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Abstract. In 1991, Bollobás and Frieze showed that the threshold for Gn,p

to contain a spanning maximal planar subgraph is very close to p = n−1/3. In
this paper, we compute similar threshold ranges for Gn,p to contain a maximal
bipartite planar subgraph and for Gn,p to contain a maximal planar subgraph
of fixed girth g.

1. Introduction

In the field of random graphs, determining the threshold p for a random graph
to have a certain graph property G with probability tending to 1 (subsequently,
w.h.p.) is a fundamental problem. The threshold f(n) for a graph property is a
function of n for which if p = o

(
f(n)

)
then w.h.p. Gn,p 6∈ G and if f(n) = o(p)

then w.h.p. Gn,p ∈ G. Although not every graph property has a threshold in
a random graph, it is a well-known fact that every monotonic graph property
does [FK96]. One such property is that of a random graph containing a spanning
maximal planar subgraph. In 1991, Bollobás and Frieze [BF91] determined that

the threshold for this property lies in the interval

(
c1
(
1
n

)1/3
, c2

(
logn
n

)1/3)
, for

some constants c1, c2 ∈ R. It is currently an open problem to determine the
exact threshold. However, the above result motivates the other questions. In
particular, a natural generalization of this result would be to determine relatively
small intervals for the threshold for a random graph to contain a maximal planar
subgraph, but a with a given girth g. In this respect, the above result gives such
an interval for girth g = 3.

Euler’s formula implies that if a planar graph on n vertices has girth g, then
e(G) ≤ g

g−2(n − 2). When equality occurs we call such a graph maximal. For

equality to occur, if g is odd then n ≡ 2 (mod g − 2) and if g is even then n ≡ 2
(mod (g− 2)/2). It is easy to construct graphs that show this necessary condition
is also sufficient for the existence of a maximal planar graph of girth g.

In this paper, we show that the threshold for a random graph to contain a max-
imal planar subgraph of girth g lies in a small interval when the number of vertices
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satisfies the necessary divisibility conditions. We also prove a corresponding the-
orem for when a random graph contains a maximal bipartite planar subgraph.

Theorem 1.1. Let G be the graph property that a graph contains a spanning
maximal planar bipartite subgraph. Then the threshold for Gn,p ∈ G is contained
in the interval (c1n

−1/2, c2(log n)1/2n−1/2) for some constants c1, c2 ∈ R.

Theorem 1.2. Let G be the graph property that a graph contains a spanning
maximal planar subgraph of girth g = 2k for k ≥ 3. Then the threshold for

G (g−2)
2

n+2,p
∈ G is contained in the interval

((
c1
n

)(g−2)/g
,
(
c2(logn)(g+2)/g

n(g−2)/g

))
for some

constants c1, c2 ∈ R.

Theorem 1.3. Let G be the graph property that a graph contains a spanning
maximal planar subgraph of girth g = 2k + 1 for k ≥ 3. Then the threshold for

G(k−1)n+2,p ∈ G is contained in the interval

((
c1
n

)(g−2)/g
,
(
c2(logn)1/k

n(g−4)/(g−2)

))
for some

constants c1, c2 ∈ R.

The rest of the paper will proceed as follows: First we introduce the neces-
sary theorems and standardized notation. Next, we prove the result for bipartite
subgraphs before proving the results for larger girth.

2. Preliminaries

Let Gn,p be the Erdős-Renyi random graph model. All of our asymptotic nota-
tion will be as n→∞.

The proof the lower thresholds in Theorems 1.1, 1.2, and 1.3 all follow from a
simple lemma.

Lemma 2.1. Let g be fixed. If p =
(
c1
n

)(g−2)/g
for a small enough constant c1,

then Gn,p contains no spanning girth g maximal planar subgraph.

Proof. By [GN09], the number of spanning planar graphs is asymptotic to b ·
n−7/2γnn! for explicit constants b and γ. Therefore, for a fixed g we can clearly
say that the number of maximal planar graphs of girth g on n vertices is at most

(cn)n for some constant c. Let p =
(
c1
n

)(g−2)/g
where c1 < max{1/c, 1}. By the

union bound, for each graph property in Theorems 1.1, 1.2, and 1.3 we have the
following.

Pr[Gn,p ∈ G] ≤ (cn)np
g(n−2)
g−2

< (cn)n
(
c1
n

)n−2
→ 0

�

In proving the upper thresholds, we need to show that if p is large enough,
then we can find a maximal planar girth g subgraph with high probability. To do
this we will show that an explicitly constructed subgraph can be found. We will
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follow the ideas of [BF91] by inserting vertices into a specific construction. Where
Bollabás and Frieze inserted edges in each round, we instead insert paths. To do
this, we will make frequent use of the following lemma from [Kri10]. Note that
the values C1, C2 follow from the results in [JKV08].

Lemma 2.2. Let k ≥ 3 be a fixed integer, and let G be distributed as G(k+1)n0,p.Let
S = {s1, . . . , sn0}, T = {t1, . . . , tn0} be disjoints subsets of [(k + 1)n0].Finally, let
C1 > 0 be a fixed constant. Then there exists C2 > 0 such that if

p ≥ C2

(
lnn0

nk−10

)1/k

then with probability 1−n−C1
0 , G contains a family {Pi}n0

i=1 of vertex disjoint paths,
where each Pi is a path of length k connecting si to ti.

Furthermore, Bollabás and Frieze complete their proof by inserting all remaining
vertices into faces of their construction. We will use a similar technique to complete
our constructions, motivating the following lemma.

Lemma 2.3. Suppose p = C logn
n

for some constant C ≥ 2. Let X, Y be non-empty
vertex sets such that X ∩ Y = ∅, |Y | ≥ 3n/4, |X| ≤ n/4. and an edge connects x
and y with probability p, for every x ∈ X, y ∈ Y. Then the probability there is a

maximal matching between X and Y is at least 1− Ω
(

1
n logn

)
.

Proof. The proof follows by a second moment argument. Let Z denote the number
of maximal matchings between X and Y in Gn,p Then

E[Z] =
|X|! · |Y |!

(|Y | − |X|)!
1

|X|!
p|X| =

|Y |!
(|Y | − |X|)!

p|X|

E[Z2] ≤
|X|∑
k=0

|X|! · |Y |!
(|Y | − k)!(|X| − k)!k!

pk
(

(|Y | − k)!

(|Y | − (|X| − k))!
p|X|−k

)2

= |X|!|Y |!p2|X|
|X|∑
k=0

(|Y | − k)!

((|Y | − (|X| − k))!)2(|X| − k)!

p−k

k!

Now note that since |X| ≤ n/4, |Y | ≥ 3n/4, we have that

((|Y | − (|X| − (k + 1)))!)(|X| − (k + 1))!

((|Y | − (|X| − k))!)(|X| − k)!
=
|Y |+ 1− |X|+ k

(|X| − k)

≥ |Y |+ 1− |X|
|X|

≥ n/2

n/4
= 2
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for all k < |X|. It follows that

E[Z2] ≤ |X|!|Y |!p2|X|
|X|∑
k=0

(|Y | − k)!

((|Y | − (|X| − k))!)

(2p)−k

k!

≤ (|Y |!)2

(|Y | − |X|)!
p2|X|

|X|∑
k=0

(|Y | − k)!

((|Y | − (|X| − k))!)

(2p)−k

k!

Now note that

(|Y | − (k + 1))!(2p)−(k+1)

(|Y | − k)!(2p)−k
≤ (2p)−1/(n/2) = n/(Cn log n) ≤ (C log n)−1

for all k < |X|. Thus the above expression is at most

(|Y |!)2

(|Y | − |X|)!
p2|X|

|X|∑
k=0

1

((|Y | − (|X| − k))!)

(C log n)−k

k!
.

Lastly note that (|Y |−(|X|−(k+1)))!
(|Y |−(|X|−k))! ≥ n/2 and so

1

(|Y | − (|X| − k))!
≤ 1

(|Y | − |X|)!

(
2

n

)k
.

Since C ≥ 2, it follows that the above expression is at most

(|Y |!)2

((|Y | − |X|)!)2
p2|X|

|X|∑
k=0

1

(n log n)−kk!
≤ (|Y |!)2

((|Y | − |X|)!)2
p2|X|

|X|∑
k=0

1

(n log n)−k

= (E[Z])2
|X|∑
k=0

1

(n log n)−k

= (E[Z])2

(
1 +

1

n log n
+O

(
1

n2 log n2

))

Finally, by Paley-Zygmund we have that

Pr(Z > 0) ≥ E[Z]2

E[Z2]
≥ n log n

n log n+ 1 + o(1)
≥ 1− 1 + o(1)

n log n

�

Additionally, we must check that our constructed subgraph is maximal. From
our construction and the following claim this will be clear.

Claim 2.1. If G is a planar subgraph of girth g, and every face of G has size g,
then G is maximal.
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Figure 1. Construction for bipartite graphs

3. The Bipartite Case

The proof of the upper bound is motivated by a construction from [BF91].

Throughout this section assume p = C(logn)1/2

n1/2 where C is a large enough constant.
Let Gn,p be the random graph and let E be its edge set. Consider the following

construction:

(1) Define the 8 independent random edges sets E1, E2, · · · , E8, each distributed
as Gn,p′ where (1− p) = (1− p′)8 and

8⋃
i=1

Ei = E.

(2) Construct a 4-cycle using the edges from E1.
(3) Consider the diagram below. Let S0 denote the graph in Figure 1. We will

construct many copies of S0. The 4-cycle constructed in step 2 will be the
vertices in S0 with label 1. To continue construction of S0, use edges from
E2 to insert vertices labeled 2 and 3 (i.e. insert 3 new vertices along with
the edges in Figure 1 between vertices labeled with 1 and 3, labeled with
2 and 3, and labeled with 1 and 2), use edges from E3 to insert vertices
labeled 4 and 5, and use edges from E4 to insert the vertices labeled 6.
This procedure is repeated anytime we want to construct S0.
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Now recursively insert S0 into each of the blue faces (the four shaded
faces in Figure 1 each enclosed by vertices with labels 3, 4, 5, and 6), where
in the k’th recursive call you insert 4k copies of S0, one into each blue face.
In addition, if k is odd, use edge sets E4, E5, E6, instead of E2, E3, E4. Fix
a constant δ, 0 < δ < 1/4, and repeat m recursive calls so that at least
δn vertices have been used. Note that m = Θ(log n). Call the resulting
structure Sm.

(4) Insert remaining vertices into disjoint faces, one vertex per face, by con-
necting a pair of antipodal vertices of the face with a path of length 2 using
edges from E8.

Note that p′ > p/8, that the above construction is bipartite, and furthermore
every face has size 4. By Claim 2.1 it suffices to show that the above construction
can be done in Gn,p w.h.p. For step 2 , let X denote the number of 4-cycles in
Gn,p. Then

E[X] = Ω
(
n2 log2 n

)
,Var(X) = O

(
n5/2 log7/2 n

)
.

=⇒ Pr(X = 0) = O

(
1

n3/2

)
.

For step 4 , assume step 3 is possible. By construction, Sm has maximum degree
8 and at least δn vertices. Therefore, there is a δ′ > 0 such that we may choose
a set of δ′n vertex disjoint faces. Moreover, taking one of the disjoint faces and
connecting two of its antipodal vertices with a P2 does not reduce the number of
disjoint faces in Sm. Therefore we may attempt to insert the remaining vertices
one at a time, each vertex having at least δ′n faces to be possibly inserted into.
The probability that at least one of the remaining vertices can’t be inserted into
the structure is at most

(1− δ)n(1− p′2)δ′n ≤ (1− δ)n
(

1− p

64

2
)δ′n

< n

(
1− C2 log n

64n

)δ′n

<
1

n

for C a large enough constant.
Thus it suffices to show that step 3 can be completed w.h.p. Note that each

recursive call has 5 insertion steps, where the ith step inserts the i-labeled vertices.
Denote that the set of faces which we are trying to insert a vertex to in the ith step
of the kth recursive call as F(k,i). Denote the set of vertices which we may use to
add into the faces of F(k,i) as N(k,i). By our choice of edges used for insertion, each
vertex insertion is unconditioned by previous vertex insertions. However, if in a
step we simply use edges from Ej to insert vertices into the insertion faces, two
insertions in that same step may not be independent of each other (i.e. inserting
two vertices into two adjacent faces). To get around this, note that each insertion
face in F(k,i) is adjacent to at most three other insertion faces in F(k,i). Hence we

may partition F(k,i) =
⋃4
l=1 F(k,i,l) where all the faces in F(k,i,l) are vertex disjoint.

We may then partition Ej into 4 random edge sets {Ej,1, Ej,2, Ej,3, Ej,4}, where
Ej,k is distributed as Gn,p′′ , (1 − p′′)4 = (1 − p) and p′′ > p/32. We now use the
random edges from Ej,l to put edges between Fk,i,l and Nk,i.



MAXIMAL PLANAR SUBGRAPHS OF FIXED GIRTH IN RANDOM GRAPHS 7

We create an auxiliary bipartite graph with partite sets F(k,i,l) and N(k,i) where
there is an edge between a face in F(k,i,l) and a vertex in N(k,i) if that vertex
may inserted in the face (in other words, the edges in the auxiliary graph appear
independently with probability p′′2). To show that we may insert all necessary
i-labeled vertices, it suffices to show that there is a maximal matching between

F(k,i,l) and N(k,i) in the auxiliary graph. Since (p′′)2 ≥ C2 logn
322n

, by Lemma 2.3 it

follows that we can find a maximal matching with at least probability 1 − 1
n logn

for C a large enough constant. Since there are at most O(log n) steps, we can
complete (3) with probability 1 − Ω

(
1
n

)
Therefore the probability that any of

steps (2 - 4) fail is at most O( 1
n
).

4. Subgraphs of Girth g = 2k

The proof for the upper bound for girth g = 2k for k ≥ 3 uses a construction
motivated by the smaller girth cases but requires a simpler analysis.

Let Gn,p be the random graph and let E be its edge set. Let p = (4M + Q +

2)C ′2

(
logn

n(g−2)/g

)
, where M,Q are defined below and C ′2 is chosen so that Lemma

2.2 is satisfied under the assumption that k = g
2

and C1 = 2. Let s = g−2
4

if g ≡ 2
(mod 4) and s = g

4
if s ≡ 0 (mod 4). Consider the following construction:

(1) Define
⋃4M+Q+2
i=1 Ei := E where Ei is distributed as Gn,p′ where (1 −

p′)4M+Q+2 = 1 − p, p′ > p
4M+Q+2

,M = Θ(log n) and will be defined later

and Q = O(1) and will be defined later.
(2) Use edges from E1, E2 to construct a g-cycle.
(3) If g = 4s+2, consider figure 2 below. Otherwise, consider the next step (4)

Denote the structure it represents, where the blue faces (the two shaded
triangles, one between vertices labeled 2-2-3 and one between vertices la-
beled 3-3-4) are empty, as H0. Use the edges from E3 to construct the
red path of length 2s + 1 lebeling the middle 2 vertices with label 2, use
the edges from E4 to construct the pair of green paths of length 2s + 1
between vertices labeled 2 and 1 with vertices labeled 3 on them, use the
edges from E5 to construct the yellow paths of length 2s+ 1 (one between
vertices labeled 2 and 3 and one between vertices labeled 1 and 3 putting
a vertex with label 4 on the path), and use the edges from E6 to construct
the burgundy path (of length 2s + 1 between vertices labeled 3 and 4).
Now recursively insert H0 into each of the blue faces, where in the k’th
recursive call you insert 2k copies of S0, one into each blue face from the
k − 1’th recursive call. We assume the 0th recursive means constructing
H0 from the g-cycle. In addition, for the k’th recursive call, use edge sets
E4k+3, E4k+4, E4k+5 and E4k+6. Do this for M recursive calls and call the
resulting structure HM . Choose M so that HM has δn vertices where δ is
a fixed constant 0 < δ < 1/2. Note that M = Θ(log n).

(4) Consider Figure 3 below.
Denote the structure it represents, where the blue (shaded) faces are

empty, as H0. Use the edges from E3 to construct the red path of length
2s between a pair of vertices labeled 1 putting three vertices of label 2 n
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Figure 2. Construction for girth 4s+ 2

the middle of the path, use the edges from E4 to construct the green paths
of length 2s between vertices labeled 1 and 2 putting a pair of vertices with
label 3 on each path, use the edges from E5 to construct the yellow path of
length 2s between vertices labeled 1 and 3 putting a vertex of label 4 on the
path, and use the edges from E6 to construct the burgundy paths of length
2s (one between vertices labeled 3 and 4 and one between vertices labeled
2 and 3). Now recursively insert H0 into each of the blue faces, where in
the k’th recursive call you insert 2k copies of S0, one into each blue face
created during the k−1’st recursive call. We assume the 0’th recursive call
means constructing H0 from the g-cycle. In addition, for the k’th recursive
call, use edge sets E4k+3, E4k+4, E4k+5 and E4k+6 respectively. Do this for
M recursive calls and denote the resulting structure as HM . Choose M so
that HM has δn vertices where δ is a fixed constant 0 < δ < 1/2. Note
that M = Θ(log n).

(5) Find a set of εn vertex disjoint faces where ε > 0 is a constant. In each
face, fix a pair of antipodal vertices. Then use the remaining vertices not
in HM to insert paths of length g/2 between each pair of antipodal vertices
(splitting a face into a pair of cycles of length g). Continue this process
until all vertices have been inserted.

Since the construction satisfies the condition of Claim 2.1 it is indeed a maxi-
mal planar graph of girth g. Thus it suffices to show that the construction can be
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Figure 3. Construction for girth 4s

completed w.h.p. As we did before, we will show that the p is sufficient. However,
we will calculate the total failure probability at the end. Take a vertex set S of
size εn(g

2
+ 1) where 0 < ε < 1

2g
is a constant. Take εn vertices from S and label

them {ai} and take another εn vertices from S and label them {bi}. Note that
E1 restricted to S is distributed as Gεn( g

2
+1),p′ . Therefore, by Lemma 2.2 and our

choice of p, w.h.p. E1 contains disjoint paths between each (ai, bi) pair of length
g
2
. Let v1, · · · , v g

2
−1 be the interior vertices in the path from a1 to b1. Let S ′ be the

vertex set obtained by taking S and replacing v1, · · · , v g
2
−1 with g

2
− 1 vertices not

already in S. Since E2 restricted to S ′ is distributed as Gεn( g
2
+1),p′ by Lemma 2.2

w.h.p. E2 contains a path between a1 and b1 of length g
2
. Since v1, · · · , v g

2
−1 6∈ S ′,

the interior vertices of both paths are disjoint. Therefore, we can append the paths
to form a cycle of length g, and so with probability at least 1 − Ω

(
n−2
)
, E1, E2

contain a cycle of length g.

We now consider step 3 and step 4 . Suppose we are in the ith step of the kth
recursive call. Let {(a1, b1), · · · (am, bm)} be the collection of vertex pairs which
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we want to connect with paths of length g/2 using edges from E4k+i+2. Since M
is chosen such that HM has δn vertices with δ < 1, we can take a subset of the
unused vertices and the vertices in the (ai, bi) pairs to get a set of vertices S of
size n

2g
(g
2

+ 1). Now take subsets A,B ⊂ S of size n
2g

such that ai ∈ A and bi ∈ B.

Since E4k+i+2 restricted to S is distributed as G n
2g

( g
2
+1),p′ , by our choice of p and

Lemma 2.2 w.h.p. we can find disjoint paths connecting the (ai, bi) vertex pairs
with paths of length g

2
using edges from E4k+i+2.

We now consider step 5 . Note that in both constructions, a face can be
incident to at most 13 other faces. Since HM has δn vertices and each face is
incident with a bounded number of faces, we may find a set of εn vertex disjoint
faces where ε > 0 is a constant. Call these faces F1, · · · , Fεn. For each face,
choose a pair of antipodal vertices ai, bi ∈ Fi. Partition the remaining vertices
into sets of size at least 1

2

(
g
2
− 1
)
εn and at most

(
g
2
− 1
)
εn and call these sets

S1, · · · , SQ. Also assume that the size of each Si is divisible by g
2
−1 (this is possible

because of the divisibility condition on n). Note that Q = O(1). Now for each i,
1 ≤ i ≤ R, assume that |Si| = Ci

(
g
2
− 1
)
. We wish to insert the vertices from Si

into F1, F2, · · ·FCi
. Since E4M+2+i restricted to Si is distributed as GCi(g/2+1),p′ ,

Lemma 2.2 implies that there are disjoint paths of length g
2

between the vertex

pairs (a1, b1), · · · , (aCi
, bCi

) with probability at least 1− 1
((ε/2)n)2

.

We now compute the total failure probability. Note that their are at most
4M +Q+2 vertex insertion steps. By our choice of p, each insertion step succeeds
with probability 1− Ω

(
n−2
)
. Therefore the entire insertion process exceeds with

probability tending to 1.

5. Subgraphs of Girth g = 2k + 1

For the proof of the odd girth case, we again provide a construction. Let g =

2k + 1. Let p = C2

(
logn
nk

) 1
k+1

where C2 is chosen to be a large enough constant

that we can apply Lemma 2.2 with C1 = 2 throughout the proof.

(1) Define M such that Mg + (M − 1)g(g − 3) = (1 − δ)n where δ is a fixed
constant with 0 < δ < 1

5g
. Define ∪8i=1Ei = E, where an edge in E appears

in Ei with probability p′, where (1− p′)8 = 1− p and p′ > p
8
.

(2) Construct M cycles of length g using edges from E1 and E2.
(3) Consider the figure below: We perform this construction as follows:

(a) Enumerate the cycles from 1 to M as Ci.
(b) For each cycle Ci, enumerate it’s vertices as a1,i, a2,i, · · · , ag,i in clock-

wise order.
(c) For each cycle pairing C2s−1, C2s simultaneously add a disjoint path of

length k between aj,2s−1 and aj,2s for each 1 ≤ i ≤ g using edges from
E3. Then, simultaneously add a disjoint path of length k between
aj,2s−1 and aj+1,2s for each 1 ≤ i ≤ g, were g + 1 := 1, using edges
from E4.

(d) Apply (c) again, but this time between all cycle pairings C2s,g, C2s+1,g

and using edges from E5 and E6 resp.
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Figure 4. Construction for girth g = 2k + 1

(4) Assume that there are C(g − 1) vertices remaining. Note that C is an
integer by the divisibility condition on n and C = Ω(n) by the choice of
M . We may find at least bM/2c vertex disjoint faces in the construction
at this point. By choice of M , M/2 > C and so we may fix disjoint faces
F1, · · ·Fc. We will insert the remaining vertices into these faces, g vertices
per face as in the figure below, using all of the remaining vertices.

We claim that this construction if maximal planar. To see this, note that after
step 3 of the construction, it’s clear that each face of the current graph is a cycle
of length g. In step 4 , we note that in each vertex insertion step, a face is replaced
with 3 faces, each a cycle of length g.
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Figure 5. Insertion process for girth g = 2k + 1

We now elaborate on the construction. For step 2 , We take {(a1, b1), · · · (aM , bM)}
to be disjoint vertex pairs from the vertex pool V . Let S1 and S2 be disjoint sets
of vertices of size (k−1)M and kM respectively and each disjoint from {ai}∪{bi}.
By Lemma 2.2 we may find disjoint paths of length k connecting the pairs (ai, bi)
with the internal vertices coming from S1 and the edges coming from E1 w.h.p.
Similarly, we may find disjoint paths of length k + 1 connecting the pairs with
the internal vertices coming from S2 and the edges coming from E2 w.h.p. Since
S1 and S2 are disjoint, we have formed M disjoint cycles each of length g with
probability at least 1− Ω

(
n−2
)
.
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For step 3 , we can again build large sets of disjoint paths of length k, were we
build these paths between the following vertex pairs:⋃

1≤i≤M∧2-i
1≤k≤g

(ak,i, ak,i+1)

⋃
1≤i≤M∧2-i

1≤k≤g

(ak,i, ak+1,i+1)

⋃
1≤i≤M∧2|i

1≤k≤g

(ak,i, ak,i+1)

⋃
1≤i≤M∧2|i

1≤k≤g

(ak,i, ak+1,i+1)

where each set of paths uses edges from E3, E4, E5 and E6 respectively. By our
choice of M , we may always find enough unused vertices to create these paths and
Lemma 2.2 can be applied with our choice of p and we may find these paths with
probability at least 1− Ω(1/n2).

For step 4 , we note that one may choose a face arbitrarily between Ci and Ci+1

to find bM/2c vertex disjoint faces F1, · · ·FM/2. Assume that there are C(g − 1)
vertices remaining, and note that C < M/2 by the choice of M . For F1, · · ·FC
choose a vertex in Fi arbitrarily and call it ai. Let bi and ci be the two vertices
antipodal to ai. Let S be a set of kC of the remaining vertices. By Lemma 2.2, we
may find paths of length k+ 1 between ai and bi with the internal vertices coming
from S with probability at least 1− Ω(1/C2) = 1− Ω(1/n2). For each i let a′i be
the vertex on these paths that is adjacent to ai. There are now exactly C(k − 1)
vertices remaining. Applying Lemma 2.2 again allows us to connect each a′i to
ci with a path of length k where the internal vertices come from the remaining
vertices not used with probability at least 1− Ω(1/n2).

Since we have applied Lemma 2.2 a constant number of times the construction
can be found with probability tending to 1.

6. Conclusion

Although we were able to find intervals for the even girth cases that are optimal
within a poly-log factor, we were unable to do so for the odd girth case and we
leave this as an open question. It would also be very interesting to remove the
logarithmic factor entirely in any of the cases.
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