We define and analyze the depth first pursuit strategy, and

find that it is an optimal strategy on a tree. We also find that this strategy yields an

expected capture time between n+1
2

and n−1 for all graphs (strictly less than n for

any graph containing a cycle).

3.1.1 Player Strategies

In order to define the cop strategy—a uniformly random depth first pursuit—we

develop some machinery in order to be able to generate such a strategy easily. We

begin by defining the strategy on a tree.

27

3.1 Cops & Sitters

Definition 3.1. Given a rooted tree G with root r, we define the uniform al-

gorithm (henceforth referred to as uni-alg) in the following manner. Begin with

σ={r}, v=r and U={v ∈ V (G) : deg(v) = 1} (the set of leaves of G). Visitation

schedule: Select a previously unvisited child u of v uniformly at random (if it exists)

and append this to list σ. If no unvisited children of v remain, then select u to be

the parent node of v. Set v=u. If u ∈ U , set U=U\{u}. Repeat visitation schedule,

terminating when U = ∅. Uni-alg outputs the vertex sequence σ.

Note that all of the vertices in V (G) appear at least once in σ for any σ that

results from an instance of uni-alg.

Definition 3.2. A walk on the vertices of a tree G with root r which starts at r is

a DFP (depth first pursuit) if whenever the walk enters a branch B defined by a

vertex v (i.e. v and all of its descendants), it does not exit B until all w ∈ B have

been visited at least once.

Claim 3.1. A DFP on G is uniquely determined by an ordering on the leaves of G.

Proof. Note that this is not a one-to-one correspondence, as not all leaf orderings

result in a valid DFP. However, given a valid ordering ` = {`1, `2, . . . , `k} on the

leaves of G (i.e. a leaf ordering that results from a DFP), we can define a DFP by

taking the (unique) shortest path from r to `1, concatenating it with the shortest

path from `1 to `2, and so on. Note that taking two different leaf orderings ` and ω

would yield two different walks on the vertices via this process. Consequently, a DFP

is uniquely determined by a leaf ordering.

Claim 3.2. Uni-alg generates a unique DFP.

28

3.1 Cops & Sitters

Proof. First we must show that uni-alg generates a DFP. According to uni-alg, once

a vertex v ∈ V (G) is reached, its parent is not visited again until all of its children

are visited at least once. Therefore, all of the descendants of v are visited before

its parent is visited again. As this is true for all vertices v ∈ V (G), the sequence

generated by uni-alg is a DFP.

Now suppose that σ and ρ are two different sequences generated by uni-alg. Let

σ` and ρ` be the orders in which the leaves of G are visited by σ and ρ, respectively.

By Claim 3.1, these two leaf orderings correspond to the same DFP if and only if

ρ` = σ`. Suppose that this equality holds and let σ` = ρ` = {`1, `2, . . . , `k}. By the

construction of uni-alg, σ and ρ must both take the (unique) shortest path from r to

`1, then from `1 to `2, and so on, and so σ = ρ.

Therefore, uni-alg generates a unique DFP.

Claim 3.3. Let σ be a DFP. There is a unique outcome of uni-alg that yields σ.

Proof. We will first show that σ is a possible outcome of uni-alg. Suppose that

the DFP σ = {v1=r, v2, . . . , vM} with {`1, `2, . . . , `k} the subsequence that gives the

order of leaves hit by σ. Then we know that σ consists of the shortest r—`1 path

concatenated with the shortest `1—`2 path and so on. This DFP is clearly yielded

by the outcome of uni-alg that selects children in the corresponding order.

Now suppose that σ and ρ are two different DFP strategies. By Claim 3.1, the

respective leaf orderings σ` and ρ` are different. But as in the proof of Claim 3.2,

outcomes of uni-alg are uniquely determined by leaf orderings, and so σ and ρ must

be generated by two different outcomes of uni-alg.

Claims 3.2 and 3.3 yield Lemma 3.1.

29

3.1 Cops & Sitters

Lemma 3.1. There is a one-to-one correspondence between the outcomes of uni-alg

and the set of DFP on a given tree.

Now we are ready to prove the following lemma.

Lemma 3.2. Uni-alg results in a uniformly random DFP.

Proof. Let σ = {v1, v2, . . . , vM} be a sequence given by uni-alg (which by Lemma 3.1

makes it a DFP). For all v ∈ V (G) and t ∈ N, define c(v, t) to be the number

of children of v that have not yet been visited by time t wherever this quantity is

positive. Then at each time t in uni-alg, the probability of selecting a given child of vt

was
1

c(v, t)
. Where no such child exists, a non-random path was followed until a time

t where a vertex vt was reached with c(v, t) > 0. Recall that σ visited all vertices of

V (G), so

P(σ) =
∏

vi∈σ:c(v,i)6=0

1

c(vi)

Each non-leaf vertex v ∈ V (G) contributes
1

c(v)
to this count (where c(v) is the

number of children of v): suppose that v is visited at times t1, t2, . . . , tk; then c(v, t1) =

c(v), c(v, tk−1) = 1 and for all i, c(v, ti+1) = c(v, ti)− 1. Therefore we have

P(σ) =
∏

v∈V (G):deg(v)>1

1

c(v)!

Since this value does not depend on σ, any sequence that can result from uni-alg

(which by Lemma 3.1 is any DFP) is equally likely.

We first consider the game played against an immobile hider (sitter) on a tree.

Lemma 3.3. A uniformly random DFP strategy against the sitter on a tree with m

edges gives expected capture time Tm ≤ m.

30

3.1 Cops & Sitters

Proof. We proceed by induction on m. When m = 1, the problem is trivial: the sitter

will either choose the root or not, with probabilities p and q = 1− p respectively, for

an expected capture time of T1 = q ≤ 1. Suppose now that for all trees with fewer

than m edges, the capture time is at most the number of edges, and let G be a tree

with m edges.

Suppose that B1, B2, . . . , Bk are the main branches of G, and for each i ∈ {1..k}

let pi be the probability that the sitter is in branch Bi. Since the cop is performing a

uniformly random DFP (which by Claim 3.2 is equivalent to performing uni-alg), she

has probability
1

k
of first choosing branch Bi for all i ∈ [k]. For each i let |E(Bi)| = si.

Note that if she chooses Bi as her first branch, then with probability pi the sitter

is there, and by the induction hypothesis she finds him in time at most si. Otherwise,

she takes time 2si to complete a DFP in branch Bi before returning to the root,

and by the induction hypothesis, she finds the sitter in G−Bi in time at most m−si.

Thus, we have that the expected capture time Tm satisfies

Tm ≤ 1

k

k∑
i=1

(pisi + (1− pi)(m+ si))

=
1

k

k∑
i=1

((1− pi)m+ si)

=
1

k

(
k∑
i=1

m−m
k∑
i=1

pi +
k∑
i=1

si

)
=

1

k
(mk −m+m)

= m

By induction, this yields our desired result.

31

3.1 Cops & Sitters

We will proceed to show that the value of the searcher/pursuer (cop) vs. immobile

hider (sitter) game on a tree with m edges is in fact m, and in particular, that this

value is achieved by a cop using the DFP search strategy. We will also find the unique

optimal strategy for the sitter. We define this strategy now.

In what follows, B(G) refers to the set of branches of G. A branch Bv of G is said

to be defined by v if it consists of v and all of its descendants. When considered as

a tree, Bv is a rooted tree with root v. BG(v) will denote the set of main branches of

Bv.

Consider a walk X on G which begins at r, whose behavior is defined in the

following lemmas, and which terminates when it hits a leaf for the first time.

Definition 3.3. For all B ∈ BG(v), let

ωG(B|Bv) = P(X terminates in B|X terminates in Bv) =
|E(B)|∑

C∈BG(v)

(1 + |E(C)|)

Furthermore, for any B ⊆ C, if X is a walk on C, let

ωC(B) = P(X terminates in B)

Note that wG satisfies the following condition.

Lemma 3.4. Let Bw ⊆ Bv ⊆ G be branches of G defined by w and v, respectively.

Then ωG(Bw|Bv) = ωBv(Bw).

Proof. By definition,

ωG(Bw|Bv) =
|E(Bw)|∑

C∈BG(v)(1 + |E(C)|)
.

32

3.1 Cops & Sitters

Note that |E(Bv)| =
∑

C∈BG(v)

(1 + |E(C)|). Consequently,

ωG(Bw|Bv) =
|E(Bw)|
|E(Bv)|

= ωBv(Bw).

Lemma 3.5. Let L(G) = {Bv ⊆ G| deg(v) = 1}. (So Bv is a singleton for all such

v, containing only the leaf v.) Then wG is a probability distribution on L(G).

Proof.
∑

L∈L(G)

wG(L) = P(X terminates in L(G)) = 1, since X terminates at a leaf

and the set of leaves is contained in the set of branches in L(G).

Let L(G) ⊆ V (G) be the set of leaves of G and define pG : L(G) → [0, 1] to be

pG(`) = ωG(B`). By Lemma 3.5, pG is a probability distribution on the leaves of G.

Now we are ready to define the strategy for the sitter.

Definition 3.4. According to the sitter strategy S, the sitter chooses any leaf `

with probability pG(`), and any non-leaf vertex v with probability 0.

3.1.2 Value of the Cop vs. Sitter Game

Lemma 3.6. In the cop vs. sitter game played on any tree with m edges, the expected

capture time, Tm, is at least m.

Proof. Let G be a tree with root r. Suppose that G has main branches B1, B2, . . . , Bb.

For each i ∈ {1..b}, let si = |E(Bi)|. The cop starts at r and performs some strategy

P , according to which the probability that the cop chooses branch Bi first is pi. Note

that according to the sitter strategy defined in Definition 3.4, the probability that

the sitter is in Bi is
si
m

.

33

3.1 Cops & Sitters

We proceed by induction on m. When m = 1 we have a rooted tree on two

vertices. With probability 1 the sitter chooses the non-root vertex, so the expected

capture time is T1 = 1. Now suppose that Tk ≥ k for all k < m and suppose G has

m vertices. Since pi, si, and m are all nonnegative, we have that

0 ≤
b∑
i=1

pi
s2
i

m
=⇒ 0 ≥ −

b∑
i=1

pi
s2
i

m

=⇒
b∑
i=1

pisi ≥
b∑
i=1

pi

(
si −

s2
i

m

)

=⇒
b∑
i=1

pisi ≥
b∑
i=1

pi
si
m

(m− si)

Note that the probability Ci that the cop captures the sitter in Bi is at most
si
m

(since the sitter is only in Bi with probability si/m). By the induction hypothesis, if

the sitter is captured in branch Bi, the expected time spent in this branch is at least

si. Therefore we will suppose that the cop spends at least si turns in Bi before exiting

it (since by the induction hypothesis, if she spends less than si turns in branch Bi,

she could not have captured the sitter there). Thus,

b∑
i=1

pisi ≥
b∑
i=1

pi
si
m

(m− si) =⇒
b∑
i=1

pisi ≥
b∑
i=1

piCi(m− si)

=⇒
b∑
i=1

pisi −
b∑
i=1

piCi(m− si) +m ≥ m

=⇒
b∑
i=1

pisi −
b∑
i=1

piCi(m− si) +
b∑
i=1

pim ≥ m

34

3.1 Cops & Sitters

=⇒
b∑
i=1

pi [si +m− Ci(m− si)] ≥ m

=⇒
b∑
i=1

pi

[
Cisi + (1− Ci)

(
m+

si
1− Ci

)]
≥ m

By the induction hypothesis we have that if the sitter is caught in the first branch

that the cop visits (Bi, say), then this is done in no fewer than si moves. Furthermore,

if the sitter is not caught in the Bi, and supposing that the cop spent time 2ti in Bi

before giving up (note that she must spend an even amount of time since she is on a

tree and begins and ends at the same point), then applying the induction hypothesis

to G\Bi gives that the cop spent at least 2ti +m− si moves in G\Bi. Therefore we

have

Tm ≥
b∑
i=1

pi[Cisi + (1− Ci)(2ti +m− si)]

where Ci =
si
m

ti
si

=
ti
m
.

Case 1: ti < si. That is, the cop does not visit all of the edges (and consequently

vertices) in Bi before leaving the branch.

We know that

b∑
i=1

pi

[
Cisi + (1− Ci)

(
m+

si
1− Ci

)]
≥ m

and we would like to show that

b∑
i=1

pi[Cisi + (1− Ci)(2ti +m− si)] ≥ m

35

3.1 Cops & Sitters

so it suffices to show that

b∑
i=1

pi

[
Cisi + (1− Ci)

(
m+

si
1− Ci

)]
≤

b∑
i=1

pi[Cisi+(1−Ci)(2ti+m−si)].

By the induction hypothesis, 2ti ≥ si. Therefore,

2ti − si ≥ 0 =⇒ si − (1− ti/m)(2ti − si) ≥ 0

=⇒
b∑
i=1

pi(si − (1− ti/m)(2ti − si)) ≥ 0

=⇒
b∑
i=1

pisi ≥
b∑
i=1

pi(1− ti/m)(2ti − si)

Therefore,

b∑
i=1

pi(si+siti/m+(1−ti/m)m) ≥
b∑
i=1

pi(siti/m+(1−ti/m)(2ti+m−si))

as desired.

Case 2: ti = si.

Then we have that the expected capture time Tm satisfies

Tm ≥
b∑
i=

pi(s
2
i /m+ (1− si/m)(2si +m− si))

=
b∑
i=1

pi(s
2
i /m+ (1− si/m)(m+ si))

=
b∑
i=1

pim = m

Therefore, the expected capture time is at least m for all trees with m

36

3.1 Cops & Sitters

edges.

From Lemmas 3.3 and 3.6, we immediately get the following lemma.

Lemma 3.7. The DFP strategy defined by uni-alg in Definition 3.1 is an optimal

strategy for the cop on a tree. The sitter strategy S defined in Definition 3.4 is an

optimal strategy for the sitter on a tree.

We also have our desired theorem.

Theorem 3.1. The cop vs. sitter game played on a rooted tree with m edges has value

m.

Note that not only do we know that that S is an optimal strategy for the sitter,

but also that no other strategy would do. We show this in the proof of the following

lemma.

Lemma 3.8. The sitter strategy S is the unique optimal strategy for the sitter on a

rooted tree with m edges.

Proof. We proceed to prove the statement, “the cop can capture any sitter not using

strategy S in fewer than m expected turns” by induction on m. When m=1 we

have a rooted copy of P2, so any sitter strategy which differs from S must involve

a non-zero probability of going to the root and therefore being captured in time 0.

Since the strategy which places the sitter at the non-root vertex with probability 1

has expected capture time 1, this strategy must have expected capture time less than

1 (specifically 1−q where q > 0 is the probability that the sitter is at the root).

37

3.1 Cops & Sitters

Now suppose that the statement is true for all r < m, and consider a tree G with

m edges.

Let σ 6=S be a different strategy for the sitter on G. Suppose G has main branches

B1, . . . , Bk, with corresponding sizes s1, . . . , sk. Then there exists some branch Bi

where the probability p that the sitter is in branch Bi is not equal to si/m. So

without loss of generality, let Bi be chosen such that p > si/m. Consider the cop

strategy in which she visits Bi first. With probability p, she finds the sitter there,

and by the induction hypothesis, this takes time at most si. With probability 1−p,

she spends time 2si in Bi and then finds the sitter in G\Bi, which by the induction

hypothesis takes time at most m−si. Then we have that the expected capture time

satisfies the inequality

T < psi + (1− p)(2si +m− si) = psi + (1− p)(m+ si) = si + (1− p)m

Recall that we assumed p > si/m, so we have

p > si/m =⇒ si < pm

=⇒ si < m− (1− p)m

=⇒ si + (1− p)m < m

Consequently, we know that the cop can capture any sitter not using strategy S in

fewer than m expected turns, and therefore S is the unique optimal strategy on G.

Theorem 3.2. The cop vs. sitter game on any graph G of size n takes no more than

n−1 expected moves, with equality holding if and only if G is a tree.

In light of Theorem 3.1, it suffices to show that the expected capture time on any

38

3.1 Cops & Sitters

graph G containing at least one cycle is strictly less than n. To prove this, it will be

handy to have the following fact.

Lemma 3.9. For any tree T , let S(T) be the (unique, by Lemma 3.8) optimal sitter

strategy S on T . Let G be any graph on n vertices. Then there exist two spanning

trees T1 6= T2 of G such that S(T1) 6= S(T2).

Proof. Suppose first that G=Cn, the (rooted) cycle on n vertices, with vertices

v1, v2, . . . , vn. Without loss of generality, suppose that v1 is the root. Then S(T1)

on the spanning tree T1 = G\{v1vn} gives probability 1 to vn, whereas S(T2) on the

spanning tree T2 = G\{vn−1vn} gives probability 1/(n− 2) to vn and (n− 3)/(n− 2)

to vn−1. So we have two spanning trees T1 and T2 that satisfy S(T1)6=S(T2).

Otherwise, if G is a rooted, connected, non-tree graph such that G6=Cn, we observe

first that we can remove a vertex v ∈ V (G) such that G\{v} is a connected graph

which is not a tree (since if G contains two cycles, we can remove a vertex on one

cycle without removing the other cycle; otherwise G contains a cycle with some trees

appended to it, in which case we can remove a leaf from one of those trees). Now we

proceed by induction on n to prove that for any such G on n vertices, there are two

spanning trees T1 and T2 such that the number of leaves in T1 is less than the number

of leaves in T2. When n=3 we have that G=K3 with vertices v1, v2, v3 where without

loss of generality, v1 is the root. Then we have the spanning trees T1 = {v1v2, v2v3},

which has only v3 as a leaf, and T2 = {v1v2, v1v3}, which has both v2 and v3 as leaves.

Now suppose that the statement is true for any graph on n−1 vertices satisfying

the hypotheses above, and let G be such a graph on n vertices. Remove any vertex

such that G\{v} is still connected and contains a cycle (which is possible by the

observation in the paragraph above). By the induction hypothesis, G\{v} has two

39

3.1 Cops & Sitters

spanning trees with a distinct number of leaves. Appending v to these two spanning

trees therefore yields two spanning trees of G with a distinct number of leaves (since

v is a leaf in both cases).

Therefore we have shown that any rooted, connected, cyclic graph G has at least

two spanning trees T1 and T2 with a different number of leaves, and therefore with

S(T1) 6= S(T2).

Now, with the help of Lemma 3.9, we proceed with the proof of Theorem 3.2.

Proof. Let G be a rooted, connected graph containing at least one cycle. Then by

Lemma 3.9 we can choose two spanning trees T1, T2 with S(T1) 6= S(T2). Recall

that by Lemma 3.8 we have that these are the unique sitter strategies on T1 and T2,

respectively, which give expected capture time at least m. So if the sitter chooses a

strategy that differs from S(T1), then the cop who plays her uniform DFP strategy on

T1 will get expected capture time less than n−1. Similarly, if the sitter chooses S(T1)

as his strategy, the cop who plays the DFP strategy on T2 will get expected capture

time less than n−1. Therefore, the cop who chooses a uniformly random spanning

tree and performs DFP on that tree will get expected capture time less than n−1.

We can also give a lower bound on the expected capture time in this game (in any

graph).

Lemma 3.10. The expected capture time T satisfies T ≥ n+ 1

2
for all graphs G on

n vertices.

Proof. First we consider this game played on Kn. Note that all cop strategies which

consist of a permutation of the vertices are equivalent, and give expected capture time

at least
n+ 1

2
: the cop has probability 1

n
of finding the sitter on step 1, (1− 1

n
) 1
n−1

= 1
n

40

3.1 Cops & Sitters

of missing the sitter on step 1 and finding him on step 2, and so on, for a total expected

capture time of 1
n
(1 + 2 + · · · + n) = n+1

2
. Any cop strategy which repeats a vertex

would give a higher expected capture time, since repetition of a vertex does not

contribute to finding an immobile hider.

The case of Kn is the “easiest” for the cop, in the following sense. We note that

since the value (we will refer to it now as ECT (G)) of this cop vs. sitter game on a

graph G exists for any (connected) G, and we have

sup
τ

inf
σ
ECT στ (G) ≤ ECT (G) ≤ inf

σ
sup
τ
ECT στ (G),

where ECT στ (G) is the expected capture time when the cop plays strategy σ and

the sitter plays strategy τ , and the supremums are taken over all robber strategies

τ and the infimums are taken over all cop strategies σ, we have that both of these

inequalities are actually equalities.

Therefore, we can show that Kn is the easiest graph for the cop by proving that

adding an edge to a graph G cannot increase the expected capture time:

Let G∗ = G ∪ {uv} for some u, v ∈ V (G), and let ΣG be the set of possible cop

strategies on G, so ΣG ⊆ ΣG∗ . Therefore

ECT (G∗) = sup
τ

inf
σ∈ΣG∗

ECT στ (G∗) ≤ sup
τ

inf
σ∈ΣG

ECT στ (G) = ECT (G),

as desired.

We have shown that the depth first pursuit strategy is optimal for the cop chasing

an immobile adverary. In the next section, we consider how well this strategy behaves

on Kn against an invisible, mobile robber.

41

3.2 Cops & Robbers on Kn

3.2 Cops & Robbers on Kn

We continue in this section to consider the cop vs. robber game played in the dark

with simultaneous moves, but now the robber is not restricted to the immobile hider

strategy in Section 3.1. We investigate this game played on the complete graph Kn

with vertices labeled with the numbers from {1..n} = {1, 2, 3, . . . , n}. Both players

are intelligent, with the robber attempting to maximize the expected length of the

game and the cop trying to minimize it, as usual.

It is not difficult to see that the value of this game is n:

Claim 1 The robber can guarantee that the expected capture time is at

least n on this graph.

Proof. Consider the robber who goes to each vertex with probability 1/n

at each time t. The cop captures him at each time with probability 1/n,

so an average of n steps are required to capture.

Claim 2 The cop can guarantee that the expected capture time is at most

n on this graph.

Proof. The cop performing the same strategy as the robber described in

Claim 1 (going to a given vertex with probability 1/n at each step) has

probability 1/n of capturing the robber at every step, and so captures in

n steps on average.

We would like to see how close to this value the cop can get by using uniformly

random depth first pursuit (see Definition 3.2). We proceed by considering the random

42

3.2 Cops & Robbers on Kn

depth first pursuit strategy for the cop, which in this version of events is equivalent to

choosing a permutation of the labels in {1..n} uniformly at random; if she fails to catch

the robber in one pass through the corresponding element of Sn, she next chooses a

uniformly random permutation in Sn (independently of her history of choices). We

will show that an optimal strategy for the robber against DFP is to perform a random

permutation of the vertices as well, and we give a bound on the capture time. We

also show that DFP is asymptotically optimal for the cop.

3.2.1 Expected Capture Time

Let Wn be the set of length n words in alphabet {1..n}. Let σ ∈ Wn be such that

there exists r ∈ {1..n} where r appears more than once in σ, with the last appearance

occurring in position k. Then there is some s ∈ {1..n} that does not appear in σ.

Define the sequence τ ∈ Wn to be the same as σ except in position k, in which τ has

an s instead of an r.

For any sequence ν ∈ Wn define Hit(ν) to be the set of permutations γ in Sn

such that for some j ∈ {1..n}, ν and γ agree in the jth position. Consider the map

ϕ such that for all γ ∈ Sn, ϕ(γ) = (rs)γ (that is, it switches the positions of the

r and the s in γ). The following lemmas will be used to help show that there are

more permutations (equally likely cop strategies) that hit σ than that hit τ , and

consequently that permutations are a better choice for the robber’s strategy than

sequences with repetitions.

Lemma 3.11. ϕ is an injection from A = Hit(τ)\Hit(σ) into B = Hit(σ)\Hit(τ).

Proof. First we show that ϕ is map A to B. Let ρ ∈ A, so ρ intersects with τ only

at the kth position, where they both have an s. But we know that in the kth position

43

3.2 Cops & Robbers on Kn

of ρ is an r and therefore in the kth position of ϕ(ρ) is an s, and so ϕ(ρ) hits σ but

not τ .

Now suppose that α, β ∈ A are two different permutations. Then clearly

ϕ(α) = (rs)α 6= (rs)β = ϕ(β).

Therefore ϕ is an injection from A into B.

Lemma 3.12. ϕ is not a surjection from A to B.

Proof. Let γ ∈ B be a permutation that has an s in the ith position (where i is one

of the positions in which σ has an r) and an r in the kth position. Suppose, for

contradiction, that there exists ρ ∈ A such that γ = ϕ(ρ). Note that ϕ(γ) has an r in

the ith position and an s in the kth position; in all other positions, ϕ(γ) misses both

σ and τ , but it hits σ at position i and it hits τ in positions i and j. Consequently

ϕ(γ) /∈ A, but ϕ(γ) = ϕ(ϕ(ρ)) = ρ ∈ A, which is a contradiction. Consequently ϕ is

not a surjection.

As a consequence of Lemmas 3.11 and 3.12, we have the following fact.

Theorem 3.3. Let pω be the probability that the robber escapes after n moves using

strategy ω. Then pω is maximized when ω is a permutation.

Proof. By Lemmas 3.11 and 3.12, there are more permutations that intersect with σ

than that intersect with τ . We show that there are more permutations that intersect

with a sequence with repetitions than that intersect with a permutation:

Note that by symmetry, pω is the same for any permutation ω. We will call this

common value p. Suppose that for some word θ, pθ > p and that pθ is maximal

44

3.2 Cops & Robbers on Kn

over all words. Clearly θ is not a permutation, so there exists some x ∈ {1..n} that

appears more than once in θ. Suppose that the last appearance of x is in position

k. By Lemmas 3.11 and 3.12, replacing this appearance of x by y (where y ∈ {1..n}

does not appear in θ) yields a word δ that is hit by strictly fewer permutations in Sn.

Since the cop performs a random permutation every n moves, each permutation is

equally likely. Therefore pδ > pθ, which contradicts the maximality of pθ. Therefore,

pω > pθ for all ω ∈ Sn and θ /∈ Sn.

Note that if ω is a random permutation then pω is equal to the number of derange-

ments of ω, which is dn = n!
n∑
k=0

(−1)k

k!
, so the probability that a random permutation

is a derangement of ω is dn/n! =
n∑
k=0

(−1)k

k!
≈ 1/e.

Therefore, for a robber using permutation ω, we have that it takes the DFP cop

1/(1−pω) iterations to capture him; therefore the expected capture time is bounded

by n/(1−pω) = n/(1 − dn/n!). However, the expected point of capture in the final

iteration is not all the way at the end, as is discussed in the following lemmas.

Lemma 3.13. Given that the robber is captured during a given iteration of permuta-

tion search, the capture occurs at

(n+ 1)!

n!−Dn

n+1∑
j=2

(−1)j(j−1)

j!
,

where Dn is the number of derangements in Sn.

Proof. Theorem 3.5 in [36] states that
n∑
k=1

kFn,k = (n + 1)!
n+1∑
j=2

(−1)j(j−1)

j!
, where

Fn,k is the number of permutations in Sn in which the first fixed point is at k. (Note

45

3.2 Cops & Robbers on Kn

that this is equivalent to the number of permutation strategies of the robber which

give capture time k for a given permutation strategy of the cop.) The number we

are looking for, then, is the expected first fixed point given that a fixed point exists.

Therefore we divide by n!−Dn, the number of permutations in Sn containing a fixed

point.

Lemma 3.14. Given that the robber is captured during a given iteration of permu-

tation search, the asymptotic value of the expected capture time within this iteration

e−2

e−1
n.

Proof. Theorem 3.6 in [36] gives the asymptotic value of the numerator of the sum in

Lemma 3.13 to be
e−2

e
(n+1)! (plus some lower order terms). Therefore, we have that

the asymptotic value of the expected capture time in an iteration given that capture

occurs during this iteration is

E =
e−2
e

(n+1)!

(1− 1/e)n!
=
e−2

e−1
n.

Therefore, we have the following bound on expected capture time.

Theorem 3.4. The expected capture time in the cop vs robber game on Kn tends to

n for large n.

Proof. The expected capture time is n/(1− dn/n!)− (n−E), which tends to

(
e

e−1
− 1 +

e−2

e−1

)
n = n

46

3.3 Depth First Pursuit on a Binary Tree

Note that we know that n is indeed the value of this game, since both players

can guarantee expected capture time n by doing independent uniform movement at

each step (as mentioned at the beginning of the section). Therefore we see that,

asymptotically, the DFP strategy does quite well for the cop on Kn even against a

less restricted adversary.

3.3 Depth First Pursuit on a Binary Tree

In this section we discuss the efficacy of the uniform depth first pursuit strategy on a

(complete) binary tree of height h. Note that n=2h+1−1 on this tree. Suppose that

our cop begins her depth first pursuit at the root (the vertex at height 0). Though

this strategy worked well in our previous examples, both against an immobile hider

and on Kn against a mobile hider, we shall see that the robber can take advantage

of the predictability of this strategy on the binary tree. The value of this game is

n [23], but we shall see that the robber can guarantee an expected capture time of

Ω(n2) against a cop performing a uniform DFP strategy.

Consider the following robber strategy: the robber begins at a uniformly random

leaf and stays there until the cop arrives at a height h−1 vertex for the first time; if he

is not caught, he goes directly to the root and remains there until the second to last

time at which the cop visits height 1 before returning to the root, at which point he

stays two levels below the cop until the last time the cop visits h− 1 before returning

to the root; and so on, alternating between going to a leaf and staying there until it’s

time to go directly to the root and stay there, so he can only be caught twice per main

branch, with a probability of 2−(h−1) each time. We make this strategy precise and

hopefully less confusing, and provide an example for small h (see Table 3.3) below.

47

3.3 Depth First Pursuit on a Binary Tree

• t = 0: Robber begins at a uniformly random leaf (height h).

• 1 ≤ t ≤ h−2: Robber stays at his leaf.

• h−1 ≤ t ≤ 2h−2: Robber starts going directly to the root, so that he is at

height h−(i+2) at time h+i for all i ∈ {−1, 0, 1, . . . , h−2}.

• 2h−2 ≤ t ≤ 2h: Robber stays at root.

• 2h ≤ 2h+1−(h+2): Robber starts following a uniform DFP but stays at two

levels above the level prescribed by a uniform DFP.

• t = 2h+1−(h+1): Robber is at height h−1.

• 2h+1−h ≤ t ≤ 2h+1−2: Robber is at a leaf.

• 2h+1−2 ≤ t ≤ 2(2h+1−2): Repeat the above steps.

Note that meanwhile, the DFP strategy prescribes that the cop be at the following

heights at these times:

• t = 0: Cop begins at the room (height 0).

• 1 ≤ t ≤ h−2: Cop is at height t at time t.

• h−1 ≤ t ≤ 2h−2: Cop is at height h−1 at time h−1 and at height h at time h.

At times h through 2h−2 she is therefore at a height strictly greater than the

robber’s.

• 2h−2 ≤ t ≤ 2h: Cop does not return to the root until time 2h+1−2, so she is

still at a height strictly greater than the robber’s.

48

3.3 Depth First Pursuit on a Binary Tree

• 2h ≤ 2h+1−(h+2): Cop is at a height exactly two greater than the robber’s, by

the robber’s design.

• t = 2h+1−(h+1): Cop is at height h−1.

• 2h+1−h ≤ t ≤ 2h+1−2: Cop is at a height strictly smaller than that of the

robber.

• 2h+1−2 ≤ t ≤ 2(2h+1−2): Repeat the above steps.

Therefore, there are only four times during each iteration of a DFP at which the

players are at the same height.

As an example, Table 3.3 below lays out the cop’s and robber’s heights at time t

on a height 4 tree, for all t ≤ 29 (the number of steps it takes to complete a depth

first pursuit on one main branch of a tree of height 4).

49

3.3 Depth First Pursuit on a Binary Tree

Table 3.1: A table of the cop’s and robber’s heights during the first half of a DFP on
a tree of height 4 (where pt = P(capture at t)).

t c(t) r(t) pt t c(t) r(t) pt
0 0 4 15 1 0
1 1 4 16 2 0
2 2 4 17 3 1
3 3 3 2−3 18 4 2
4 4 2 19 3 1
5 3 1 20 4 2
6 4 0 21 3 1
7 3 0 22 2 0
8 2 0 23 3 1
9 3 0 24 4 2
10 4 0 25 3 1
11 3 0 26 4 2
12 4 0 27 3 3 2−3

13 3 0 28 2 4
14 2 0 29 1 4

Lemma 3.15. The expected capture time for a cop doing a uniform depth first pursuit

on a binary tree against the robber doing the strategy defined above is greater than

(n− 15)(n− 1)

8
.

Proof. Using the strategy defined above, the robber is caught during one depth first

pursuit with probability no greater than 4(2−(h−1)). Each depth first pursuit is inde-

pendent of the previous ones, and each of the expected
2h−1

4
−1 unsuccessful depth

first pursuits visits each edge twice, so takes 2(n−1) = 2(2h+1−2) steps to complete.

Therefore the cop expects to spend at least time

(
2h−1

4
− 1

)
(2(2h+1 − 2)) =

(
2h−1 − 4

2

)
(2h+1 − 2)

50

3.3 Depth First Pursuit on a Binary Tree

=

(
2h+1 − 16

8

)
(2h+1 − 2)

=
(n− 15)(n− 1)

8

not capturing the robber.

Since the actual value of the game is n [23], this is quite an unimpressive result for

the cop. However, the cop can—by modifying her depth first pursuit strategy only

slightly—make such treachery more difficult for the robber. For instance, randomizing

her starting time may already render the robber strategy defined above less effective.

51

Chapter 4

Hunters & Moles

In this variation, which comes from Dick Hess [29] (who heard it from Simon Bexfield),

the cop and the robber once again move simultaneously. The robber is constrained by

the edges of the graph as usual. The cop is not and can move around freely—however,

she cannot see her adversary. We characterize the class of graphs on which a single

cop (whom we will call the “hunter”) is guaranteed to catch the robber (let’s call him

a “mole”) in bounded time. We will call such graphs hunter-win. Any graphs that

are not hunter-win will be called mole-win.

4.1 A Characterization of Hunter-Win Graphs

Note first that since a winning strategy for the hunter must guarantee capture in

bounded time (against any possible trajectory undertaken by the mole), it is equiva-

lent to consider this game played by a hunter and an omniscient, adversarial mole—i.e.

a mole who makes all the “worst-case scenario” moves (from the hunter’s perspective)

to maximally increase the length of the game. We will be considering this adversary

52

4.1 A Characterization of Hunter-Win Graphs

in the remainder of this chapter.

4.1.1 Some Hunter-Win Graphs

We begin by showing that certain kinds of trees are hunter-win. We will see in

Theorem 4.1 that these are the only hunter-win graphs, and give a forbidden subgraph

characterization of them.

Lemma 4.1. The path Pn is hunter-win for all n.

Proof. Suppose the path has vertices v1, v2, . . . , vn. There are two possibilities for the

mole—(1) he is an odd mole, meaning that he is at odd-numbered vertices on odd

moves (i.e. his initial position is on an odd vertex) or (2) he is an even mole, defined

accordingly. Suppose first that we are playing against an even mole. Then at time 1,

if the hunter chooses vertex v2, the mole must be at a vertex in {v4, v6, . . . }. At time

2, the hunter chooses vertex v3, limiting the mole’s choices to the set {v5, v7, . . . }.

At time 3, the hunter chooses v4, and the mole is limited to {v6, v8, . . . }. Following

this strategy, when the hunter goes to vertex vj, the mole must be at a vertex in

the set {vj+2, vj+4, . . . }, and so the hunter is continually limiting the mole’s possible

locations until finally she goes to vn−2 and forces the mole onto vn. Then she heads to

vn−1, knowing that the mole will be forced to join her there on his next turn. Using

this strategy against the even mole, the hunter ensures capture in n−2 turns.

Now suppose that she is playing against an odd mole. After the n−2 turns de-

scribed above, she is at vertex vn−1, and having not captured the mole at this point,

it is clear that the mole had started at an odd vertex. Now the hunter can stay at

vn−1 for a turn. The mole is constrained to the vertices {v1, v3, . . . , vn−3} if n is even

and {v2, v4, . . . , vn−3} if n is odd, and the hunter proceeds using the same strategy as

53

4.1 A Characterization of Hunter-Win Graphs

against the even mole and wins in an additional n−2 turns, for a total guaranteed

capture time of at most 2n−4.

Definition 4.1. A lobster is a tree containing a path P such that all vertices are

within distance 2 of P . A path satisfying this condition will be called a central path.

A knee of a lobster with central path P is a non-leaf vertex at distance exactly 1

from P . For a knee a in a lobster G, define its associated hip to be the vertex v such

that v ∈ N(a) ∩ Pm. Any leaf adjacent to a knee is called a foot.

Lemma 4.2. All lobsters are hunter-win.

Proof. Let G be a lobster. As in Lemma 4.1, we will define a notion of an odd mole

(even moles are defined analogously). Let P = v1, . . . , vm be a longest central path

on G. We define an odd mole on G to be a mole who begins either

(a) on an odd vertex of P,

(b) on a knee adjacent to an even vertex of P,

or, (c) on a foot at distance 2 from an odd vertex of P

We will refer by V 1
j to the set of knees adjacent to hip vj, and similarly by V 2

k to

the set of feet adjacent to a knee in V 1
k .

We will suppose first that the hunter is playing against an odd mole and note

that as in Lemma 4.1, if the mole is not caught at the end of the following scheme,

then the hunter will know that the mole was in fact an even mole, and can repeat the

scheme starting from the opposite end of P .

The hunter starts on v1. Let Mt be the set of vertices to which the mole may move

at time t in order to avoid being caught in one move. We proceed by induction on t

54

4.1 A Characterization of Hunter-Win Graphs

to show that when the hunter is on vi for the first time (say at time t), Mt consists

of the vertices in

(a) {vj : j ∈ {i+2, i+4, . . . }},

(b) V 1
k for some k ∈ {i+1, i+3, . . . },

and (c) V 2
` for some ` ∈ {i, i+2, . . . }

When t = 1, since the hunter is on v1, M1 consists of

V3 ∪ V5 ∪ · · · ∪ V2k−1 ∪ V 1
2 ∪ V 1

4 ∪ · · · ∪ V 1
2k ∪ V 2

3 , V
2

5 . . .

where 2k−1 = n−1 if n is even and 2k−1 = n if n is odd. (Note that V 1
1 = V 2

1 = ∅

by the maximality of P). Now suppose that for some t, the hunter is at vi and Mt is

as described in the claim above.

If V 2
i 6= ∅, then the hunter moves to a vertex in V 1

i at time t+1 to check that the

mole is not on this branch. If the mole is in V 2
i , then the hunter can simply check

every knee in V 1
i by alternatingly being on a knee in V 1

i and on vertex vi, until all

knees in V 1
i have been checked. The mole cannot leave this branch while the hunter

checks it in this way, since when she checks V 1
i , he also goes to a vertex in V 1

i , and

therefore when she goes to vi, he must go to a vertex in V 2
i . Note that this also means

that the mole cannot switch knees, so once the hunter searches a vertex in V 1
i , there

is no possibility of recontamination. Therefore the number of moves that the hunter

spends searching through V 1
i is equal to 2ki where ki is the number of knees adjacent

to vi. Meanwhile, if the mole was at vi+2 at time t, he can move to vi+1 or vi+3; even

while the hunter is busy checking her current branch, he cannot get back to vi since

55

4.1 A Characterization of Hunter-Win Graphs

the hunter is in V 1
i when the mole is on vi+1, and so her next move is to vi, forcing

the mole back. If the mole was in V 1
i+1, then he can move to vi+1 or to a vertex in

V 2
i+1. Finally, if the mole was in V 2

i+2, he moves to a vertex in V 1
i+2. Then the hunter

returns to vi at time t + 2ki and Mt+2ki = Mt\V 2
i . At time t + 2ki + 1, the hunter

moves to vi+1 and following the same arguments as above, we can see that Mt+2ki+1

consists of (a) vi+3, vi+5, . . . , (b) V 1
i+2, V

1
i+4, . . . , and (c) V 2

i+1, V
2
i+3,

If instead V 2
i =∅ then the hunter moves to vi+1. If at time t the mole were at vi+2,

he must now move to vi+3 or a vertex in V 1
i+2 to avoid immediate capture. If he was

in V 1
i+1, he must move into V 2

i+1 (therefore if V 2
i+1=∅ then V 1

i+1 6⊂ Mt since he would

be captured at time t + 1 on vi+1). And finally, if he was in V 2
i+2, he must move

into V 1
i+2. Therefore, Mt+1 consists of (a) vi+3, vi+5, . . . , (b) V 1

i+2, V
1
i+4, . . . ,, and (c)

V 2
i+1, V

2
i+3,

Note that according to this scheme, if V 2
i =∅, then (regardless of whether or not

V 1
i is empty) the hunter moves to vi+1 from vi. Therefore, if the hunter gets to vertex

vm−1 using this scheme without having captured the mole, she knows that the odd

mole must be at a vertex in V 2
m−1; the hunter wins by checking the vertices in V 1

m−1

as described above. Otherwise, the hunter’s adversary was an even mole, and the

scheme repeats identically in the opposite direction, ending in capture at the other

end of P .

4.1.2 Mole-win Graphs

Lemma 4.3. Let H be any mole-win graph. Then any graph G containing H as a

subgraph is also mole-win.

Proof. Let H be a mole-win graph and G a graph containing H as a subgraph. Then

56

4.1 A Characterization of Hunter-Win Graphs

the mole has a strategy, R, on H such that no strategy of the hunter can guarantee

capture in bounded time. When the game is played on G, the mole still performs

strategyR. The hunter can now use the vertices of G\H, but since the mole’s strategy

has him staying on the vertices of H, she will not find the mole there. Since she was

already free, in the game played on H, to go to any vertex at any time (and also to

wait there as long as she likes), using the vertices of G\H does not offer any advantage

in beating strategy R. Therefore, G is mole-win.

We now show that we can focus our attention on trees.

Lemma 4.4. The cycle Cn is mole-win for all n ≥ 3.

Proof. Suppose the cycle has vertices v1, v2, . . . , vn. Note first that the hunter does

not benefit from knowing the history of the mole’s moves. If the two players occupy

two different vertices (say, the hunter is on vi and the mole on vj), then the mole

has two choices of moves—either to vj−1 or to vj+1. Therefore the hunter has a

positive probability of making the wrong choice (i.e. the prescient mole will be able

to slip away by choosing a neighboring vertex different from the choice of the hunter).

Therefore, if the two players occupy two different vertices at turn t, the mole can

ensure that they will occupy two different vertices at turn t+ 1.

Figure 4.1 shows a visualization of this argument. In the case of the cycle, it is

rather trivial, but will be useful in helping to visualize the argument in Lemma 4.5.

We label the vertices with “+” if that vertex is a possible choice for the mole, and

“0” otherwise. The arcs represent move sequences that the hunter can choose. In the

case of the cycle, this diagram shows that no matter what choice the hunter makes

for her move at time t, the situation at time t+ 1 will be the same as at time t.

57

4.1 A Characterization of Hunter-Win Graphs

(any vertex choice)

+

+

+

+ +

+ +

+ +
. ..

Figure 4.1: A diagram of the mole’s choices on Cn given any hunter move sequence

Lemmas 4.3 and 4.4 immediately yield the following corollary.

Corollary 4.1. Any graph containing a cycle is mole-win.

We now show that by far not all trees will be hunter-win, either. In the remainder

of this chapter, let S be the spider graph with three legs of length three. For notational

convenience, we will denote the hub vertex by 0, and the vertices on the legs by

v1, v2, v3 where v is one of the symbols a, b, c, and for all v, 0∈N(v1), v1∈N(v2), and

v2∈N(v3). The graph S is represented in Figure 4.2.

0
a1

a2

a3

b1

c1
c2

b2

b3

c3

Figure 4.2: The graph S

58

4.1 A Characterization of Hunter-Win Graphs

Lemma 4.5. S is mole-win.

Proof. Suppose that the mole is an even mole (so that at time 1, he can be at vertices

0, a2, b2, or c2). We will show that the hunter cannot make progress against an even

mole. To do this, we will go through every possible situation that may arise, and

show that in every move sequence of the hunter, a previously occuring situation will

repeat, showing that the mole never runs out of possible locations. (Note that the

previously defined adversarial mole is caught at time t if and only if at time t, there

are no possible places for a random mole to be such that he will not be guaranteed

to be caught immediately by the hunter.)

We start with the mole at one of the following vertices: 0, a2, b2, c2. The hunter

has (up to symmetry) two distinct choices that will further limit the mole’s possible

locations: to move to 0 or to move to (without loss of generality) a2.

Sequence 1. The hunter moves to 0. Then if he is not to be caught immediately,

the mole may start on a2, b2, or c2. Therefore the mole may, on his next turn, be at

a1, a3, b1, b3, c1, or c3. The hunter again has two choices (up to symmetry): she moves

to a1 or to a3. In either case, the mole will be at one of the vertices 0, a2, b2, c2 on the

next turn and we have repeated the initial scenario, showing that the hunter cannot

win by initially choosing to be at vertex 0.

Sequence 2. The hunter moves to a2. Then the mole’s initial position is at 0, b2,

or c2. Therefore the mole will be at a1, b1, b3, c1, or c3 next. The hunter now has three

choices:

(a) The hunter goes to a1.

(b) The hunter goes to b1.

59

4.1 A Characterization of Hunter-Win Graphs

(c) The hunter goes to b3.

Both options (b) and (c) result in the possible positions a1, b1, ca, c3 for the mole,

and therefore he will next be at 0, a2, b2, or c2, resulting in the initial situation again.

If the hunter chooses option (a), then the mole must be at vertices b1, b3, c1, or c3,

and therefore will next appear at vertices 0, b2, or c2. The hunter’s move sequence

may take one of two turns now:

(i) The hunter goes to 0.

(ii) The hunter goes to b2.

In move sequence (i), the mole must have been at b2 or c2 and therefore will next

be at b1, b3, c1, or c3. The hunter may then move to either b1 or b3, but in either case,

the mole will next be at 0, b2,or c2, creating the same situation (where the hunter

must choose between (i) and (ii)), so no progress has been made. In move sequence

(ii), the mole may be at a1, b1, c1, or c3. The hunter can then go to a1, so that the

mole’s next position is at 0, b2, or c2 and again the hunter must choose between (i) or

(ii), or the hunter can go to b1 or b3, both resulting in the mole appearing at one of

0, a2, b2, c2, and the hunter chooses between sequence 1 or 2.

So we see that for every choice that the hunter can make in determining her move

sequence, she will eventually repeat a previously occuring situation, showing that she

cannot get the mole into a position where he has no safe choices.

As in the case of Lemma 4.4, we can represent this with the following figure.

In Figure 4.3, the top left leg is the leg containing the ai vertices, and the bottom

leg is the leg containing the ci vertices. In this figure we include all of the possible

hunter moves from any given position (including the ones that we did not discuss in

60

4.1 A Characterization of Hunter-Win Graphs

+
0 +
0

+0
+

+
0
+

0
+0

+
0 +
0

0
+
0

0
0 +
0

+0
+

+
0
+

0
+0
0

+
0
+

0
+0

+

+
0
+

0
0 0

+
0 +
0

0
+
0

0
0 0

0
0 +

all choices

0, a1, a3, b1,

b3, c1, c3

0, a2, a3, b2,

b3, c1, c2, c3
b2, c2

a1, b1

all choices

0

a2, b2, c2

0, a2, a3, b1, b2,

b3, c1, c2, c3

a1, a2, a3, b1,

b3, c1, c3

a1

Figure 4.3: A diagram of the mole’s choices given any hunter move sequence

Lemma 4.5 because they represent the hunter checking a vertex on which she knows

the mole will not be). With this visualization, it is easy to see that there are only

six distinct positions in which the hunter can find herself, and none of them include

a guaranteed capture of the mole. Lemma 4.3 yields the following restriction on

potential hunter-win trees.

Corollary 4.2. Any tree containing S as a subgraph is mole-win.

4.1.3 Characterization

We are now ready to give a forbidden subgraph characterization of lobsters, and to

characterize all hunter-win graphs.

Lemma 4.6. A tree G is a lobster (as defined in Definition 4.1) if and only if it does

not contain S as a subgraph.

61

4.1 A Characterization of Hunter-Win Graphs

Proof. Let G be a lobster containing a path P such that P is a longest path in G

satisfying the condition that all of its vertices are within distance 2 of P . Suppose,

for contradiction, that G contains S as a subgraph and let v ∈ V (G). If v ∈ P then

v can be adjacent to at most two vertices that are also on P . Since all vertices are

within distance 2 of P , v is not on a length three path disjoint from P , and so v

cannot be the hub vertex of S. If instead v /∈ P then either v is a leaf (and therefore

not the hub of S) or v is at distance exactly 1 from P , and then all but at most one

of its neighbors are leaves (and again, v could not be the hub of S). Hence, no vertex

of G is the hub of S, which is a contradiction.

Suppose now that G is any tree not containing S as a subgraph. Let P be a path

of maximum length in G and label its end points x and y. Let v be any vertex in

G that is not on P and let w be the vertex on P that is on the path connecting

v to P . If d(x,w) ≤ 2 then d(v, w) ≤ 2 since otherwise the v—y path is longer

than P . (Similarly, we have d(v, w) ≤ 2 if d(y, w) ≤ 2.) If both d(w, x) > 2 and

d(w, y) > 2, then if d(v, w) > 2 then S would be a subgraph of G (with w as its hub).

Therefore d(v, w) ≤ 2 and so all vertices are within distance 2 of P , which makes G

a lobster.

Lemma 4.6, combined with Lemma 4.5, immediately yields the following corollary.

Corollary 4.3. If G is hunter-win, then G must be a lobster.

Finally, using Lemma 4.2 and Corollary 4.3, we have our desired theorem.

Theorem 4.1. A graph is hunter-win if and only if it is a lobster.

62

4.2 Optimality of the Hunter Strategy

4.2 Optimality of the Hunter Strategy

In Lemmas 4.1 and 4.2, we described strategies for the hunter which checked for

(without loss of generality) an even mole first, and then for an odd mole. On a path

Pn on n vertices, the strategy took time 2(n−2) and on a lobster with a longest central

path Pm on m vertices, containing k knees, the strategy took time 2(m−2) + 4k. It

may seem, a priori, that considering these two types of moles separately may not

be the most intelligent strategy for the hunter—perhaps she can do something that

would be quicker. However, we shall see that the hunter does not, in fact, have a

faster strategy for capturing the mole.

Lemma 4.7. Let G be a lobster with k knees and with a longest central path Pm with

m vertices. Any winning hunter strategy must visit each knee and each of the m−2

internal vertices of Pm at least twice.

Proof. Suppose that there is a knee or internal vertex vj that is never visited by the

hunter on an odd turn. vj has at least two neighbors. We will call one of the neighbors

vj−1 and another vj+1. Then consider the strategy ρ for the mole defined as follows

ρs =

vj if s is odd

vj−1 if s is even and σs 6=vj−1

vj+1 if s is even and σs=vj−1

We claim that ρ beats σ (that is, the mole remains not caught at time M).

If σ were to beat ρ, then the hunter must catch the mole either (1) on vj or (2)

on vj±1. Since σ never has the hunter visiting vj on an odd turn, and ρ never has the

mole visiting vj on an even turn, case (1) will never occur. On even turns, ρ tells the

63

4.2 Optimality of the Hunter Strategy

mole to go to vj−1 if and only if the hunter is not there, and so he cannot be caught

there. Similarly, the mole goes to vj+1 when and only when the hunter goes to vj−1,

and so he also cannot be caught there. (Note that since the hunter cannot occupy

both vj−1 and vj+1 at the same time, the mole always has one of these two options

at all even turns.)

Therefore, the hunter using strategy σ cannot beat the mole using strategy ρ on

G. Since σ was chosen to be any hunter strategy in which there is an internal vertex

appearing at most once, any winning hunter strategy must visit each internal vertex

at least twice.

An analogous argument to that in the proof of Lemma 4.7 in the case of the

general lobster is presented below.

Lemma 4.8. Let v be a hip in a lobster G with k adjacent knees. Any winning hunter

strategy σ = {σ1, σ2, . . . , σM} must visit v at least 2k+2 times.

Proof. Let the hip v have k knees, a1, a2, . . . , ak. By u and w we will refer to the

neighbors of v that are on Pm. Now suppose that the hunter only visits v a total of

2k+1 times. Then without loss of generality, v is only visited k times on odd turns.

Suppose that the first odd visit to v occurs at time 2r+ 1. Then for all s < 2r+1 we

define

ρs =

v if s is odd

u if s is even and σs 6= u

w if s is even and σs = u

Now suppose that we have defined ρs for all s < 2m + 1 for some m where

σ2m−1 6= v and for some j, σ2m+1 = σ2m+3 = · · · = σ2m+2j−1 = v (i.e. a string of j

sequential odd-turn visits to v begins at time 2m + 1). Note that there exists some

64

4.3 Hunter vs. Sneakier Mole

N(v)\{σ2m+1, σ2m+3, . . . , σ2m+2j−1} 6= ∅ since |N(v)| ≥ k + 2 and j ≤ k. Let x be a

vertex in this set, and let y 6= x be neighbor of x.

Then for all s ∈ [2m+ 1, 2m+ 2j + 1] we define

ρs =

x if s is even

y if s is odd and s 6= 2m+ 2j + 1

v if s = 2m+ 2j + 1

This yields a mole strategy ρ = {ρ1, ρ2, . . . , ρM} which beats hunter strategy σ

since by the definition of ρ, we have ρs 6= σs for all s ∈ [M].

Lemmas 4.7 and 4.8 combine to tell us that every knee must be visited twice,

any internal path vertex that isn’t a hip must be visited twice, and any hip requires

an additional number of visits equal to twice the number of knees adjacent to it.

Therefore, we have as an immediate corollary that all winning hunter strategies on a

lobster G containing k knees and a longest central path on m vertices must take time

at least 2(m− 2) + 4k.

Theorem 4.2. The hunter strategy defined in Lemma 4.2 is an optimal strategy.

4.3 Hunter vs. Sneakier Mole

In our proof of Lemma 4.2, we relied heavily on the fact that the mole was forced to

move at each step by making use of the fact that the mole has a fixed parity. What

if this were no longer the case? We represent this variation by keeping the rules of

the game entirely the same, but adding loops to the graph at vertices at which the

mole is allowed to sit.

65

4.3 Hunter vs. Sneakier Mole

This addition is quite unfortunate for the hunter, as can be seen in Lemma 4.9,

below.

Lemma 4.9. Any graph containing at least two loops is mole-win.

Proof. First fix n ≥ 2 and consider the graph Pn with a loop at both of its endpoints,

with vertices labeled 1, 2, . . . , n from left to right. Its diagram will behave very simi-

larly to the diagram in Figure 4.1—any choice of first move for the hunter will return

the mole to his initial situation:

Regardless of the hunter’s choice of initial position, all of the vertices will

be adjacent to a vertex not occupied by the hunter, and therefore fair

game for the mole. In particular, if the hunter chooses any vertex v with

a label from {3, 4, . . . , n−2}, then all vertices are adjacent to either one

or two vertices not occupied by the hunter (i.e. to a vertex represented by

a “+” in the diagram). If the hunter chooses vertex 2 or n−1, then any

internal vertex is adjacent to a “+” and since the hunter is not occupying

the endpoints and they are adjacent to themselves, they also have a “+”

in the diagram. Finally, if the hunter begins at an endpoint, all vertices in

{3, 4, . . . , n−2} are adjacent to two “+” vertices, and vertices 1, 2, n−1,

and n are adjacent to one “+” vertex.

By Lemma 4.3, any graph containing as a subgraph Pk with a loop at each end

point (for any 2 ≤ k ≤ n) is mole-win.

So then the question of a graph with loops becomes the question of a graph with

a single loop. We will see that the mole can make good use of a single loop, but only

in certain placements.

66

4.3 Hunter vs. Sneakier Mole

Lemma 4.10. Any path Pn with a loop at a vertex that is at distance less than or

equal to 2 from an endpoint is hunter-win (for all n ≥ 1).

Proof. Label the vertices of Pn from 1 to n moving left to right, and first place the

loop at the vertex labeled “1.” We claim that the following sequence of moves for the

hunter will guarantee capture of the mole in 2(n−1) steps:

H = {n−1, n−2, . . . , 2, 1, 1, 2, 3, . . . , n−1}.

In her movement from right to left, the hunter is progressively taking away options.

For his first move, the mole can be anywhere but at n; for his second move, anywhere

but at n−1; for his third move, anywhere but n and n−2; for his fourth, anywhere but

n−1 and n−3; and so on. By the time she gets to 1, the mole’s options are therefore

only the odd vertices (that is, the diagram looks like +0 + 0 + · · · . By waiting one

more turn at 1, the hunter turns the mole’s diagram into 0 + 0 + 0 · · · and so as she

moves back along the path to the right, she is taking away (at every other step) one

more position of the appropriate parity, ensuring that the situation is just like in the

original game on Pn with no loop.

Now suppose that the loop is at vertex 2 and consider the hunter strategy

H = {n−1, n−2, . . . , 3, 2, 2, 3, . . . , n−1}.

An identical argument to the one above shows that by the time the hunter reaches 2

for the first time, the mole’s diagram looks like 0 + 0 + 0 · · · , and so by remaining at

2 for one more step and then continuing to the right, the hunter progressively removes

one more position of the correct parity at every other step.

67

4.3 Hunter vs. Sneakier Mole

Finally, if the loop is at vertex 3, the hunter strategy

H = {n−1, n−2, . . . , 3, 2, 3, 3, 2, 3, . . . , n−2, n−1}

behaves nearly the same way as in the previous arguments. When the cop gets to

vertex 3 for the first time, the mole’s diagram looks like + + +0 + 0 + · · · , so that

following the move sequence to 3, 2, 3, 3, the diagram looks as in Figure 4.4.

+ + + 0 + 0 ***

0 + + + 0 + 0 ***

+ 0 + 0 + 0 ***

2

3

3

0 + 0 + 0 + ***

3

Figure 4.4: A diagram of the mole’s choices after the hunter’s first arrival at the loop

Now as in the previous two arguments, the hunter is progressively removing one

more position of the correct parity from the mole’s list of options at every other

step.

Lemma 4.11. Any lobster G with a maximal length central path P with a loop off

of a vertex v (that is, the loop is either at v, at a knee adjacent to v, or at a foot at

distance 2 from v) that is at distance less than or equal to 2 from an endpoint of P

is hunter-win.

68

4.3 Hunter vs. Sneakier Mole

L:

R:

Figure 4.5: An example of a lobster with a loop, separated into L and R

Proof. Create two subgraphs, L and R of G, such that L is induced by v and all

vertices on the path between it and the nearest path endpoint (and all neighbors of

these vertices), and R is G\L, as in the example of Figure 4.5. Since G without

the loop is hunter win by Theorem 4.1, R is hunter-win by the contrapositive of

Lemma 4.3. Therefore, following the first half of the strategy described in the proof

of Lemma 4.2, the hunter can clear R for a mole of the proper parity (without loss

of generality, suppose she clears it for an even mole first, and we call this sequence of

moves RE, and let RO be the reverse of RE). Note that by using the loop, the mole

can change his parity, but he cannot get into R as an even mole after R has already

been checked, so when the hunter gets to the loop for the first time, the mole is either

in L or is an odd mole in R.

There are precious few options for how L may look, up to symmetry:

69

4.3 Hunter vs. Sneakier Mole

(1) If v is an endpoint of the path, then L={v}, and so the hunter wins with strategy

RE − v − v −RO, much like in the first case of Lemma 4.10.

(2) If v is a vertex of the central path at distance 1 from the endpoint, then L is a

star with v at its hub. Then once again the strategy RE − v− v−RO captures

the mole. Notice that if v is on a vertex off of the central path, adjacent to a

vertex at distance 1 from the endpoint, then we could redefine the path so that

v is on it.

(3) If v is on the path at distance 2 from the nearest endpoint, then either v has

an off-path neighbor at distance 2 or it does not.

(i) v does not have an off-path neighbor at distance 2.

Label the on-path neighbor of v in L by w and the endpoint of the path by

x. Then when the hunter goes through RE and hits v for the first time, the

mole could go to x, w, an off-path neighbor of w, or v. Then the hunter

goes next to w, so that the mole’s options in L become w or an off-path

neighbor of v. Now the hunter goes back to v so that the mole’s options

are x, an off-path neighbor of w, or v, and so when the hunter stays at v for

one more step, the mole’s options become only w or a vertex in R (of the

not-yet-checked parity). Now the hunter simply turns around and heads

back into R, removing one vertex of the appropriate parity at each move,

just as in Lemma 4.10, and guaranteeing that the mole must be in R, and

will be found at the end of the sequence RE − v − w − vv − w − v −RO.

(ii) The vertex v has an off-path neighbor at distance 2.

Label the k off-path neighbors which are not leaves (i.e. they are the

70

4.3 Hunter vs. Sneakier Mole

middle vertex in a length 2 path starting at v and ending off of the central

path) of v by a1, a2, . . . , ak. Notice that by maximality of the central path,

all of the off-path neighbors of w are leaves. Now once the hunter completes

RE and hits v for the first time, the mole can go to any vertex in L for his

next move. So the hunter can continue to cut off one more vertex of the

proper parity at each turn, as before, by doing the following strategy:

RE − v − w − v − a1 − v − a2 − v − · · · − v − ak − v − v

At this point, the mole must be at a1, a2, . . . or ak. Now by going to

a1 − v − a2 − v − · · · − v − ak − v − w, v, the hunter guarantees that the

mole is in R, and so captures him during the rest of her sequence: RO.

If v a knee adjacent to a hip at distance 2 from the nearest path endpoint, then

this situation can be made identical to the one in (2), and if v is on a foot at distance

2 from a hip which is itself at distance 2 from the nearest path endpoint, then a

redefinition of the path yields the situation in (1).

Therefore, we have considered every possibility for L, and shown that they are all

hunter-win.

In all of the arguments in the proof of Lemma 4.10, we again make use of the

fixed parity of the mole. Even though he can stay at the loop for a while, he cannot

change his parity in an effective way (and get “behind” the cop on vertices of the

same parity she already checked). Far from all graphs (or even paths) with a single

loop are hunter-win, however—and it stands to reason that the graphs which fail to

be hunter-win are precisely those on which the hunter cannot clear the graph to one

71

4.3 Hunter vs. Sneakier Mole

side of the loop while simultaneously keeping the mole from switching his parity in

an effective way.

Lemma 4.12. Any graph containing as a subgraph a copy of one of the following

graphs is mole-win.

G1: P7 with a loop at its middle vertex.

G2: P7 with one looped non-path vertex, attached to the middle vertex.

G3: P7 with a path of length 2 attached to the middle vertex, with a loop at its

endpoint.

G1

G2

G3

Figure 4.6: The graphs G1, G2, and G3

Proof. G1: Label the vertices of G1 from (without loss of generality) left to right

with 1, 2, . . . , 7 (so that the loop is at 4). By performing an analysis as in the

proof of Lemma 4.5, one can see that the diagram of possibilities for the mole is

exactly the diagram in Figure 4.7 (with symmetric situations identified on the

diagram).

72

4.3 Hunter vs. Sneakier Mole

G2: Label the vertices of G2 from left to right on the path with 1, 2, . . . , 7 again, and

label the remaining neighbor of 4 with an 8. The diagram of position possibility

states for the mole is the one in Figure 4.8

G3: Finally, label the vertices of G3 from left to right on the path with 1, 2, . . . , 7

again, and label the remaining neighbor of 4 with an 8, and the remaining

neighbor of 8 with a 9. The diagram of position possibility states for the mole

is the one in Figure 4.9.

In all three cases, no move sequence of the hunter can guarantee capture of the

mole. And consequently by Lemma 4.3, no graph containing G1, G2, or G3 as

a subgraph can be hunter-win.

The previous two lemmas immediately yield the following characterization of

hunter-win graphs (in which we allow loops).

73

4.3 Hunter vs. Sneakier Mole

Theorem 4.3. A graph is hunter-win if and only if it satisfies all of the following:

(a) It is a lobster.

(b) It contains no more than one loop.

(c) If it does contain a loop, the loop is either

(i) at a vertex on the central path which is within distance 2 of the nearest

endpoint, or

(ii) at a vertex off the central path which is a neighbor of such a path vertex.

+ + + + + + +

0 + + + + + +

+ 0 + + + + +

0 + + + + + 0

0 0 + + + + +

0 + 0 + + + +

+ 0 + + + + 0

1, 3, 4, 5, 7

2, 6 1,4,5,7

2, 6

3 1, 2, 3, 5, 74

6

1,4,7

2, 6

3, 5

1, 2, 5, 7

3
4 62

6

5

1, 3, 4, 5, 7

1, 2, 3, 6, 7

4

Figure 4.7: A diagram of the mole’s choices in G1 given any hunter move sequence

74

4.3 Hunter vs. Sneakier Mole

+ + + + + + +
+

0 + + + + + +
+

+ 0 + + + + +
+

0 + 0 + + + +
+

0 + + + + + 0
+

+ 0 + + + + 0
+

 0 0 + + + + +
+

1, 3, 4,
5, 7, 8

1, 4, 5,
7, 8 2,6 1, 4, 7, 8

2,6
3 1, 2, 3,

5, 7, 8

4 1, 3, 4
5, 7, 8

2,6

3, 5

6

2

6

4

1, 2, 3, 7, 8

5

6

3

4

1, 2, 5,
7, 8

1, 2, 3,
5, 7, 8

6

6

Figure 4.8: A diagram of the mole’s choices in G2 given any hunter move sequence

+ + + + + + +
+
+

0 + + + + + +
+
+

+ 0 + + + + +
+
+

0 + 0 + + + +
+
+

0 0 + + + + +
+
+

+ 0 + + + + 0
+
+

0 + + + + + 0
+
+

1, 3, 4, 5
7, 8, 9 2, 6

2, 6

1, 4, 5
7, 8, 9

3

1, 4, 7,
8, 9

2, 6

3, 5

1, 2, 3, 5,
7, 8, 9

4

6

1, 3, 4, 5,
7, 8, 9

2
6

3

1, 2, 5,
7, 8, 9

4

6

5

1, 2, 3,
7, 8, 9

6

4

Figure 4.9: A diagram of the mole’s choices in G3 given any hunter move sequence

75

4.4 Appendix to Chapter 4

4.4 Appendix to Chapter 4

In this appendix we give an algebraic interpretation of the game studied in Chapter 4

and give some Matlab code that generates all winning hunter strategies for a graph

given its adjacency matrix. The reader should be warned that the number of winning

hunter strategies may be quite large for some graphs!

4.4.1 Hunter vs. Mole: An Algebraic Approach and Hunter-

Win Strategy Generation

Let T be the adjacency matrix for the graph G. Let Wt be an n-dimensional vector

corresponding to charges placed on the vertices, defined in the following way. Let

W0 = 〈1/n, 1/n, . . . , 1/n〉 and define Wt+1 = Iσ(t)T Wt where Ij is the n× n diagonal

matrix with the (j, j) entry equal to 0 and 1’s elsewhere on the diagonal.

Lemma 4.13. A graph G is hunter-win if and only if there is a hunter strategy σ

such that for some bounded M , WM = 0.

Example The Cycle. As one example of how we can use this algebraic interpre-

tation, we can reprove Lemma 4.4 in the following way.

Lemma 4.14. The cycle Cn is mole-win.

Proof. Consider the cycle on n vertices, Cn. The random walk on Cn has transition

76

4.4 Appendix to Chapter 4

matrix

0 1/2 0 · · · 0 1/2

1/2 0 1/2 0 · · · 0

0 1/2 0 1/2 · · · 0

...
...

.
...

0 0 · · · 1/2 0 1/2

1/2 0 · · · 1/2 0

Suppose that for some t, Wt = 〈p1, p2, . . . , pn〉, such that at least two of the entries

in Wt are nonzero. We will show that there is no k such that IkTWt = 0.

TWt = 〈p2 + pn
2

,
p3 + p1

2
,
p4 + p2

2
, . . . ,

pn + pn−2

2
,
p1 + pn−1

2
〉

Suppose that for some k, IkTWt = 0. Note that for each i, pi appears in two entries

in Wt: one in which it appears with pi+n−2n and another in which it appears with

pi−(n−2) (with subscripts taken modulo n). Note that i− (n− 2) ≡ i+ n− 2 mod n

if and only if n = 4. For now we suppose that n 6= 4. Then if, say, pi, pj 6= 0 (where

i 6= j), TWt will be a vector containing two instances of pi/2 and two instances of

pj/2, and consequently setting any single entry of TWt to zero will result in a non-zero

vector. So therefore if at least two entries of Wt are non-zero, then IkTWt 6= 0 for

all k ∈ {1..n}. Note also that if at least two entries of Wt are non-zero then TIkTWt

will have at least two non-zero entries for any choice of k.

77

4.4 Appendix to Chapter 4

For the case where n = 4, note that T is the matrix

0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0

and so for any t, if Wt has no non-zero entries then Iσ(t)TWt has exactly one

non-zero entry and if Wt has exactly one non-zero entry then Iσ(t)TWt has exactly

one non-zero entry, yielding no way to get to WM = 0 for any M .

With this algebraic interpretation in mind, the following Matlab code defines a

recursive function used to print all of the hunter-win strategies, if any exist (and will

print nothing if the graph corresponding to T is mole-win). This function takes in an

adjacency matrix T, a vector v (initially all 1s), a list V S of visited states (initially

just a single entry—the vector of all 1’s, and an ordered list of the vertices chosen for

a winning hunter strategy (initially the empty list). It prints ”hunter win” and the

winning strategy every time it hits upon one; it will print all of the winning strategies

that don’t repeat an already visited state. (Warning: the list of strategies may be

quite large!) To run this code for a graph of size n with adjacency matrix T , run the

following command in Matlab: huntermole(T,ones(1,n),ones(1,n),[])

4.4.2 Hunter vs. Mole: Winning Strategy Generating Code

function huntermole(T,v,VS,winning_strat)

[r,c] = size(VS); %r=num. of distinct visited states

78

4.4 Appendix to Chapter 4

%%%%this part changes v and VS%%%%

for i = 1:length(v)

temp = v;

temp(i) = 0; % hunter picks position

temp = temp*T; % flow charges corresponding to mole options

%just want to save if they are 0 or 1 so change all #s > 1 to 1

for m = 1:length(v)

if temp(m) > 1

temp(m) = 1;

end

end

% check if the hunter has won yet

if all(temp == zeros(1, length(temp))) == 1

%then this is the zero vector, so we are done

disp(’hunter win’);

[winning_strat;i] %displays the winning strategy

else

% not done yet

found = 0; % "found" is going to be 1 if v was in VS, 0 otherwise

for k=1:r

found = found + all(temp==VS(k,:));

79

4.4 Appendix to Chapter 4

%adds 1 to "found" score if v was already in VS

end

if found == 0

% then v wasn’t found yet so add it to VS and apply function to

% this new vector

huntermole(T, temp, [VS;temp],[winning_strat;i]);

end

end

end

end

80

Chapter 5

Cops & Gamblers

Consider the following version of the game of cops and robbers: the players play on a

graph G with vertex set V = {v1, v2, . . . , vn}. The cop moves as in the original version

of this game, but her adversary is now a “gambler” who is not constrained by the

edge set of the graph. Instead, at the beginning of the game, he picks a probability

distribution, p1, p2, . . . , pn, where pi = P(Rt = vi) (where Rt is the gambler’s position

at time t, so that the Rt are i.i.d. random variables). This distribution is known

by the cop, and the gambler maintains the same distribution throughout the game,

which as usual terminates when the two players occupy the same vertex. We seek to

answer the question of how long, in expected time, this game will go on; and indeed,

we answer the question with “no more than time n” on any graph—a rather surprising

theorem!

81

5.1 Cop vs. gambler on Pn

5.1 Cop vs. gambler on Pn

Consider this game played on G = Pn, the path on n vertices, with vertices labeled

v1 through vn from left to right, for the sake of consistent visualization. Let Ct be

the cop’s position at time t. Suppose that C0 = v1, and Rt (with t ∈ Z≥0) is chosen

according to the distribution p1, . . . , pn on the vertices, as explained above.

Lemma 5.1. The cop can capture the gambler in expected time less than or equal to

n on Pn.

Proof. In our strategy, the cop will be moving from v1 toward vn, stopping when pi

is large enough to allow it. Let us make this notion precise in the following manner.

Suppose that the cop is at vi. Let mi = n − i + 1 be the total number of

vertices “ahead” of the cop (including the one she is currently occupying) and let

ci=pi+ . . .+pn be the sum of the probabilities of the vertices that are “ahead” of the

cop (including the one she is currently occupying). If the cop is at vi, let Ti be the

expected time from now until capture. We claim that Ti ≤ mi/ci for all i ∈ {1..n}

and proceed by induction on mi. Note that when i = 1, this statement is equivalent

to the statement in the lemma.

When mi = 1, i = n, so the cop is at vn. Here cn = pn, and therefore (since the

waiting time is a geometric random variable with parameter pn), we have Tn = 1/pn =

mn/cn. Now suppose that the statement holds for all mj for j > i, and suppose that

the cop has arrived at vi. If pi ≥ ci/mi, we are done, since Ti = 1/pi ≤ mi/ci. Now

suppose that pi < ci/mi. With probability pi, the cop captures the gambler at vi

(which takes time 1), and with probability 1−pi, she moves on to vertex vi+1. Now

mi+1 = mi−1 < mi so the expected capture time from this new position is bounded

82

5.2 Cop vs. gambler on a tree

by
mi+1

ci+1

=
mi−1

ci−pi
. This yields the following inequality:

Ti ≤ 1 + (1− pi)
(
mi−1

ci−pi

)

We have (for i > 1):

pi <
ci
mi

=⇒ ci(ci − 1) < mipi(ci − 1)

=⇒ ci(ci −mipi +mi − 1 + pi − pi) < mi(ci − pi)

=⇒ ci
ci − pi

(ci − pi +mi(1−pi)− (1−pi)) < mi

=⇒ ci +
ci(1−pi)
ci − pi

(mi − 1) < mi

=⇒ 1 +
1−pi
ci − pi

(mi − 1) <
mi

ci

Therefore Ti <
mi

ci
whenever pi <

ci
mi

, as desired.

5.2 Cop vs. gambler on a tree

We now consider this game on any tree. Again, label the vertices v1, . . . , vn with

index i < j if the cop will reach vi before vj.

Lemma 5.2. The cop can capture the gambler in expected time less than or equal to

n on any size n tree.

Proof. The cop proceeds with a strategy similar to that in the case of the path, but

when she must make a choice of a branch of the tree, she chooses the branch with

the highest average probability among its vertices. In particular, if she is at vertex

83

5.3 Cop vs. gambler on a general graph

vi and chooses the branch containing vertex vj, then
cj
mj

≥ ci − pi
mi − 1

(that is, the av-

erage probability in the chosen branch is at least as high as the average probability

of the entire subtree containing all of her choices of branches from vi). Therefore

mj

cj
≤ mi − 1

ci − pi
. It follows directly from this that 1 +

1−pi
cj

(mj) ≤ 1 +
1− pi
ci−pi

(mi−1).

Now we apply the same induction argument as we used in Lemma 5.1:

We claim that Ti ≤
mi

ci
for all i ∈ {1..n} and proceed by induction on mi.

Suppose that this is true for all mk < mi and that the cop arrives at vertex vi. Again,

if pi ≥
ci
mi

, then remaining on vi gives Ti ≤
mi

ci
. Otherwise we have pi <

ci
mi

and

the cop moves forward, choosing a vertex vj such that
mj

cj
≤ mi − 1

ci − pi
. Then with

probability pi, the gambler is captured in one move and with probability 1−pi, in

1+
mj

cj
moves. So we have Ti ≤ 1 + (1 − pi)

mj

cj
≤ 1 + (1 − pi)

mi − 1

ci − pi
, by the above

observation. In Lemma 5.2, we showed that if pi <
ci
mi

, then 1+(1−pi)
mi − 1

ci − pi
<
mi

ci
.

Consequently, we have that Ti ≤
mi

ci
, as desired.

5.3 Cop vs. gambler on a general graph

Lemma 5.3. The gambler can guarantee that the game takes at least n moves on

average on any connected graph on n vertices.

Proof. We first check that the gambler can ensure time at least n on Kn. If the

gambler has strategy pi = 1/n for all i ∈ {1..n}, then any strategy of the cop gives

probability 1/n of capture at each step, and therefore expected capture time n.

Kn is the “easiest” graph for the cop, in the following sense. Suppose for con-

tradiction that there is a graph G which gives expected time T < n for the cop

84

5.3 Cop vs. gambler on a general graph

using strategy σ against the uniform gambler strategy; clearly G ⊆ Kn−xy for some

xy ∈ E(Kn). But then σ performed on Kn would give the same expected time T ,

since the gambler’s strategy remains unaffected by a change in the graph, and the

cop can play as if on G (since that is a subgraph of Kn). Then the expected capture

time on Kn is less than n, which we know to be a contradiction.

Consequently, the gambler can guarantee expected capture time at least n on any

size n connected graph.

Theorem 5.1. The expected capture time for the cop vs. gambler game on any con-

nected size n graph is n.

Proof. Let G be any connected graph of size n and let H be a spanning subtree of G.

By Lemma 5.2, the cop can capture the gambler in expected time at most n on H,

and consequently on G. By Lemma 5.3, we know that the expected capture time is

also at least n.

Note that n remains the value of this game whether things are as good or bad

as possible for the cop: she cannot beat n even if she is allowed to pick her starting

position after the gambler has chosen (and made public) his strategy, and the gambler

cannot beat n even if the cop’s initial position is fixed ahead of time. We state this

as a lemma and prove it.

Lemma 5.4. The value of the cop vs. gambler game is n in all three of the following

cases:

(a) The cop’s initial position is chosen for her ahead of time.

(b) The cop chooses her own initial position, but before she knows the gambler’s

strategy.

85

5.4 Cop vs. unknown gambler

(c) The cop chooses her initial position after the gambler makes his strategy known.

Proof. Note that the first situation is the worst for the cop (as she has no control

over her starting point) and the third situation is the best for the cop (as she has as

much information as is possible before the start of the game). Therefore it suffices to

show that the capture time is at most n in situation (a) and at least n in situation

(c).

(a) In this situation, the cop can still get expected capture time n on a tree by

Lemma 5.2.

(c) In this situation, the expected capture time is still at most n onKn by Lemma 5.3.

5.4 Cop vs. unknown gambler

In the proof of Lemma 5.2, the cop relied fairly heavily on knowing the gambler’s

strategy. What if this strategy were not known to the cop? We will (predictably) call

the adversary in this variant of the game the “unknown gambler” and will (equally

predictably) proceed to consider the expected capture time in this case.

The first question we would like to lay to rest is whether knowing that the ad-

versary is constrained to some time-independent probability distribution (we will

henceforth refer to a strategy of the unknown gambler as a gamble) is helpful to

the cop (even if she does not know what this distribution is). In [1, 6], the “hunter

vs. rabbit” scenario is discussed: in this version, the hunter (who fills the role of the

cop) remains constrained to the graph and the rabbit is wholly unconstrained—he is

86

5.4 Cop vs. unknown gambler

free to do as he likes at any turn. On Cn (the n-cycle), the rabbit can guarantee an

expected capture time of at least n log n. We will show that the unknown gambler

cannot do nearly so well.

Lemma 5.5. The unknown gambler is strictly weaker than the rabbit.

Proof. Consider the game played on Cn and label the vertex set V (Cn)={v1, v2, . . . , vn}.

Consider the following strategy, Ξ, for the cop: she begins on v1 and flips a coin to

determine her orientation around the cycle, which she then keeps until her adversary

is caught. That is, at time t, she is at vertex vt with probability 1/2 and at ver-

tex vn+2−t with probability 1/2 (with subscripts taken modulo n). Suppose that the

gamble is defined by P(Rt = vi) = pi for all i ∈ {1..n} and all times t ∈ N.

We will call each traversal of the cycle by the cop (starting at time t—where t≡1

mod n—at v1 and ending either at v2 or vn at time t + n − 1) a trip. Then note

that the probability of failing to capture her quarry on a given trip is
n∏
k=1

(1 − pk) ≤

(1− 1/n)n → 1/e:

n∏
i=1

xi ≤
(s
n

)n
for any x1, . . . , xn with

n∑
i=1

xi = s. We can see this with the

following simple argument. Fix all but two of the terms: say, xi and xj.

Suppose that xi+xj = a for some a ∈ [0, 1]. We maximize the product xixj

by noting xixj = xi(a−xi) = axi−x2
i = a2

4
− (a

2
−xi)2 ≤ a2

4
with equality

if and only if xi = a
2

and consequently xj = a − a
2

= a
2
. Since the choice

of i and j is arbitrary and xi=xj, it follows that x1 = x2 = · · · = xn = s
n
.

Since each trip is a success (i.e. the unknown gambler is captured) or a failure (the

unknown gambler is not captured) independently of any previous trips, the expected

number of trips necessary is at most
1

1− 1/e
=

e

e−1
.

87

5.4 Cop vs. unknown gambler

Given that the unknown gambler is captured in a given trip, let X be a random

variable counting the number of capture points during this trip (that is, we consider

the sequence c1, c2, . . . , cn of cop moves and the sequence r1, r2, . . . , rn of gambler

moves and call any time k ∈ {1..n} with ck = rk a capture point). Note that

P(X>0) = 1 by assumption. Let Y be the first capture point. Note that if k is a

capture point when the cop goes clockwise from v1 (which occurs with probability

1/2) then n+2−k is a capture point when the cop goes counterclockwise (which also

occurs with probability 1/2). Therefore E[Y |X = k] ≤ n/2 + 1 with equality holding

if and only if k = 1:

Let j be a capture point with probability qj. Then qj = qn+2−j. The

average over all capture point locations is then

n∑
j=1

qj(1/2 ∗ j + 1/2 ∗ (n+ 2− j)) =
n+ 2

2

n∑
j=1

qj = n/2 + 1

Therefore if there is exactly one capture point, then its expected loca-

tion is n/2 + 1. If there are k > 1 capture points, they occur at times

t1<t2< . . . <tk such that
1

k

k∑
i=1

ti = n/2 + 1, so t1 < n/2 + 1.

Note that P(X > 1) > 0 in any gamble in which pi < 1 for all i ∈ {1..n}. If

pi = 1 for some i ∈ {1..n}, this gamble corresponds to a strategy of a sitter, which

we have shown (in Chapter 3) gives expected capture time n. Otherwise, we have the

expected capture time is less than

n

1− 1/e
− (1− n/2) =

(
e+ 1

2(e− 1)

)
n ≈ 1.08n < n log n.

88

5.4 Cop vs. unknown gambler

Lemma 5.6. The unknown gambler is strictly stronger than the known gambler

against the cop doing strategy Ξ.

Proof. Suppose that the gamble on Cn —unbeknownst to the cop—is gamble Π,

defined as follows. The (unknown) gambler chooses a set X of k = b
√
nc consecutive

vertices uniformly and is equally likely to be at any vertex v ∈ X at any moment

in time (i.e. he is at v ∈ X at time t with probability 1/k). Note that since X

was chosen uniformly, Ξ is now equivalent to the strategy where the cop chooses a

uniformly random starting position and a uniformly random direction. Given that

the cop starts outside of X, call her conditional expected capture time Y . Then we

have that with probability p =

(
1− 1

k

)k
, she takes time n to get back to her initial

position, without having captured the gambler, and with probability 1−p, she takes

time
n−k

2
to enter X and then time k to capture the gambler in X. Therefore we

have

Y = p(n+ Y) + (1−p)n−k
2

+ k

and so

Y ≈ n

e−1
+
n+k

2
≈ 1.082n− .5k

The cop starts outside of X with probability 1−1

k
, and so the expected capture

time is at least (
1− 1

k

)
Y = 1.082n− 0.582

√
n− .5

which is greater than n for all n ≥ 62.

In fact, we now show Ξ is an optimal strategy for the cop against Π, and so the

unknown gambler bests any cop on Cn.

89

5.4 Cop vs. unknown gambler

Lemma 5.7. The strategy Ξ is an optimal strategy for the cop against the unknown

gambler with gamble Π.

Proof. For all times t < n, let pt be the probability that the unknown gambler doing

strategy Π is caught by time t, and let pt|>s be the probability that he is caught by

time t given that he is not caught by time s. Then note that for all t,

pt = pt−1 + (1−pt−1)pt|>(t−1) (5.1)

We will use Equation (5.1) to show that for all t<n, pt is maximized by following

the strategy prescribed by Ξ (that is, going to a previously unvisited vertex) at time

t. Note that Ξ is optimal if the cop that uses this strategy gets an expected capture

time that is less than or equal to the expected capture time she could obtain by using

any other strategy. Expected capture time is minimized by maximizing pt for all t,

since

E[X] =
∞∑
t=1

tP(X = t)

=
∞∑
t=1

P(X ≥ t)

=
∞∑
t=1

(1− P(X ≤ t−1))

=
∞∑
t=1

(1− pt−1)

(where X is the capture time). When we prove that pt is maximized for all t < n

by moving to a previously unvisited vertex, we show that during the first n steps,

the cop is minimizing the expected capture time by moving to a previously unvisited

90

5.4 Cop vs. unknown gambler

vertex (which is consistent with Ξ). The first n steps then complete one trip around

the cycle, and for all t ≥ n, the optimal moves are the same as at time t−n by the

independence of the trips. We now proceed with the proof.

For the sake of labeling convenience, we assume without loss of generality that

a cop following strategy Ξ will first visit vertex vi at time i. Let rt be the robber’s

position at time t. Finally, we say the gambler’s index is g = i if the interval X that

he has chosen contains the vertices vi, vi + 1, . . . , vi+k−1 (where the indices are always

taken modulo n).

Proceed by induction on t. The cop starts, without loss of generality, at vertex

v1. Remaining at vertex v1 at time 2 yields

p2 = p1 + (1− p1)p(r2 = v1|r1 6= v1)

= 1/n+ (1− 1/n)
1

k

n+1∑
i=n−k+1

P(g = i|r1 6= v1)

and for each i,

P(g = i|r1 6= v1) =
P(r1 6= 1|g = i)P(g = i)

P(r1 6= v1)

=
(1− 1/k)1/n

1− 1/n

=
k − 1

k(n− 1)

However, moving to vertex v2 at time 2 yields

p2 = p1 + (1− p1)p(r2 = v2|r1 6= v1)

= 1/n+ (1− 1/n)
1

k

n+2∑
i=n−k+2

P(g = i|r1 6= v1)

91

5.4 Cop vs. unknown gambler

= 1/n+ (1− 1/n)

(
1

k

n+1∑
i=n−k+2

P(g = i|r1 6= v1) + P(g = 2|r1 6= v1)

)

= 1/n+ (1− 1/n)

(
k − 1

k(n− 1)
+ P(g = 2|r1 6= v1)

)

where

P(g = 2|r1 6= v1) =
P(r1 6= v1|g = 2)P(g = 2)

P(r1 6= v1)

=
1/n

1− 1/n
=

1

n− 1

Therefore p2 is maximized by taking a step to an unvisited vertex.

Now fix t<n and suppose that the result holds for all s < t, that is, ps is maximized

by taking a step to a previously unvisited vertex at time s. By Equation (5.1),

pt = pt−1 + (1− pt−1)pt|>(t−1)

is maximized by a step to an unvisited vertex at time t if this maximizes pt|>(t−1)

(since pt−1 is maximized by the inductive hypothesis), by the following argument:

Suppose that pt|>(t−1) ≤ q. Then

(1− pt−1)pt|>(t−1) ≤ (1− pt−1)q

=⇒ pt−1 + (1− pt−1)pt|>(t−1) ≤ pt−1 + (1− pt−1)q

For each i < t, let Ai be the event that the robber was not at vertex vi at time i.

92

5.4 Cop vs. unknown gambler

Then if the cop’s step at time t is to an unvisited vertex (i.e. to vt) then

pt|>(t−1) = P(rt = vt|A1 ∩ A2 ∩ · · · ∩ At−1)

And we have that for all events A,

P(rt = vt|A) =
t∑

i=t−k+1

1

k
P(g = i|A)

Let i be any index such that vt ∈ X and let ji be the number of vertices in X

with indices from 1 to t−1 (i.e. ji = |{i, i+ 1, . . . , i+ k − 1} ∩ {1, 2, . . . , t− 1}|).

P(g = i|A1 ∩ A2 ∩ · · · ∩ At−1) =
P(A1 ∩ A2 ∩ · · · ∩ At−1|g = i)P(g = i)

P(A1 ∩ A2 ∩ · · · ∩ At−1)

=
(1− 1/k)ji 1

n

P(A1 ∩ A2 ∩ · · · ∩ At−1)

So that

pt|>(t−1) = P(rt = vt|A1 ∩ A2 ∩ · · · ∩ At−1)

=
1

k

t∑
i=t−k+1

(1− 1/k)ji

nP(A1 ∩ A2 ∩ · · · ∩ At−1)

If the cop’s step at time t is to vertex vt−1 then we have

pt|>(t−1) = P(rt = vt−1|A1 ∩ A2 ∩ · · · ∩ At−1)

=
1

k

t−1∑
i=t−k

(1− 1/k)ji

nP(A1 ∩ A2 ∩ · · · ∩ At−1)

93

5.4 Cop vs. unknown gambler

And finally if the cop moves to vt−2 at time t then

pt|>(t−1) = P(rt = vt−2|A1 ∩ A2 ∩ · · · ∩ At−1)

=
1

k

t−2∑
i=t−k−1

(1− 1/k)ji

nP(A1 ∩ A2 ∩ · · · ∩ At−1)

Therefore letting S =
1

k

t−2∑
i=t−k+1

(1− 1/k)ji

nP(A1 ∩ A2 ∩ · · · ∩ At−1)
we have

P(rt = vt|A1 ∩ A2 ∩ · · · ∩ At−1) = S +
(1− 1/k)jt−1 + (1− 1/k)jt

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

= S +
(1− 1/k) + 1

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

= S +
2− 1/k

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

while

P(rt = vt−1|A1 ∩ A2 ∩ · · · ∩ At−1) = S +
(1− 1/k)jt−k + (1− 1/k)jt−1

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

≤ S +
(1− 1/k) + (1− 1/k)

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

= S +
2− 2/k

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

and

P(rt = vt−2|A1 ∩ A2 ∩ · · · ∩ At−1) = S +
(1− 1/k)jt−k−1 + (1− 1/k)jt−k

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

< S +
2− 2/k

knP(A1 ∩ A2 ∩ · · · ∩ At−1)

Consequently, pt|>(t−1) is maximized by going to vt at time t, and so pt is maximized

94

5.4 Cop vs. unknown gambler

by going to vt at time t, as desired.

Therefore we have the following as an immediate corollary of Lemmas 5.5, 5.6,

and 5.7.

Theorem 5.2. The unknown gambler is strictly stronger than the known gambler

and strictly weaker than the rabbit.

95

Chapter 6

Capture Time in (Traditional)

Cops & Robbers

In this chapter we discuss the question of capture time in the original variation of

cops and robbers. That is, the cop and robber are moving alternately and with full

information on a finite, connected, directed graph G on n vertices. We begin with

an upper bound.

Lemma 6.1. On any connected cop-win graph on n vertices, the original cop and

robber game takes at most n2 steps.

Proof. Let c(t) and r(t) be the cop’s and robber’s (respectively) positions at time t.

Consider the set V (G) × V (G) of possible ordered pairs of positions (c(t), r(t)) for

all times t. We call such a pair a state. If at some time t, the players are in state

(c(t), r(t)) and there is a series of cop moves c(t+ 1), c(t+ 2), . . . , c(t+ k) for some k

which forces the robber to be caught by time t+k, then we call (c(t), r(t)) a winning

state.

96

6.1 Undirected Graphs

Let (c(t), r(t)) be a winning state for some t and let t be the first time at which

this state occurs. Then if (c(t+1), r(t+1)), . . . , (c(t+k), r(t+k)) is a series of moves

(with optimal play by both parties) which ends with the robber’s capture, then for

all i ∈ {1..k}, (c(t+ i), r(t+ i)) 6= (c(t), r(t)):

Let (c(t), r(t)) be a winning state and suppose that c(t+1), c(t+2), . . . , c(t+

k) is a sequence of optimal moves for the cop. Assume for sake of con-

tradiction that (c(t), r(t)) = (c(t + i), r(t + i)) for some i ∈ {1..k}. Then

the sequence of moves c(t), c(t+ i+ 1), c(t+ i+ 2), . . . , c(t+ k) is a win-

ning sequence for the cop, and is shorter than the previously mentioned

allegedly optimal sequence.

Since there are only |V (G) × V (G)| possible states and an optimal cop strategy

on a cop-win graph does not allow for repetition of states, the capture time cannot

exceed n2.

Note that this bound applies to directed graphs and also to graphs on which

the cop and robber may use different edge sets. As will be discussed in the following

section, this is a gross overestimate in the case of undirected graphs, where the capture

time does not in fact exceed n−4 (for all undirected graphs on n≥7 vertices). However,

we shall see that it is not such a bad bound in the case of general directed graphs!

6.1 Undirected Graphs

In the original formulation of the game, the notion of capture time requires a game

which is going to end in a finite number of steps in order to be interesting; that

is, the number of cops playing must be at least as high as the cop number of the

97

6.1 Undirected Graphs

graph. In [8], the authors note that the capture time of any graph G is bounded by

|V (G)|c(G)+1 where c(G) is the cop number of G. However, this bound is very far from

sharp in general. Later, in [26], the length of games for chordal graphs are analyzed.

The first concentrated effort on describing capture time in the original variation of

the game is by Bonato, Golovach, Hahn, and Kratochvil [11]. In that work (and later

in a paper of Gavenc̆iak [24]) observations are largely restricted to cop-win graphs

(that is, graphs with c(G)=1). The authors prove that on a cop-win graph with n ≥ 5

vertices, the cop wins in at most n−3 steps. Furthermore, they construct an example

of an infinite family of graphs for which n−4 steps are needed. Gavenc̆iak later closes

this gap by improving the upper bound to n−4 for all n ≥ 7. Bonato et al. also show

that for a large class of graphs, the capture time is bounded by n/2. Below, we will

explain in brief some of their results.

To show that the capture time is bounded by n−3 for all n ≥ 5, the authors

proceed by induction with the base case proven using an exhaustive check of all order

5 cop-win graphs. Suppose now that the statement is true for all order n cop-win

graphs and let G be a cop-win graph on n+1 vertices. Then G contains a corner u

and since any retract of a cop-win graph is cop-win [41], G− u is a cop-win graph of

order n. Therefore by the induction hypothesis the capture time on G− u is at most

n−3. Let v be a vertex of G that dominates the corner u. On G, the cop plays the

same strategy as she played on G− u, with the exception that when the robber is on

u, the cop plays as though he is on v. After n−3 moves with this strategy, either the

game is over or the robber is on u and the cop is on v, in which case she can capture

on her next move. Therefore the capture time on G is at most n−3+1 = |V (G)|−3.

To show that n−4 is a lower bound on the capture time on an order n graph,

98

6.1 Undirected Graphs

Bonato et al. construct an infinite family of graphs H(n) with capture time exactly

n−4 (with optimal play by both parties). Consider the graph H in Figure 6.1. Note

that it is cop-win and has a unique corner (the vertex z).

x

y

z

Figure 6.1: H: A cop-win graph with a unique corner

Using H, the authors construct an infinite family of graphs, H(n) for n ≥ 7 with

vertices with labels in {1..n} (the integers between 1 and n, inclusive) where vertices

with labels in {1..7} induce H (so that x = 5, y = 3, z = 7) and the remaining vertices

on the path joined to x and y are 6, 2, 1, 4. For the rest of the vertices (i > 7), vertex

i is joined to j < i if j is i−4, i−3, or i−1. See Figure 6.2 for H(11).

H(n) has the following properties (see Theorem 4 in [11]).

(a) H(n) is planar.

(b) H(n) is cop-win and has a unique corner (the vertex labeled n).

(c) The capture time on H(n) is exactly n−4.

We will leave the verification of the first two items to the reader (see the proof of

Theorem 4 in [11]) and focus on the proof of the fact that the capture time on H(n)

is at least n−4 (that is, we are also leaving the verification of the other direction of

the inequality to the reader—see the proof in [11] for an optimal cop strategy). To

99

6.1 Undirected Graphs

5

3

7

10 6

11

4 812

9

Figure 6.2: H(11)

show that the robber has a strategy that guarantees his safety for at least n−4 moves,

note that the robber may use the lowest index vertex available to him. The robber

may begin on any of the vertices in {1..6} as no single vertex of H(n) dominates all

of these. Let c(t) and r(t) be the cop’s and robber’s positions, respectively, at time

t for all t ≥ 0. Suppose that r(t − 1) ≤ 4; then the robber can move to r(t) ≤ 7.

Otherwise if 5 ≤ r(t− 1) ≤ n− 1, the robber’s options are summarized in Table 6.1.

Therefore we have r(t) ≤ 6 + t for all t ≥ 0, and since n is the unique corner of H(n),

the robber is not caught until r(t) = n (at which the cop can move to a vertex c(t+1)

that dominates the corner, and whatever vertex the robber chooses at t+ 1, the cop

will capture with c(t+ 2) = r(t+ 1) ∈ N(n)) and so will not be caught in fewer than

n− 6 + 2− n− 4 cop moves.

100

6.2 Directed Graphs

Table 6.1: A table of the robber’s moves

c(t) r(t)
i− 4 i+ 1
i− 3 i− 1
i− 1 i− 3
i+ 1 i− 4
i+ 3 i− 4
i+ 4 i− 4

6.2 Directed Graphs

As we saw in the previous section, a linear bound on capture time exists on all

undirected graphs. Can we do so well for more general graphs? It turns out that

the answer is in fact no for a general directed graph, as evidenced by the following

counterexample.

Lemma 6.2. There exists an infinite family of directed graphs on n vertices with

capture time Θ(n2).

Proof. We define a ring digraph R(k) to be a reflexive directed graph on n = 2k+1

vertices consisting of:

• an “outer ring” comprised of a (counterclockwise)-directed k-cycle

• an “inner ring” comprised of a (counterclockwise)-directed (k − 1)-cycle

• arcs from a vertex in the inner ring to a vertex in the outer ring configured such

that k−2 vertices in the inner ring are incident with one such arc, and 1 vertex

in the inner ring is incident with two such arcs

101

6.2 Directed Graphs

• an “internal vertex” (marked C in Figure 6.3) that is out-directed to every

vertex in the inner ring

• an “external vertex” (marked R in Figure 6.3) incident with two arcs as in

Figure 6.3

Figure 6.3: The ring digraph R(7)

We claim that for all k, R(k) is cop-win and the capture time on R(k) is Θ(n2).

In particular, the capture time on R(k) is (n2 − 4n+ 3)/4, where n = |V (G)|.

We describe a strategy where the cop starts on the vertex labeled C in Figure 6.3

and show that with both players moving optimally, the game takes (k − 1)2 + 1 =

k2−2k moves from this starting position. Then we show that this is the best starting

position for the cop.

Let Ci be the cop’s position after the ith move (so C0 is her starting position), and

define Ri analogously. Then if C0 = C and R0 = R, then the cop must play C1 = i

(the robber can remain on R until the cop is on this vertex). The robber’s only choice

102

6.3 Graph Pairs

is to play R1 = 1. Now the cop must move along the inner ring, as the robber can

pass whenever the cop passes (and if she moves onto the outer ring, the robber wins).

Now the only way that the cop can win is to be on vertex vi in Figure 6.3 (that is,

the vertex on the inner ring with outdegree 3) while the robber is on vertex 7. That

is, the cop wants to be one step behind the robber. Then the robber can either pass

or move onto vertex 1, and will be captured in one move in either case. But after

move 1, the cop is one step ahead of (i.e. k−1 steps behind) the robber. Therefore

it will take k−1 full trips (i.e. (k−1)2 moves) to come to this position, as every time

the cop makes a full trip around the inner ring, she is one more step ahead of the

robber.

If the cop’s initial position was anywhere but on vertex C, then the robber could

play R0 = C and remain there for the rest of the game, so C0 = C is the cop’s only

option.

6.3 Graph Pairs

We may try to make the game on a directed graph a bit easier for the cop by introduc-

ing edges only she can use (which we will call “cop edges”). In particular, let dashed

arcs be traversible by the cop but not by the robber and solid arcs be traversible by

both players. It turns out that this is still not enough to make cop-win digraphs have

linear capture time.

Theorem 6.1. Let G be a directed n-cycle with a dashed arc connecting a single

vertex to a vertex that is at distance 2 from it in the cycle, as in Figure 6.4. Let G be

reflexive—that is, the players are allowed to stay at a vertex at any given time. This

103

6.4 Future Work

. . .
Figure 6.4: A digraph with one cop edge

graph is a cop-win directed graph with capture time Θ(n2).

Proof. Suppose that the cop places herself on the vertex with outdegree 2. Then the

robber places himself one vertex behind the cop—that is, the cop is now at distance

n−2 to the robber. After each trip around, with the robber going around the black

n-cycle and the cop taking the dashed shortcut, the distance from the cop to the

robber is one less than during the previous trip. That means that it takes n+1 trips

before the robber is at distance 1 from the cop and it is the cop’s move. Since each

trip takes n−1 moves, the total capture time is then (n+ 1)(n− 1) + 1 = n2.

6.4 Future Work

Note that the ring digraph described in Lemma 6.2 is not strongly connected. So it is

reasonable to ask whether all strongly connected digraphs have linear capture time.

Note also that the graph in Example 6.1 is strongly connected (though without

the dedicated cop edge, it would not be cop-win). It may also be interesting to study

104

6.4 Future Work

whether all strongly connected digraphs with at least one cop-only edge which have

quadratic capture time share the property that the black arcs form a robber-win

digraph.

105

Chapter 7

Speculation and Future Directions

7.1 Summary of Results

We will summarize the main results presented in this thesis in the following chart,

with the key assumptions of the respective sections emphasized. This chart may give

some insight into potential future directions, some of which we will consider in more

detail in the following section. Other than where explicitly noted otherwise, games

are played on a graph G (assumed to be simple, undirected, and connected) with n

vertices.

For each result in the chart (first column), we point out the following parameters

(columns two through five):

• Move type: simultaneous or alternating

• Pursuer move constraints: it is assumed other than where explicitly noted

otherwise—with the label “unconstrained”—that the pursuer moves from vertex

to adjacent vertex

106

7.1 Summary of Results

• Evader move constraints: it is assumed other than where explicitly noted

otherwise—with the label “unconstrained”—that the evader moves from vertex

to adjacent vertex

• Visibility: Full (the players see each other at all times), none (the players never

see each other until capture occurs), or somewhere in between

Result Move type
Pursuer
moves

Evader
moves Visibility

Let x0 ∈ V (G) be any vertex in
G. Let {x0, x1, x2, . . . } be any
random walk on G beginning at
x0. Then P(d(x0, x4) < 4) ≥
1
4
n−2/3.

N/A N/A N/A N/A

A cop will capture a drunk on G
in expected time n+o(n).

Alt. Must move
Must move;
random

Full

A cop will capture a sitter in ex-
pected time n − 1 on a tree; fur-
thermore, the strategies defined
in Section 3.1 are optimal strate-
gies for the players (and the sit-
ter strategy is the unique optimal
one).

N/A None Immobile None

The expected capture time in the
cop vs. sitter game is between n+1

2

and n−1 on G, and is strictly less
than n− 1 if G is not a tree.

N/A None Immobile None

107

7.1 Summary of Results

The DFP strategy defined in Sec-
tion 3.1 is asymptotically optimal
on Kn for the cop. It is also an
optimal response for the robber.

Simul. None None None

The expected capture time for a
cop doing a uniform depth first
pursuit on a binary tree is greater

than
(n− 15)(n− 1)

8
.

Alt. None None None

A graph is hunter-win (i.e. mole
is guaranteed to be captured in
bounded time) if and only if it is
a lobster.

Simul. Unconstrained Must move
Vis. hunter;
invis. mole

A graph is hunter-win if and only
if it satisfies the constraints de-
scribed in Theorem 4.3.

Simul. Unconstrained None
Vis. hunter;
invis. mole

The expected capture time of the
cop vs. gambler game is n on G;
this is true regardless of whether
the cop gets to choose her starting
position.

Simul. None
Fixed
probability
distribution

Cop knows
gambler’s
distribution

The unknown gambler is strictly
stronger than the known gambler
and strictly weaker than the rab-
bit [1].

Simul. None
Fixed
probability
distribution

None

There exists an infinite family
of directed cop-win graphs with
expected capture time Θ(n2).
There also exists an infinite fam-
ily of “graph pairs” (see sec-
tion 6.3).

Alt. None None Full

108

7.2 Further Investigations into Capture Time

7.2 Further Investigations into Capture Time

7.2.1 Cop vs. Visible Robber

In Chapter 2, we saw that in the game of a cop playing with full information against a

random walker, a greedy distance minimizing strategy can lead the cop astray. Recall

the confounding counterexample: the “ladder to the basement” graph of Figure 7.1.

Figure 7.1: The Ladder to the Basement

However, this was a cop who used insistently poor decision-making to break ties:

when presented with at least two distance-minimizing options at a given step, she

was forced to choose a vertex that kept her from making progress toward the capture

of her quarry. This leaves open the question of whether greedily minimizing distance

would actually suffice to give capture time n+o(n) if such ties are broken by a random

choice. In the case of the graph from Figure 7.1, the random-tie-breaking greedy cop

does not have a problem capturing the drunk in fewer than n steps.

Another question we may like to address in the case of a cop chasing a random

walker is that of the worst case graph. We conjecture that this graph contains a clique

of size cn1/3 for some constant c ∈ R with a path of length n− cn1/3 attached at one

vertex (that is, a lollipop graph).

Extending our interest to more intelligent varieties of the visible robber, we refer

109

7.2 Further Investigations into Capture Time

back to the main question posed in Chapter 6. Does there exist a strongly connected

directed graph with a superlinear capture time?

7.2.2 Cop vs. Invisible Robber

In the discussion in Chapter 2, we consider the game of cop vs. drunk played with full

information. The cop’s strategy relies, on a general graph, on knowing the drunk’s

position at various times, in order to be able to continue heading in the right direction.

What about the case of a cop and drunk playing in the dark? Certainly this does

not impact the random walker (who was not using any information about the cop

anyway), but it may make things more difficult for the cop. How much more difficult,

exactly? Can she still capture in linear time? Or perhaps even in time n + o(n), as

in the full information case?

Consider the “extended barbell graph,” Bn,k, which we will define as follows. Bn,k

consists of a path of length n− 2k connecting two copies of Kk, where |V (Bn,k)| = n.

Figure 7.2: The graph B12,4

Suppose that the drunk starts in one of the cliques, and the cop starts in the

middle of the path. Since the drunk is invisible, the cop can choose one of the cliques

with probability 1/2 and head directly toward it (taking time n−2k
2

to get there). Let

110

7.2 Further Investigations into Capture Time

c > 0 and consider the following strategy: the cop chooses a random clique and goes

there immediately; then she spends time ck in the clique before heading directly for

the other clique and spending time ck there, and so on until the drunk is captured.

Consider the graph Bn,0.01n.

With probability 1/2, the cop chooses the clique occupied by the drunk. For

k ∈ N, let p(k) be the probability that the drunk remains in the same clique for

k steps, so after the cop spends time 0.49n getting to the chosen clique, the drunk

is still in that clique with probability p(.49n) when the cop arrives – i.e. the cop

does not manage to capture the drunk on her way over to the clique. Then with

probability e−c, she fails to capture the drunk in time 0.01cn and spends another

.98n+ .01cn heading to the other clique and searching there, and then heading all the

way back to the original clique, where the drunk is still milling about with probability

p(.01cn + .98n + .01cn + .98n) = p(1.96n + .02cn). Supposing that the cop always

captures by the second visit, the capture then takes another .01n expected moves.

On the other hand, with probability 1/2, the cop heads first toward the wrong

clique; then she spends time .49n + .01cn in the wrong clique before heading to the

correct one for another .98n moves. The drunk is still in the original clique with

probability p(1.47n+ .01cn), and then the same process repeats as in the first case.

Therefore the expected capture time, T , satisfies the following inequality:

T ≥ 1/2[p(.49n)(.49n+m)] + 1/2[.49n+ .01cn+ p(1.47n+ .01cn)(.98n+m)]

111

7.2 Further Investigations into Capture Time

where

m = e−c(.01cn+ .98n+ .01cn+ p(1.96n+ .02cn)(.98n+ .01n))

= (.02c+ .98 + .99p(1.96n+ .02cn))e−cn

We have p(k) ≥ 1− k
2

(
100
n

)2
for all k, so

m ≥
(
.02c+ .98 + .99

(
1−

(
1.96 + .02c

2

)(
1002

n

)))
e−cn

= (1.97 + .02c)e−cn− 50(196 + 2c)e−c

Therefore we have

T ≥ 1

2
(1.96+.01c+e−c(3.92+.04c))n−(4201.75+24.5c+e−c(19452+247.25c−.5c2))+O(1/n)

The coefficient on n is always greater than 1 for all values of c (its minimum value

is approximately 1.015, achieved when c is approximately 6.02.). Therefore, (for large

n) on the graph Bn,0.01n the cop cannot capture the drunk in expected time n if she

spends time c(.01n) searching for the drunk in the cliques, for any c > 0.

Little is known about the case of a cop playing against a general invisible robber.

How can we characterize cop-win graphs in this game, and what is the worst-case

expected capture time on a cop-win graph against an invisible adversary?

112

7.3 Patrolling Schemes

7.3 Patrolling Schemes

In this section we develop the concept of a patrolling scheme. This is a natural

concept that arises from application: what is the best “beat” for a cop to patrol in

her assigned network if she wishes to prevent a robber from perpetrating his heinous

crime at one of several enticing locations? There is some literature in the field of

computational geometry that considers this question [46] as well as some study in

operations research [32]. However, we suggest a probabilistic approach that assumes

an expert adversary: one with enough resources to have an eye on the cop at all

times, and consequently require a mixed strategy in order to conquer.

We want to establish a general mathematical notion of a patrolling scheme for

a cop on any (locally finite) graph G. This means that we are looking to define

rigorously the “danger” of a particular situation – that is, how dangerous it is for

the robber to commence a robbery at a certain point along the cop’s beat. Then the

cop’s goal is to choose a patrolling scheme that, in some sense, maximizes over all

possible situations the minimal danger of a situation. First we’ll consider an example

of a particular patrolling scheme on C4, and then we’ll formalize and generalize this

notion. We will finish here with another example (computing an optimal patrolling

scheme for K3) and leave it an open problem to develop this concept further and

compute optimal patrolling schemes on various classes of graphs.

7.3.1 Example: α-momentum cop on C4

Define an α-momentum cop on a cycle Cn to be a cop assigned to patrol the graph,

starting in some direction, and changing direction at each vertex with probability

1 − α. Now consider an α-momentum cop patrolling the cycle C4. Suppose that,

113

7.3 Patrolling Schemes

unbeknownst to the cop, there is a robber who knows the cop’s current position,

patrolling history, and her patrolling scheme. Suppose further that he is interested

in committing a felony on vertex 0 (see Figure 7.3).

Figure 7.3: The cycle C4.

Then there are three situations to consider:

(a) The cop is on vertex 1 and heading clockwise (this is the same as the cop being

on vertex 3 and heading counterclockwise).

(b) The cop is on vertex 2 (and heading in either direction).

(c) The cop is on vertex 3 and heading clockwise (this is the same as the cop being

on vertex 1 and heading counterclockwise).

Then letting pi(t) be the probability that from situation i, the α-momentum cop

will be at vertex 0 in (exactly) t steps, we have the following equations:

p1(2k + 1) = α(1− α)k for all k ≥ 0 (7.1)

114

7.3 Patrolling Schemes

p2(2k) = α(1− α)k−1 for all k ≥ 1 (7.2)

p3(2k + 1) = α2(1− α)k−1 for all k ≥ 1, p3(1) = 1− α (7.3)

For a fixed situation i, define the danger function Wi(α) =
∞∑
k=0

pi(k)

k
. Note that

under this definition, the danger functions are unit-invariant. That is, changing the

units of time with which we are dealing would simply change the “danger index” by

a constant.

Now working out the danger index in each of the three situations, equation (1)

gives us

W1(α) =
∞∑
k=0

α(1− α)k

2k + 1

=
α

2
√

1− α
ln

(
1 +
√

1− α
1−
√

1− α

)

Equation (2) yields

W2(α) =
∞∑
k=1

α(1− α)k−1

2k

=
α

2(α− 1)
ln(α)

And finally, equation (3) says

115

7.3 Patrolling Schemes

W3(α) = 1− α +
∞∑
k=1

α2(1− α)k−1

2k + 1

=

√
1− α
2

ln

(
1 +
√

1− α
1−
√

1− α

)
− 1√

1− α
ln

(
1 +
√

1− α
1−
√

1− α

)
+

1

2(1− α)3/2
ln

(
1 +
√

1− α
1−
√

1− α

)
− 1

1− α
+ 2

This tells us that, as expected, when the cop and robber are in situation 1 or 2,

the deterministic case is best for the cop (in that it maximizes the danger for the

robber). However, when they are in situation 3, the lower the α the better – that

is, of course, the cop would maximize the danger if she had a higher probability of

turning around at that point.

The three danger functions are graphed together in Figure 7.4. The graphs of

W2(α), in green, and W3(α), in blue, intersect at the point α = 0.79648, at which

point their common value is 0.4453. This tells us that in order to maximize the

minimal danger, the cop should choose a patrolling scheme on C4 with a probability

of 0.20352 of turning around.

W1(α)

W3(α)

W2(α)

Figure 7.4: Graph of the functions W1(α), W2(α), and W3(α).

116

7.3 Patrolling Schemes

7.3.2 Topology on the space of legal walks

To generalize this notion of a patrolling scheme to any (locally finite) graph, we define

the following space, and observe some of its properties. Fix a locally finite graph G.

Definition 7.1. Define a legal walk on a graph G to be an infinite walk taken on

the graph. In the case of a (locally finite) graph G, we fix an initial vertex v0 and

define a legal walk as any infinite walk taken on the graph that starts at v0.

Let W (G)∞ (or simply W∞ when this is not confusing) be the space of all infinite

legal walks, with the topology defined by the base sets B(σ), where for any finite

walk on σ on G, B(σ) is the set of all legal walks on G that begin with σ. Give W∞

the metric defined by the function d(σ, σ′) = 2−d where d is the position of the first

disagreement between the legal walks σ and σ′. Then the metric space W∞ satisfies

the following properties.

Theorem 7.1. W∞ is complete.

Proof. Suppose that {Sk}∞k=1 is a Cauchy sequence of legal walks on G. We want to

show that it converges to a point in W∞. Fix d > 0, and let M ∈ N such that for all

m,n > M , d(Sm, Sn) < 2−d. Then for all m,n > M , the legal walks Sm and Sn agree

in the first d − 1 terms, so the limit σ of the sequence must agree in the first d − 1

terms. Building σ in this way as d tends to ∞ tells us that at every (finite) position,

σ agrees with some legal walk. Therefore, σ must be a legal walk.

Theorem 7.2. W∞ is compact.

Proof. Let {Sk}nk=1 be a sequence of legal walks on a (locally finite) graph G with

V (G) = {v0, v1, v2, . . . }. Determine a subsequence with limit point σ in the following

117

7.3 Patrolling Schemes

manner. Let σ|d be the vertex in position d of the sequence σ of vertices. Choose

σ|0 = vi where

i = min{j : there exist an infinite number of Sk with Sk|0 = vj}

and remove all Sk that disagree with σ in position 0. Of the walks that remain, grant

immunity to one of them, meaning that this walk will remain in our subsequence.

Now for all d > 0, choose σ|d = vi where

i = min{j : vj is adjacent to S|d−1 and there exist an infinite number of Sk with Sk|d = vj}

and again remove all Sk that disagree with σ in position d which have not been

granted immunity.

The walks that remain form a subsequence converging to σ. Note that constructing

σ in this manner ensures that σ is itself a legal walk, since for all d, there are an infinite

number of legal walks that agree with σ in the first d positions.

7.3.3 Patrolling schemes

Definition 7.2. A patrolling scheme is a function associating to each finite path

v0, v1, . . . , vn+1 a number P (vn+1 | v0, v1, . . . , vn) with the property that
∑
u

P (u |

v0, v1, . . . , vn) = 1, where the sum is taken over all u adjacent to vn.

Definition 7.3. A sequence {µn}n of probability measures on the spaces {Wn}n of

118

7.3 Patrolling Schemes

length-n walks beginning at v0 is compatible if for all walks v0, . . . , vn−1,

µn−1(v0, . . . , vn−1) =
∑
u

µn(v0, . . . , vn−1, u).

Definition 7.4. To any patrolling scheme P we associate a compatible sequence

{µn}n of probability measures on the spaces {Wn}n of length-n walks beginning at

v0 by defining

µn(v0, . . . , vn) =
n∏
k=1

P (vk | v0, . . . , vk−1)

for all walks v0, . . . , vn ∈ Wn. This sequence is called the associated sequence of

probability measures for P .

Theorem 7.3. For each compatible sequence of probability measures {µn} on Wn,

there exists a unique patrolling scheme P for which {µn}n is the associated sequence

of probability measures.

Proof. Suppose first that there is a patrolling scheme P on G, and consider the

function µn : Wn → [0, 1] defined by

µn(v0, . . . , vn) =
n∏
k=1

P (vk | v0, . . . , vk−1)

for all walks v0, . . . , vn ∈ Wn. We claim that for all n, µn is a probability measure on

Wn.

First, it is clear that µn takes on values between 0 and 1, since each term in the

product is between 0 and 1. We also need to check that µn(Wn) = 1. This can be

shown by induction. For n = 0, µ0(W0) = µ0(v0) = P (v0 | v0) = 1. Now suppose

that µn(Wn) = 1.

119

7.3 Patrolling Schemes

Wn+1 =
⋃

A∈Wn

Bn+1
A , where Bn+1

A is the cylinder set consisting of all walks of length

n+ 1 that start with A. Therefore

µn+1(Wn+1) = µn+1(
⋃

A∈Wn

Bn+1
A) =

∑
A∈Wn

µn+1(Bn+1
A) =

=
∑
A∈Wn

∑
u

P (u | A)µn(A) =
∑
A∈Wn

µn(A) =

= µn(
⋃

A∈Wn

A) = µn(Wn) = 1

Finally, we must also check that these measures satisfy the compatibility condition,

µn−1(v0, . . . , vn−1) =
∑
u

µn(v0, . . . , vn−1, u).

We have

µn−1(v0, . . . , vn−1) =
n−1∏
k=1

P (vk | v0, . . . , vk−1) =

=
∑
u

P (u | v0, . . . , vn−1)
n−1∏
k=1

P (vk | v0, . . . , vk−1) =

=
∑
u

µn(v0, . . . , vn−1, u)

Now suppose that we are given a compatible sequence {µn}n of probability mea-

sures on {Wn}n. Define

P (vn | v0, . . . , vn−1) =
µn(v0, . . . , vn)

µn−1(v0, . . . , vn−1)
.

120

7.3 Patrolling Schemes

Then

∑
u

P (u | v0, . . . , vn) =

∑
u µn+1(v0, . . . , vn, u)

µn(v0, . . . , vn)
=
µn(v0, . . . , vn)

µn(v0, . . . , vn)
= 1

by the compatibility condition on the measures µn.

Note that the values P (vn+1 | v0, v1, . . . , vn) of patrolling scheme P agree with the

conditional probabilities P(vn+1 | v0, v1, . . . , vn) =
µn+1(v0, v1, . . . , vn+1)

µn(v0, v1, . . . , vn)
.

Definition 7.5. To any patrolling scheme P we associate a probability measure µ

on the space W∞ of infinite walks beginning at v0 by defining

µ (
⋃n
i=1B(σi)) =

∑n
i=1 µik(σi),

where ik is the length of the walk σi, and µik is defined as in Definition 7.3. We call

such a probability measure the associated measure for P .

Theorem 7.4. For all probability measures µ on W∞, there exists a unique patrolling

scheme P for which µ is the associated measure.

Proof. First suppose that we are given a patrolling scheme P . Then we can define the

associated sequence {µn}n of probability measures on the spaces {Wn}n. We define

an algebra A consisting of the finite unions of cylinder sets, and the complements

thereof. Define a function λ in the following way. Let {B(σi)} be a disjoint set of

cylinder sets. Then λ

(
n⋃
i=1

B(σi)

)
=

n∑
i=1

µik(σi), where ik is the length of the walk

σi. By Theorem 1.14 in [18], λ extends uniquely to a measure µ on the σ-algebra

generated by A.

121

7.3 Patrolling Schemes

Conversely, suppose that we are given a probability measure µ on W∞. Then

define a function P by

P (vn | v0, . . . , vn−1) =
µ(B(v0, . . . , vn))

µ(v0, . . . , vn−1)
.

We have that

∑
u

P (u | v0, . . . , vn) =
∑
u

µ(B(v0, . . . , vn, u))

µ(B(v0, . . . , vn))
=

=
1

µ(B(v0, . . . , vn))

∑
u

µ(B(v0, . . . , vn, u)) =

=
1

µ(B(v0, . . . , vn))
µ

(⋃
u

B(v0, . . . , vn, u)

)
=

=
1

µ(B(v0, . . . , vn))
µ(B(v0, . . . , vn)) = 1

7.3.4 Optimal patrolling schemes

In this context, we assume that G is a connected, finite graph of size at least 3.

We would like to define a continuous real-valued function Q∗ on P (G), the space of

all patrolling schemes on a graph G, that evaluates how good a patrolling scheme

is. Since P (G) is equivalent to the space P of probability measures on W∞, and

we know that W∞ is a compact metric space, P (G) is compact under the weak-*

topology. Therefore Q∗ must attain a maximum on P (G), which says that there

must exist an optimal patrolling scheme.

To make this mathematically rigorous, we first need several definitions. Let P ∈

122

7.3 Patrolling Schemes

P (G) be a patrolling scheme, µ the associated measure for P , and H ∈ W the finite

walk that the cop has taken from time 0 until now (time t) – i.e. the cop’s history.

Then

• Define d(H, v) =
∑
u

µt+u(Cop hits v at time t+ u | H)

u
. This is the danger

for the robber of starting a crime (now) at vertex v.

• Define D(H) = min
v
{d(H, v)}. This measures the danger for the robber given

that he picks the best vertex at which to start his crime.

• Define Q(P) = inf
H:µt(H)>0

{D(H)}. This measures the “quality” of P , in the sense

that the lower Q(S), the lower the least danger is for the robber over all possible

histories of the cop.

This measurement of the quality of a patrolling scheme is somewhat intuitive: we

are looking at how low the danger can be for the robber over all possible paths that

the cop might take under her chosen patrolling scheme. However, we need our quality

function to be continuous in order to be able to use the compactness of P (G) to prove

that it attains a maximum. Consider a patrolling scheme R′ that is very similar to,

say, the simple random walk, R. The only difference between R and R′ is that in the

case of a very low-probability event, there is a vertex that the cop with patrolling

scheme R′ never revisits. Then the we would expect Q(R′) = 0 and Q(R) > 0, though

R and R′ are very close together. Therefore, it seems that Q fails to be continuous.

Before we formalize this argument, we must formalize the notion we are using

of the distance between two patrolling schemes. Instead of looking at the patrolling

schemes directly, we will consider a metric on the space of probability measures, and

123

7.3 Patrolling Schemes

then refer to the equivalence theorem when it is more convenient to talk about a

patrolling scheme.

Definition 7.6. Let µ and µ′ be two probability measures on W∞. Then define the

distance between them d(µ, µ′) to be

d(µ, µ′) = max
E
| µ(E)− µ′(E) |

where the maximum is taken over all events E.

Claim 7.1. The function Q is not continuous.

Proof. Let Xn be the union of all cylinder sets generated by walks of length 2n for

which there is a vertex v that is visited at least n times. Let R be the simple random

walk on our graph G and for each n, define the patrolling scheme Rn in the following

way.

Rn(i | W) =

R(i | W) if W /∈ Xn

R(i | W)

1−R(v | W)
if W ∈ Xn and i 6= v

0 if W ∈ Xn and i = v

where Rn(i | W) corresponds to the conditional probability of coming to state i

(in one step) given that the cop has traveled the walk W .

We must first check that Rn is a patrolling scheme.

If W ∈ Xn,

∑
i

Rn(i | W) =
∑
i

R(i | W)

1−R(v | W)
=

124

7.3 Patrolling Schemes

=
∑
i 6=v

R(i | W)

1−R(v | W)
=

=
1−R(v | W)

1−R(v | W)
= 1

where i ranges over all states i reachable in one step after the walk W , and v is a

state that was hit at least n times in the first 2n steps of W . If W /∈ Xn then

∑
i

Rn(i | W) =
∑
i

R(i | W) = 1.

Now let σ, σn be the measures associated to R,Rn, respectively. Then

d(σn, σ) = max
E
| σn(E)− σ(E) |=

= max
E

(σn(E)− σ(E)) =

= max
E

(σn(E ∪Xn) + σn(E\Xn)− σ(E ∪Xn)− σ(E\Xn)) =

= max
E

(σn(E ∪Xn)− σ(E ∪Xn)) ≤

≤ max
E

(σn(Xn)− 0) <
1

2n
.

The last inequality follows from the fact that the highest probability for the traver-

sal of each edge is 1/2, except in the case of the path consisting of three vertices and

two edges, in which case the vertex in the middle of the path has a probability of 1
2n

of being visited at least n times in the first 2n steps since every other edge will be

traversed with probability 1. Therefore we have that lim
n→∞

d(σn, σ) = 0, and so the

sequence {σn} has the probability measure σ as its limit.

Now what remains to be shown is that Q(σ) > 0 and Q(σn) = 0. For the latter,

125

7.3 Patrolling Schemes

we need to see that Xn occurs with positive probability under the patrolling scheme

Rn. This is equivalent to showing this happens under R. If the cop starts at vertex

v0, then she goes to a particular vertex, say u, with probability
1

deg(v0)
. Similarly,

she goes back to v0 with probability
1

deg(u)
. Therefore, Xn occurs with probability

at least
1

deg(v0)n
1

deg(u)n
> 0. Therefore, if Xn occurs and v is the vertex from the

description of the event Xn,

Q(σn) = inf
H:P(H)>0

{D(H)} ≤
∑
u

µ2n+u(Cop hits v at time 2n+ u | Xn)

u
= 0

However,

Q(σ) = inf
H:P(H)>0

{D(H)} =

= inf
x:P(vt=x)>0

min
v

∑
u

µu(Cop hits v at time t+ u | Cop starts at x)

u

> min
x:P(vt=x)>0

min
v

µL(a shortest walk from x to v)

L
> 0

where L is the length of a shortest walk from x to vt.

Therefore we have a sequence of probability measures σn, each with Q(σn) = 0,

the converge to a measure σ with Q(σ) > 0, and so Q fails to be continuous.

Therefore we must make some adjustments in order to turn this notion of quality

into a continuous one. There are a number of ways by which we could take care of

this issue: for instance, only considering patrolling schemes with bounded cover time

(i.e. schemes in which there exists a bound, M , on how many moves it can take the

cop to visit all of the vertices in the graph) or only considering patrolling schemes

126

7.3 Patrolling Schemes

with bounded memory. We will consider the latter here, and there is reason to hope

that this restriction does not actually lose us anything.

Conjecture 7.1. On any graph G, an optimal scheme has bounded memory.

7.3.5 Example: Optimal patrolling scheme on K3

Definition 7.7. For a sequence S of vertices in K3 let αS be the probability of

continuing in the same directions as the last step of S, given that the cop has just

walked S. Let D(v | S) be the danger (for the robber) of committing a crime now at

vertex v given that the cop has just walked S.

Note that if we define Si to be the walk satisfied by the recursion

S2 = ab, S2i+1 = S2ic, S2i+2 = S2i+1b

and let αi := αSi
then by definition, we have the following:

D(a | ab) =
1− α2

1
+
α2α3

2
+
α2(1− α3)α4

3
+
α2(1− α3)(1− α4)α5

4
+ . . .

= 1− α2 +
∑
k≥2

α2αk+1

k

k∏
j=3

1− αj

Now define Dr to be D(a | ab) with all αi replaced by r for some r ∈ [1
2
, 1], so

Dr = 1− r +
(

r
1−r

)2 (
ln
(

1
r

)
− 1 + r

)
. Then we have the following fact:

Lemma 7.1. If α2 = r for some r ∈ [1
2
, 1] and for all i > 2 we have that αi ∈ [1−r, r]

then D(a | ab) ≤ Dr.

127

7.3 Patrolling Schemes

Proof. Note first that Dr = 1− r +
∑

k≥2
r2(1−r)k−2

k
. The numerators in the terms of

D(a | ab) sum to 1, that is

1− α2 + α2α3 + α2(1− α3)α4 + · · · = 1.

α3 ≤ α2 = r, so if increasing αi to r increases α2α3 by a total of q, then it must

decrease the sum of the numerators of the other terms by the same amount; that is,

the sum

α2(1− α3)α4 + α2(1− α3)(1− α4)α5 + . . .

decreases by q. But then the total change is greater than q
2
− q

k
for some k > 3,

making the total change positive.

Therefore, we have that maximizing the αi in the interval [1− r, r] maximizes the

value of D(a | ab).

Using this lemma, we have the following result about patrolling schemes on K3,

the complete graph on 3 vertices.

Theorem 7.5. The random walk is an optimal patrolling scheme on K3.

That is, it does not pay for the cop to increase the length of her memory while

patrolling K3.

Proof. The random walk has quality
∞∑
k=1

1

k2k
= ln(2). (Note that this equals Dr with

r = 1
2
.)

Dr has first derivative
2r ln(r)− r2 + 1

r3 − 3r2 + 3r − 1
, which is negative for all r ∈ [1

2
, 1]. There-

fore Dr is in fact maximized at r = 1
2
, so the danger for the robber of commit-

ting the crime behind the cop, D(a | ab) ≤ ln(2). A similar arguments shows that

128

7.3 Patrolling Schemes

D(c | ab) ≤ ln(2), as well. Thus the quality of any patrolling scheme on K3 cannot

exceed that of the random walk.

Note that equality holds in the inequality in Lemma 7.1 if and only if α3 = 0, in

which case the difference q = |α2α3 − r2| = 0.

129

Bibliography

[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, Randomized

pursuit-evasion in graphs, Comb., Prob., and Comp. 12 (2003), no. 3, 225–244.

[2] N. Alon, P. Pralat, and N. C. Wormald, Cleaning regular graphs with brushes,

SIAM Journal on Discrete Mathematics 23 (2008), 223–250.

[3] B. Alspach, Searching and sweeping graphs: A brief survey, Le Matematiche 54

(2004), 5–37.

[4] B. Alspach, D. Dyer, D. Hanson, and B. Yang, Time constrained graph searching,

Theoretical Computer Science 399 (2008), 158–168.

[5] T. Andreae, On a pursuit game played on graphs for which a minor is excluded,

J. Combin. Theory Ser. B. 41 (1986), no. 1, 37–47.

[6] Y. Babichenko, Y. Peres, R. Peretz, P. Sousi, and P. Winkler, Hunter, Cauchy

rabbit, and optimal Kakeya sets, Trans. Amer. Math. Soc., to appear, 2013.

[7] T. Basar, G. J. Olsder, and E. M. Reingold, “Lion and Man”: upper and lower

bounds, ORSA J. Comput. 4 (1992), 447–452.

130

BIBLIOGRAPHY

[8] A. Berarducci and B. Intrigila, On the cop number of a graph, Adv. Appl. Math.

14 (1993), 389–403.

[9] A. Beveridge, Private communication, 2nd Annual GRASCan Workshop, Ryer-

son University, April 2013.

[10] A. Bonato, E. Chiniforooshan, and P. Pralat, Cops and robbers from a distance,

411 (2010), no. 43, 3834–3844.

[11] A. Bonato, P. Golovach, G. Hahn, and J. Kratochvil, The capture time of a

graph, Discrete Math. 309 (2009), 5588–5595.

[12] G.R. Brightwell and P. Winkler, Maximum hitting time for random walks on

graphs, J. Rand. Struct. and Alg. 1 (1990), no. 3, 263–276.

[13] , Gibbs measures and dismantlable graphs, J. Comb. Theory (Series B)

78 (2000), 141–169.

[14] , Hard constraints and the bethe lattice: adventures at the interface of

combinatorics and statistical physics, Proc. Int’l. Congress of Mathematicians

Vol. III, Li Tatsien, ed. (2002), 605–624.

[15] W. H. Bussey and O. Veblen, Finite projective geometries, Trans. Amer. Math.

Soc. 7 (1906), 241–259.

[16] D. Coppersmith, P. Tetali, and P. Winkler, Collisions among random walks on

a graph, SIAM J. Disc. Math. 6 (1993), no. 3, 363–374.

[17] S. L. Fitzpatrick and R. J. Nowakowski, Copnumber of graphs with strong iso-

metric dimension two, Ars Combin. 59 (2001), 65–73.

131

BIBLIOGRAPHY

[18] G. B. Folland, Real analysis: Modern techniques and their applications, John

Wiley & Sons, Inc, USA, 1999.

[19] F. Fomin and P. Golovach, Graph searching and interval completion, SIAM Jour-

nal on Discrete Mathematics 13 (2000), 454–464.

[20] F. Fomin, P. Golovach, J. Kratochvil, N. Nisse, and K. Suchan, Pursuing a fast

robber on a graph, Theoretical Computer Science 411 (2010), no. 7-9, 1167–1181.

[21] P. Frankl, Cops and robbers in graphs with large girth and cayley graphs, Disc.

Appl. Math. 17 (1987), no. 3, 301–305.

[22] A. Frieze, M. Krivelevich, and P. Loh, Variations on cops and robbers, Journal

of Graph Theory 69 (2012), 383–402.

[23] Shmuel Gal, Search games with mobile and immobile hider, SIAM J. Control &

Opt. 17 (1979), no. 1, 99–122.

[24] T. Gavenc̆iak, Games on graphs, Master’s thesis, Charles University, Prague,

2007.

[25] G. Hahn, F. Laviolette, N. Sauer, and R.E. Woodrow, On cop-win graphs, Dis-

crete Math. 258 (2002), 27–41.

[26] , On cop-win graphs, Discrete Math. 258 (2002), 27–41.

[27] G. Hahn and G. MacGillivray, A note on k-cop, l robber games on graphs, Discrete

Math. 306 (2006), 2492–2497.

[28] M. Hall, Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229–277.

132

BIBLIOGRAPHY

[29] D. Hess, Private communication, 2012.

[30] R. Isaacs, Differential games: A mathematical theory with applications to warfare

and pursuit, control and optimization, John Wiley & Sons, Inc, New York, USA,

1965.

[31] M. S. Klamkin, A slow ship intercepting a fast ship, Amer. Math. Monthly 59

(1952), no. E991, 408.

[32] R. C. Larson, Urban police patrol analysis, MIT Press, USA, 1972.

[33] L. Lu and X. Peng, On Meyniel’s conjecture of the cop number, J. Graph. Th.

71 (2012), 192–205.

[34] G. MacGillivray, Private communication, May 2011.

[35] S. McKeil, Chip firing cleaning processes, 2007.

[36] D. Merlini, R. Sprugnoli, and M.C. Verri, An analysis of a simple algorithm for

random derangements,, Proceedings of the 10th Italian Conference on Theoreti-

cal Computer Science (2007), 139–150.

[37] M. Messinger, R. J. Nowakowski, and P. Pralat, Cleaning with brooms, Graphs

and Combinatorics 27 (2011), 251–267.

[38] M. Messinger, R. J. Nowakowski, P. Pralat, and N. Wormald, Cleaning random

d-regular graphs with brushes using a degree-greedy algorithm, Proceedings of the

4th Workshop on Combinatorial and Algorithmic Aspects of Networking (2007).

[39] M.E. Messinger, R. Nowakowski, and P. Pralat, Theoretical Computer Science

399 (2008), 191–205.

133

BIBLIOGRAPHY

[40] N. Nisse and K. Suchan, Fast robber in planar graphs, Graph Theoretic Concepts

in Computer Science: 34th International Workshop (2008).

[41] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete

Math. 43 (1983), 235–239.

[42] T.D. Parsons, Pursuit-evasion in a graph, Theory and Applications of Graphs

(1976), 426–441.

[43] R. Peyre, A probabilistic approach to Carne’s bound, Potential Anal. 29 (2008),

no. 1, 17–36.

[44] A. Quilliot, Homomorphismes, points fixes, rétractations et jeux de poursuite

dans les graphes, les ensembles ordonnés et les espaces métriques, Ph.D. thesis,

Université de Paris VI., 1983.

[45] J. Soares, Maximum diameter of regular digraphs, J. Graph Theory 16 (1992),

437–450.

[46] J. Urrutia, Handbook of computational geometry, Elsevier, Amsterdam, 2000.

[47] N. Th. Varopoulos, Long range estimations for markov chains, Bull. Sci. Math

109 (1985), 225–252.

[48] A. Wald, On cumulative sums of random variables, The Annals of Mathematical

Statistics 15 (1944), no. 3, 283–296.

134

