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Abstract

Let H
s−→ G denote that any s-coloring of E(H) contains a monochromatic G.

The degree Ramsey number of a graph G, denoted by R∆(G, s), is min{∆(H) :
H

s−→ G}. We consider degree Ramsey numbers where G is a fixed even cycle. Kin-
nersley, Milans, and West showed that R∆(C2k, s) ≥ 2s, and Kang and Perarnau
showed that R∆(C4, s) = Θ(s2). Our main result is that R∆(C6, s) = Θ(s3/2) and
R∆(C10, s) = Θ(s5/4). Additionally, we substantially improve the lower bound for
R∆(C2k, s) for general k.

1 Introduction

Theorems in Ramsey theory state that if a structure is in some suitable sense “large
enough”, then it must contain a fixed substructure. The classical Ramsey number
of a graph G, denoted by R(G, s), is the smallest n such that Kn

s−→ G, where
H

s−→ G denotes that any s-coloring of the edges of H produces a monochromatic
subgraph isomorphic to G. Classical Ramsey numbers may be thought of in a
more general setting, as just one type of parameter Ramsey number. Note that the
classical Ramsey number of G is min{|V (H)| : H s−→ G}. For any monotone graph
parameter ρ, one may define the ρ-Ramsey number of G, denoted by Rρ(G, s), to
be

min{ρ(H) : H
s−→ G}.

This generalizes the classical Ramsey number as Rρ(G, s) is the Ramsey number
for G when ρ(H) denotes the number of vertices in H. The study of parameter
Ramsey numbers dates back to the 1970s [7]. Since then, many researchers have
studied this quantity when ρ(H) is the clique number of H [12, 23, 25] (giving
way to the study of Folkman numbers), when ρ(H) is the number of edges in H
[3, 4, 9, 10, 11, 13, 27] (now called the size Ramsey number), when ρ(H) = χ(H)
[7, 28, 29] or when it is the circular chromatic number [15]. In this note we are
interested in the degree Ramsey number, which is when ρ(H) = ∆(H).

Burr, Erdős, and Lovász [7] showed that R∆(Kn, s) = R(Kn, s)−1. Kinnersley,
Milans, and West [18] and Jiang, Milans, and West [16] proved several theorems
regarding the degree Ramsey numbers of trees and cycles. Horn, Milans, and Rödl
showed that the family of closed blowups of trees is R∆-bounded (that their degree
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Ramsey number is bounded by a function of the maximum degree of the graph
and s). The main open question in this area is whether the set of all graphs is
R∆-bounded (see [8]).

The main result of this note is to determine the order of magnitude of R∆(C6, s)
and R∆(C10, s). Kang and Perarnau [17] showed that R∆(C4, s) = Θ(s2), and for
general k, the best lower bound on R∆(C2k, s) is by Kinnersley, Milans, and West
[18] who show R∆(C2k, s) ≥ 2s. We substantially improve this lower bound in
Theorem 1.3.

As the determination of Ramsey numbers for C2k is closely related to the Turán
number for C2k, one may find it natural that the order of magnitude for R∆(C2k, s)
should be able to be determined for k ∈ {2, 3, 5} but in no other cases. This is
also the current state of affairs for the Turán numbers ex(n,C2k) as well as for
the classical Ramsey numbers, where Li and Lih [22] showed that R(C2k, s) =
Θ
(
sk/(k−1)

)
for k ∈ {2, 3, 5}.

Before we state our theorems, we need some preliminary definitions. For graphs
F and G, a locally injective homomorphism from F to G is a graph homomorphism
φ : V (F ) → V (G) such that for every v ∈ V (F ), the restriction of φ to the
neighborhood of v is injective. Let LF denote the family of all graphs H such that
there is a locally injective homomorphism from F to H. We say that a graph is
LF -free if it does not contain any H ∈ LF . We now state our main theorem.

Theorem 1.1 R∆(C6, s) = Θ(s3/2) and R∆(C10, s) = Θ(s5/4).

To prove this theorem, we first show that the complete graph can be partitioned
“efficiently” into graphs coming from the generalized quadrangle and generalized
hexagon. Then we use the following general theorem, which is implicit in the work
of Kang and Perarnau [17].

Theorem 1.2 (Kang-Perarnau [17]) Let F be a graph with at least one cycle
and ε > 0 be fixed and let G be a graph of maximum degree ∆. If the edges of
Kn can be partitioned into O

(
n1−ε) LF -free graphs, then G can be partitioned into

O
(
∆1−ε) graphs which are F -free.

They did not state their theorem in this way, and for completeness we sketch
its proof in Section 3. Stating it in this general way allows us to improve the result
of Kinnersley, Milans, and West [18].

Theorem 1.3 Let k be fixed and δ = 0 if k is odd and δ = 1 if k is even. Then

R∆(C2k, s) = Ω

((
s

log s

)1+ 2
3k−5+δ

)
.

We prove our main theorem in Section 2. We sketch the proof of Theorem 1.2
and use it to prove Theorem 1.3 in Section 3.

2 Proof of Theorem 1.1

The theorem follows from Theorem 1.2 and the following proposition which we
prove after the proof of Theorem 1.1.
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Proposition 2.1 The edge set of Kn may be partitioned into O(n2/3) graphs of
girth 8 or O(n4/5) graphs of girth 12.

Proof of Theorem 1.1. Showing that R∆(G, s) ≥ k is equivalent to showing
that any graph of maximum degree at most k may be partitioned into s graphs each
of which are G-free. We notice that if there is a locally injective homomorphism
from Cn to a graph H, then H must contain a cycle of length at most n. Therefore,
if a graph has girth g, then it is LCn-free for any n ≤ g.

Therefore, by Proposition 2.1 and Theorem 1.2, if G is a graph of maximum
degree ∆, then G can be partitioned into O(∆2/3) graphs which are C6-free or
O(∆4/5) graphs which are C10-free. This shows that R∆(C6, s) = Ω(s3/2) and
R∆(C10, s) = Ω(s5/4).

The upper bound follows from the classical even-cycle theorem of Erdős, that
ex(n,C2k) = O(n1+1/k) (cf [5]). If E(Kn) is colored with s colors, then one color
class contains at least

(
n
2

)
/s edges. Therefore, for a constant ck depending only on

k, if ckn
1−1/k > s, then any s-coloring of Kn contains a monochromatic C2k. This

implies

R∆(C2k, s) ≤
(
s

ck

)1+ 1
k−1

− 1.

We note that the best constant ck that is known comes from the current best-
known upper bound for ex(n,C2k) by Bukh and Jiang [6].

Proof of Proposition 2.1. We use the generalized quadrangle and the general-
ized hexagon to partition Kn efficiently into graphs of girth 8 and 12 respectively.
Let q ≥ 5 be a prime and Fq the field of order q. We define bipartite graphs Q
and H. Let V (Q) = PQ ∪ LQ and V (H) = PH ∪ LH where PQ = {(p1, p2, p3) :
pi ∈ Fq}, LQ = {(l1, l2, l3) : li ∈ Fq}, PH = {(p1, p2, p3, p4, p5) : pi ∈ Fq}, and
LH = {(l1, l2, l3, l4, l5) : li ∈ Fq}. Now define E(Q) by (p1, p2, p3) ∼ (l1, l2, l3) if and
only if

l2 − p2 = l1p1

l3 − 2p3 = −2l1p2

and E(H) by (p1, p2, p3, p4, p5) ∼ (l1, l2, l3, l4, l5) if and only if

l2 − p2 = l1p1

l3 − 2p3 = −2l1p2

l4 − 3p4 = −3l1p3

2l5 − 3p5 = 3l3p2 − 3l2p3 + l4p1

The graphs Q and H are q-regular bipartite graphs on 2q3 and 2q5 vertices respec-
tively. In [20] (Theorems 2.1 and 2.5), Lazebnik and Ustimenko showed that Q has
girth 8 and H has girth 12. Q and H are large induced subgraphs of the incidence
graph of the generalized quadrangle and generalized hexagon (see also [19]). We
first show that we may partition Kp3,p3 with disjoint copies of Q and Kp5,p5 with
disjoint copies of H.

Let (α2, α3) be an arbitrary pair in F2
q and (β2, β3, β4, β5) an arbitrary quadru-

ple in F4
q . Define the graph Qα2,α3 to be the graph with vertex set V (Q) and

(p1, p2, p3) ∼ (l1, l2, l3) if and only if
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l2 − (p2 + α2) = l1p1

l3 − 2(p3 + α3) = −2l1(p2 + α2)

and Hβ2,β3,β4,β5 to be the graph with vertex set V (H) and (p1, p2, p3, p4, p5) ∼
(l1, l2, l3, l4, l5) if and only if

l2 − (p2 + β2) = l1p1

l3 − 2(p3 + β3) = −2l1(p2 + β2)

l4 − 3(p4 + β4) = −3l1(p3 + β3)

2l5 − 3(p5 + β5) = 3l3(p2 + β2)− 3l2(p3 + β3) + l4p1

ThenQα2,α3 is isomorphic toQ with the explicit isomorphism given by (p1, p2, p3) 7→
(p1, p2−α2, p3−α3) and (l1, l2, l3) 7→ (l1, l2, l3) and Hβ2,β3,β4,β5 is isomorphic to H
with isomorphism given by (p1, p2, p3, p4, p5) 7→ (p1, p2−β2, p3−β3, p4−β4, p5−β5)
and (l1, l2, l3, l4, l5) 7→ (l1, l2, l3, l4, l5).

Now we claim that the family {Qα2,α3}αi∈Fq coversKq3,q3 and {Hβ2,β3,β4,β5}βi∈Fq
covers Kq5,q5 . Since each graph is q regular and there are q2 and q4 of them
respectively, each cover is also a partition. To show that the edges of the complete
bipartite graph are all covered, let (p1, p2, p3) and (l1, l2, l3) be arbitrary and fixed.
We must show that there is a choice of α2 and α3 such that

l2 − (p2 + α2) = l1p1

l3 − 2(p3 + α3) = −2l1(p2 + α2)

It is clear that there is a unique solution α2, α3 to this triangular system. Simi-
larly, for (p1, p2, p3, p4, p5) and (l1, l2, l3, l4, l5) arbitrary and fixed, there is a unique
solution β2, β3, β4, β5 to the system

l2 − (p2 + β2) = l1p1

l3 − 2(p3 + β3) = −2l1(p2 + β2)

l4 − 3(p4 + β4) = −3l1(p3 + β3)

2l5 − 3(p5 + β5) = 3l3(p2 + β2)− 3l2(p3 + β3) + l4p1

Therefore, Kq3,q3 may be covered by q2 graphs each of girth 8, and Kq5,q5 may
be covered with q4 graphs each of girth 12. Now we must show that we can use a
partition of Kn,n to find an efficient covering of Kn where we only lose a constant
multiplicative factor in the number of graphs used. Li and Lih showed this in [22],
and we include the details for completeness.

By standard results on density of the primes, we have shown above that we
may partition Kn,n into (1 + o(1))n2/3 graphs of girth 8 or (1 + o(1))n4/5 graphs of
girth 12. Break the vertex set of Kn into two parts V1 and V2 with sizes as equal as
possible. We may cover the edges between V1 and V2 with (1+o(1))(n/2)2/3 graphs
of girth 8 or (1 + o(1))(n/2)4/5 graphs of girth 12. Now break V1 and V2 into equal
size pieces U1, U2, U3, U4 each of size n/4. Since the disjoint union of two graphs of
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girth g still has girth g, we may cover the edges between U1 and U2 and the edges
between U3 and U4 with (1 + o(1))(n/4)2/3 graphs of girth 8 or (1 + o(1)(n/4)4/5

graphs of girth 12. Repeating this procedure allows us to cover all of the edges in
Kn with

O(logn)∑
i=1

(1 + o(1))
( n

2i

)2/3
= O(n2/3)

graphs of girth 8 or

O(logn)∑
i=1

(1 + o(1))
( n

2i

)4/5
= O(n4/5)

graphs of girth 12.

We note that this section shows that R({C3, · · ·C2k}, s) = Θ(sk/(k−1)) for k ∈
{2, 3, 5} and implies the main result of [22]. We also note that we have seen in this
section that by Theorem 1.2, giving good lower bounds on degree Ramsey numbers
for a graph F can be reduced to giving good lower bounds on the classical Ramsey
number for LF . In the case that F = Ka,b, we have that LF = {Ka,b}. Using the
projective norm graphs, Alon, Rónyai, and Szabó [1] showed that for a > (b− 1)!,
R(Ka,b, s) = Θ(sb). Along with Theorem 1.2, this shows that for a > (b− 1)!, one
also has R∆(Ka,b, s) = Θ(sb).

3 Proof of Theorem 1.2

Throughout this section, assume that F is a graph with at least one cycle, that ε > 0
is fixed, and that the edges of Kn can be partitioned into O(n1−ε) graphs which
are LF -free. Call a coloring of a graph a proper rainbow coloring if the coloring is
proper, and the restriction of the coloring to any neighborhood is an injection (ie
each vertex sees a rainbow). To prove Theorem 1.2 we need the following lemma,
which appears in [17]. Similar lemmas appear in [26] and [24].

Sketch of Proof of Theorem 1.2.

Lemma 3.1 Let G be a graph of sufficiently large maximum degree ∆ and mini-
mum degree δ ≥ log2 ∆. Then there is a spanning subgraph H of G and a proper
rainbow coloring χ(H) using at most 200∆ colors such that for all v ∈ V (G),
dH(v) ≥ 1

10dG(v).

This lemma allows us to use the partition of Kn to partition a large piece of
our graph G (viz H) into F -free subgraphs.

Proposition 3.2 Let G be a graph of sufficiently large maximum degree ∆ and
minimum degree δ ≥ log2 ∆. There exist l = O(∆1−ε) disjoint spanning subgraphs
H1, · · · , Hl, all of which are F -free, such that for all v ∈ V (G)

l∑
i=1

dHi(v) ≥ 1

10
dG(v).
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Proof. Recall that the edge set of K200∆ can be partitioned into l = O(∆1−ε)
graphs which are LF -free. Denote these graphs by G1, · · · , Gl. Let H be the
spanning subgraph of G with coloring χ from Lemma 3.1. Recall that χ is a proper
rainbow coloring using at most 200∆ colors and that dH(v) ≥ 1

10dG(v) for all v.
For 1 ≤ i ≤ l, define graphs Hi which are subgraphs of H by V (Hi) = V (G) and
uv ∈ E(Hi) if and only if

χ(u)χ(v) ∈ E(Gi) and uv ∈ E(H).

Since G1, · · · , Gl is a partition of E(K200∆), we have that H1, · · · , Hl is a par-
tition of H, and thus the minimum degree condition is satisfies. To see that each
Hi is F -free, we claim that for each i, χ is a locally injective homomorphism from
Hi to Gi. To see this, note that the definition of E(Hi) guarantees that χ is a
homomorphism from Hi to Gi, and χ being a rainbow coloring implies that the
homomorphism is locally injective. Since Gi is LF -free, we have that Hi is F -free.

Let G1 be the graph obtained from G by sequentially removing any vertex of
degree less than log2 ∆, and let G2 be the graph whose edges are E(G) \ E(G1).
Since G2 has degeneracy at most log2 ∆, it has arboricity at most log2 ∆ and so
we may partition E(G2) into that many forests. Since F contains a cycle, each
of these are F -free. Now we may apply Proposition 3.2 to G1, and have therefore
covered a large piece of G with at most O(∆1−ε) + log2 ∆ graphs which are F -free.
Removing these edges decreases the maximum degree by a multiplicative factor of
at least 9

10 . We may repeat this procedure until the maximum degree of part of
the graph which is not yet covered is less than log2 ∆. Since the maximum degree
decreases by a constant multiplicative factor at each step, this will take at most
O(log ∆) steps. Therefore, the total number of graphs used to cover E(G) is

O(log ∆)∑
i=0

200

((
9

10

)i
∆

)1−ε

+ log2 ∆ = O
(
∆1−ε)+O(log3 ∆).

Proof of Theorem 1.3. Let k be fixed and let δ = 0 if k is odd and 1 if k is
even. Showing that

R∆(C2k, s) = Ω

((
s

log s

)1+ 2
3k−5+δ

)

is equivalent to showing that any graph of maximum degree ∆ can be partitioned

into O(∆1− 2
3k−3+δ log ∆) graphs each with no copy of C2k. By the same argument

in the proof of Theorem 1.1 and by Theorem 1.2, it suffices to show that Kn can

be partitioned into O(n1− 2
3k−3+δ log n) graphs of girth greater than 2k. Lazeb-

nik, Ustimenko, and Woldar [21] showed that there are graphs on n vertices and

εkn
1+ 2

3k−3+δ edges that have girth at least 2k+ 2, where εk is a constant depending

only on k. For C a constant to be chosen later, place Cn1− 2
3k−3+δ log n copies of

this graph onto Kn, each time permuting the vertices with a permutation σ ∈ Sn
chosen uniformly at random and independently. For each pair u, v, let Xu,v be the
random variable that counts how many times the edge uv in Kn is covered. We
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are done if we can show that all of the Xuv are positive with positive probability.
Since the expected value of each Xuv is greater than εkC log n, the Chernoff bound
(cf [2]) gives that

P(Xuv = 0) ≤ exp

(
−εkC log n

3

)
.

For C large enough this is o(n−2), and the union bound gives that every edge is
covered with probability tending to 1.

Indeed, this proof shows a more general theorem:

Theorem 3.3 Let F be a fixed graph containing at least one cycle and let ex(n,LF ) =
Ω(n1+η). Then if η < 1,

R∆(F, s) = Ω

(
s

log s

) 1
1−η

,

and if η = 1, then

R∆(F, s) = 2Ω(s1/4).

4 Concluding Remarks

Determining the order of magnitude for R∆(C2k, s) for k 6∈ {2, 3, 5} is out of reach
with the current state of knowledge, as any improvement to the best-known expo-
nents would yield a corresponding improvement in the best-known exponents for
ex(n,C2k). One should be able to remove the logarithmic factor in the denominator
of Theorem 1.3 but we could not see an easy way to do this. Probably the most
interesting open question in the area of degree Ramsey numbers is whether or not
R∆(G, s) is bounded by some function of ∆(G) and s. Horn, Milans, and Rödl [14]
showed that this is true for the family of closed blowups of trees. However, it is
not clear that it should be true for general G.
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