On a problem of Neumann

Michael Tait*

Abstract

A conjecture widely attributed to Neumann is that all finite non-desarguesian projective planes contain a Fano subplane. In this note, we show that any finite projective plane of even order which admits an orthogonal polarity contains a Fano subplane. The number of planes of order less than n previously known to contain a Fano subplane was $O(\log n)$, whereas the number of planes of order less than n that our theorem applies to is not bounded above by any polynomial in n.

Mathematics Subject Classification: 05C99, 51A35, 51A45

1 Introduction

A fundamental question in incidence geometry is about the subplane structure of projective planes. There are relatively few results concerning when a projective plane of order k is a subplane of a projective plane of order n. Neumann [9] found Fano subplanes in certain Hall planes, which led to the conjecture that every finite nondesarguesian plane contains PG(2, 2) as a subplane (this conjecture is widely attributed to Neumann, though it does not appear in her work).

Johnson [7] and Fisher and Johnson [4] showed the existence of Fano subplanes in many translation planes. Petrak [10] showed that Figueroa planes contain PG(2, 2) and Caliskan and Petrak [3] showed that Figueroa planes of odd order contain PG(2, 3). Caliskan and Moorhouse [2] showed that all Hughes planes contain PG(2, 2) and that the Hughes plane of order q^2 contains PG(2, 3) if $q \equiv 5 \pmod{6}$. We prove the following.

Theorem 1. Let Π be a finite projective plane of even order which admits an orthogonal polarity. Then Π contains a Fano subplane.

Ganley [5] showed that a finite semifield plane admits an orthogonal polarity if and only if it can be coordinatized by a commutative semifield. A result of Kantor [8] implies that the number of nonisomorphic planes of order n a power of 2 that can be coordinatized by a commutative semifield is not bounded above by any polynomial in n. Thus, Theorem 1 applies to many projective planes.

^{*}Department of Mathematics, University of California San Diego. mtait@math.ucsd.edu

2 Proof of Theorem 1

The proof of Theorem 1 is graph theoretic, and we collect some definitions and results first. Let $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ be a projective plane of order n. We write $p \in l$ or say p is on l if $(p, l) \in \mathcal{I}$. Let π be a polarity of Π . That is, π maps points to lines and lines to points, π^2 is the identity function, and π respects incidence. Then one may construct the polarity graph G_{π}^o as follows. $V(G_{\pi}^o) = \mathcal{P}$ and $p \sim q$ if and only if $p \in \pi(q)$. That is, the neighborhood of a vertex p is the line $\pi(p)$ that p gets mapped to under the polarity. If $p \in \pi(p)$, then p is an *absolute point* and the vertex p will have a loop on it. A polarity is *orthogonal* if exactly n + 1 points are absolute. We note that as neighborhoods in the graph represent lines in the geometry, each vertex in G_{π}^o has exactly n + 1 neighbors (if v is an absolute point, it has exactly n neighbors other than itself). We provide proofs of the following preliminary observations for completeness.

Lemma 1. Let Π be a projective plane with polarity π , and G^o_{π} be the associated polarity graph.

- (a) For all $u, v \in V(G^o_{\pi})$, u and v have exactly 1 common neighbor.
- (b) G^o_{π} is C_4 free.
- (c) If u and v are two absolute points of G^o_{π} , then $u \not\sim v$.
- (d) If $v \in V(G_{\pi}^{o})$, then the neighborhood of v induces a graph of maximum degree at most 1.
- (e) Let e = uv be an edge of G^o_{π} such that neither u nor v is an absolute point. Then e lies in a unique triangle in G^o_{π} .

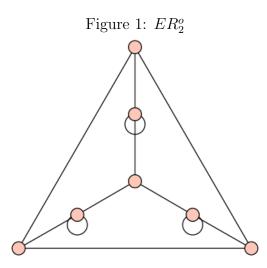
Proof. To prove (a), let u and v be an arbitrary pair of vertices in $V(G_{\pi}^{o})$. Because Π is a projective plane, $\pi(u)$ and $\pi(v)$ meet in a unique point. This point is the unique vertex in the intersection of the neighborhood of u and the neighborhood of v. (b) and (c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced by the neighborhood of v, then G^o_{π} contains a 4-cycle, a contradiction by (b).

Finally, let $u \sim v$ and neither u nor v an absolute point. Then by (a) there is a unique vertex w adjacent to both u and v. Now uvw is the purported triangle, proving (e).

Proof of Theorem 1. We will now assume Π is a projective plane of even order n, that π is an orthogonal polarity, and that G^o_{π} is the corresponding polarity graph (including loops). Since n is even and π is orthogonal, a classical theorem of Baer ([1], see also Theorem 12.6 in [6]) says that the n+1 absolute points under π all lie on one line. Let a_1, \ldots, a_{n+1} be the set of absolute points and let l be the line containing them. Then there is some $p \in \mathcal{P}$ such that $\pi(l) = p$. This means that in G^o_{π} , the neighborhood of p is exactly the set of points $\{a_1, \ldots, a_{n+1}\}$. For $1 \leq i \leq n+1$, let N_i be the neighborhood of a_i . Then by Lemma 1.b, $N_i \cap N_j = \emptyset$ if $i \neq j$. Further, counting gives that

$$V(G^o_{\pi}) = p \cup \left(\bigcup_{i=1}^{n+1} a_i\right) \cup \left(\bigcup_{i=1}^{n+1} N_i\right).$$
(1)



Let ER_2^o be the graph on 7 points which is the polarity graph (with loops) of PG(2,2)under the orthogonal polarity.

Lemma 2. If ER_2^o is a subgraph of G_{π}^o , then Π contains a Fano subplane.

Proof. Let v_1, \ldots, v_7 be the vertices of a subgraph ER_2^o of G_{π}^o . Let $l_i = \pi(v_i)$ for $1 \leq i \leq 7$. Then the lines l_1, \ldots, l_7 in Π restricted to the points v_1, \ldots, v_7 form a point-line incidence structure, and one can check directly that it satisfies the axioms of a projective plane.

Thus, it suffices to find ER_2^o in G_{π}^o . To find ER_2^o it suffices to find distinct i, j, ksuch that there are $v_i \in N_i$, $v_j \in N_j$, and $v_k \in N_k$ where $v_i v_j v_k$ forms a triangle in G_{π}^o , for then the points $p, a_i, a_j, a_k, v_i, v_j, v_k$ yield the subgraph ER_2^o . Now note that for all i, and for $v \in N_i$, v has exactly n neighbors that are not absolute points. There are n+1 choices for i and n-1 choices for $v \in N_i$. As each edge is counted twice, this yields

$$\frac{n(n-1)(n+1)}{2}$$

edges with neither end an absolute point. By Lemma 1.e, there are at least

$$\frac{n^3 - n}{6}$$

triangles in G_{π}^{o} . By Lemma 1.c, there are no triangles incident with p, by Lemma 1.b, there are no triangles that have more than one vertex in N_i for any i, and by Lemma 1.d there are at most $\lfloor \frac{n-1}{2} \rfloor = \frac{n}{2} - 1$ triangles incident with a_i for each i. Therefore, by (1), there are at least

$$\frac{n^3-n}{6}-(n+1)\left(\frac{n}{2}-1\right)$$

copies of ER_2^o in G_{π}^o . This expression is positive for all even natural numbers n. \Box

3 Concluding Remarks

First, we note that the proof of Theorem 1 actually implies that there are $\Omega(n^3)$ copies of PG(2,2) in any plane satisfying the hypotheses, and echoing Petrak [10], perhaps one could find subplanes of order 4 for n large enough. We also note that it is crucial in the proof that the absolute points form a line. When n is odd, the proof fails (as it must, since our proof does not detect if Π is desarguesian or not).

Acknowledgments

The author would like to thank Gary Ebert and Eric Moorhouse for helpful comments.

References

- [1] Reinhold Baer. Projectivities with fixed points on every line of the plane. Bulletin of the American Mathematical Society, 52(4):273–286, 1946.
- [2] Cafer Caliskan and G Eric Moorhouse. Subplanes of order 3 in hughes planes. The Electronic Journal of Combinatorics, 18(P2):1, 2011.
- [3] Cafer Caliskan and Bryan Petrak. Subplanes of order 3 in figueroa planes. *Finite Fields and Their Applications*, 20:24–29, 2013.
- [4] J Chris Fisher and Norman L Johnson. Fano configurations in subregular planes. Note di Matematica, 28(2):69–98, 2010.
- [5] MJ Ganley. Polarities in translation planes. Geometriae Dedicata, 1(1):103–116, 1972.
- [6] Daniel R Hughes and Frederick Charles Piper. Projective planes, volume 6. Springer, 1973.
- [7] Norman L Johnson. Fano configurations in translation planes of large dimension. Note di Matematica, 27(1):21–38, 2009.
- [8] William M Kantor. Commutative semifields and symplectic spreads. Journal of Algebra, 270(1):96–114, 2003.
- [9] Hanna Neumann. On some finite non-desarguesian planes. Archiv der Mathematik, 6(1):36–40, 1954.
- [10] Bryan Petrak. Fano subplanes in finite figueroa planes. Journal of Geometry, 99(1-2):101-106, 2010.