
Test 1 Solutions

1) Let R be the subring {a + b
√

10 : a, b ∈ Z} of the field of real numbers.
Let N : R → Z be given by N(a + b

√
10) = a2 − 10b2.

a) Show that N is multiplicative, i.e., N(uv) = N(u)N(v) for all u, v ∈ R,
and show that N(u) = 0 if and only if u = 0.
b) Show that u is a unit in R if and only if N(u) = ±1.
c) Is 2 an irreducible element of R? What about 4+

√
10? Prove or disprove

in each case.

Solution:
a) Let u = a + b

√
10 and v = c + d

√
10. Then

N(u)N(v) = (a2− 10b2)(c2− 10d2) = N(ac+10bd+(bc+ad)
√

10) = N(uv).

b) Suppose that u is a unit. Then there is v ∈ R with uv = 1 so by part
a) N(uv) = N(u)N(v) = 1. Now N(u) = ±1. In the other direction, if
u = a + b

√
10 and a2 − 10b2 = ±1, then ±(a− b

√
10) is the inverse of u.

c) If 2 = uv, then 4 = N(2) = N(u)N(v) so one of |N(u)| or |N(v)| is 1
or both are 2. In the first case, one of them is a unit, and in the second
case, a2 − 10b2 = ±2. But such an equation is impossible with a, b integers
(consider the equation mod 10). So 2 is irreducible. Now N(4 +

√
10) = 6

so if it can be factored, then one of the products has norm ±2 which is
impossible.

2) Let R be an integral domain with quotient field F . Let T be an integral
domain such that R ⊂ T ⊂ F . Prove that F is (isomorphic to) the quotient
field of T .

Solution: Let FT be the quotient field of T . Define f : FT → F by f(x/y) =
ad/bc where x = a/b, a, b ∈ R and y = c/d, c, d ∈ R. It is easy (though
tedious) to show that f(x1/y1)f(x2/y2) = f(x1x2/y1y2) and that f(x1/y1) +
f(x2/y2) = f(x1/y1+x2/y2). Thus f is a ring homomorphism. It is surjective
since the preimage of a/b is x/y where x = ac/c and y = bd/d for some
c, d ∈ R. Now if f(x/y) = 0 where x = a/b and y = c/d, then ad = 0 and
since R is an integral domain, and d 6= 0, we have a = 0. Thus x = 0 and
x/y = 0. Consequently, Ker(f) = 0 and therefore FT is isomorphic to F .

3) Let F be a field and f, g ∈ F [x] with deg g ≥ 1. Prove that there exist
unique polynomials f0, f1, . . . , fr ∈ F [x] such that deg fi < deg g for all i
and

f = f0 + f1g + f2g
2 + · · ·+ frg

r.
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Solution: There is an integer r such that deg(gr) ≤ deg(f) < deg(gr+1) so by
the division algorithm we get f = frg

r + qr where deg(qr) < deg(gr). Now
let qr play the role of f . We then get an integer r1 such that deg(gr1) ≤
deg(qr) < deg(gr1+1) and r1 < r. Also qr = fr1g

r1 + qr1 . When this process
terminates we have f =

∑r
i=0 fig

i with deg(fi) < deg(g).
Now suppose that f =

∑
fig

i =
∑

hig
i. Then

∑
(fi − hi)g

i = 0. Note
that for i < j, (fi − hi)g

i and (fj − hj)g
j share no common power of x, so

(fi − hi)g
i = 0 for all i. But F is a field, so F [x] is a domain which means

that gi = 0 or fi − hi. Since g 6= 0, the latter holds and we’re done with the
proof of uniqueness.

4) Suppose that there are m red clubs R1, . . . Rm and m blue clubs B1, . . . , Bm

in a town of n citizens. Assume that the clubs satisfy the following rules:
(a) |Ri ∩Bi| is odd for every i;
(b) |Ri ∩Bj| is even for every i 6= j.
Prove an upper bound for m in terms of n and give an example achieving it.

Solution: Let vi be the incidence vector (over F2) for club Ri and wj be
the incidence vector for club Bj. Suppose we have a linear combination∑

civi = 0. Dot product each side with wj. The conditions of the theorem
imply that we get cj = 0. Thus the vi’s are linearly independent. Since they
lie in a space of dimension n, there are at most n of them, so m ≤ n. Letting
Ri = Bi = {i} for all i achieves this bound.
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