
Math 301: Homework 8

Due Wednesday November 8 at noon on Canvas

1. In this problem, we will “smash together” the two partite sets of the incidence graph
of a projective plane and give an asymptotic formula for ex(n,C4). Let V be a 3-
dimensional vector space over a finite field Fq. We define a graph Go

π where V (Go
π) is

the set of one-dimensional subspaces of V . There are q2 + q + 1 of these (to see this,
think of a vector in V having 3 coordinates, and then for each subspace it is defined
by a vector which you can normalize so that the first non-zero coordinate is 1). Two
vertices are adjacent if and only if the subspaces are orthogonal to each other.

(a) Show that each vertex has degree q + 1 (Hint: V is a 3-dimensional vector space.
Given a fixed 1-dimensional subspace, the set of vectors orthogonal to it is 2-
dimensional. How many 1-dimensional subspaces are in a 2-dimensional vector
space over Fq?)

Solution: Let U be a fixed 1-dimensional subspace of F3
q. Then the number of

neighbors of U is the number of 1-dimensional subspaces that are perpendicular
to it. Since we are in a 3-dimensional vector space, this is equivalent to counting
the number of 1-dimensional subspaces in a 2-dimensional vector space over Fq

(the subspace which is perpendicular to U is isomorphic to F2
q). We may write

subspaces in a 2-dimensional vector space over Fq as a vector of length 2 with
coordinates from Fq. Without loss of generality, we may normalize so that the
leading nonzero coordinate is 1. Therefore the subspaces may be of the form (1, x)
with x ∈ Fq or (0, 1) and so there are q + 1 of these.

(b) Show that every pair of vertices has exactly one path of length 2 between them
(Hint: this is much easier to do geometrically than algebraically).

Solution: Let U and V be two distinct 1-dimensional subspaces in F3
q. Then since

the cross product of two distinct vectors in a three dimensional space points in a
unique direction (unique up to scalar multiplication), this direction is the unique
subspace which is orthogonal to both U and V . Therefore U and V have exactly
one common neighbor.

(c) Show that there are loops in the graph (you may allow q to be of any form that is
convenient for you).

Solution: If for example p ≡ 1 (mod 4), then −1 is a quadratic residue mod p, ie
there is a y such that y2 ≡ −1 (mod p). In this case, the subspace coordinatized
by (1, y, 0) will be orthogonal to itself, and hence will have a loop.
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(d) It is known that there are q+ 1 loops in this graph. Let Gπ be the graph with the
loops removed. Then Gπ is a graph on q2 + q+ 1 vertices with q2 vertices of degree
q + 1 and q + 1 vertices of degree q.

(e) Use part (b) and (d) to count the number of triangles in Gπ.

Solution: Part (b) and (d) together show that for any edge xy in Go
π where both

endpoints are not looped, there is a unique z such that xyz forms a triangle. Part
(b) shows that two loops cannot be adjacent, and part (d) shows that for xy an
edge with one loop on an endpoint, there is no triangle through xy. Therefore, the
number of triangles is

1

3
(the number of edges with no loops on either end) =

1

6
q2(q + 1).

(f) It is known that for any ε > 0, there is an M such that for m ≥M , there is a prime
number in the interval [m, (1 + ε)m]. Use this to show that ex(n,C4) ∼ 1

2
n3/2.

Solution: We already know from KST theorem that ex(n,C4) . 1
2
n3/2. So we

must show that for any δ > 0, there exists an N such that for n ≥ N

ex(n,C4) ≥
(

1

2
− δ
)
n3/2.

Fix δ > 0. Note that

lim
q→∞

√
q2 + q + 1√

q2
= 1,

so there exists an N such that for any n ≥ N , there is a prime q with q2+q+1 < n
and q > (1 − δ)1/3

√
n. Now using this prime q, we may construct a graph on

q2 + q + 1 < n vertices that has

1

2
q(q + 1)2 >

1

2
q3 ≥ (1− δ)n3/2

edges.

2. The multicolor Ramsey number of a graph H, denoted rk(H) is the minimum n such
that any k-coloring of the edges of Kn contains a monochromatic copy of H. We think
of k as going to infinity. Assume that ex(n,H) = Θ(nα) for some 1 < α ≤ 2.

(a) Use the pigeonhole principle to show that rk(H) = O(k1/(2−α)).

Solution: By assumption ex(n,H) ≤ Cnα for some constant C. Let n = C2k
1/(2−α).

We must show that for a large enough constant C2, any k coloring of the edges of
Kn must contain a monochromatic copy of H. By the pigeonhole principle, any
k-coloring of E(Kn) contains a color with at least(

n
2

)
k
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edges. If this many edges is more than Cnα, then by the definition of the Turán
number, there must be a copy of H in this color. So if(

n
2

)
k
≥ Cnα

then we are done. This happens if C2 is a large enough constant relative to C.

(b) Use the probabilistic method to show that rk(H) = Ω
(
k1/(2−α)/polylog(k)

)
.

Solution: Let n = k1/(2−α)/polylog(k). We must show that we may choose
polylog(k) large enough that there is a k-coloring of E(Kn) that has no monochro-
matic copy of H. This is equivalent to showing that there are subgraphs G1, · · · , Gk

each of which is H free such that⋃
E(Gi) = E(Kn).

To see this, given a k-coloring with no monochrome H, let Gi be the graph of edges
with color i. Given a covering of E(Kn) with G1, · · · , Gk each of which is H free,
let an edge xy be color i if xy ∈ Gi. If there are multiple choices for the color of
an edge, choose one arbitrarily (note that the color classes will still be H free).

So we must show that for this choice of n, we can cover E(Kn) with k subgraphs
each of which are H-free. By assumption, we know that for some ε > 0 there is a
graph F on n vertices with εnα edges which is H free. We put down copies of F
“randomly” on E(Kn). That is, choose π1, · · · , πk ∈ Sn uniformly and indepen-
dently, and let Gi be a graph isomorphic to F with its vertices ordered by πi. We
are done if we can show that with positive probability, every edge in Kn is covered
by at least one of the Gi. Fix an edge xy ∈ E(Kn). Then

P(xy ∈ E(Gi)) =
εnα(
n
2

) .
Therefore,

P(xy not covered by any Gi) =

(
1− εnα(

n
2

))k

≤ e−εkn
α/(n2).

If this is less than
(
n
2

)−1
then by the union bound, the probability that there exists

an edge which is not covered is strictly less than 1. This occurs when polylog(k)
is a large enough constant (depending on α and ε) times log k.

3. (**) Let G be a graph. A hypergraph H is said to be Berge-G, if there is a bijection
φ : E(G) → E(H) such that for each edge e ∈ E(G), e ⊂ φ(e). We say that a
hypergraph is Berge-G free if it does not contain any subhypergraph which is Berge-G.
We denote by exr(n,Berge−G) the maximum number of edges in an n-vertex r-uniform
hypergraph which is Berge-G free. It is known that exr(n,Berge− C4) = O(n3/2).
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(a) (***) Show that ex3(n,Berge− C4) = Ω(n3/2). What can you say for general r?

Solution: We use the graph Gπ from problem 1 to construct a 3-uniform hy-
pergraph H. Let V (H) = V (Gπ), so H has n = q2 + q + 1 edges. We create a
hyperedge in H xyz if and only if xyz form a triangle in G. By Problem 1, there
are 1

6
q2(q + 1) = Ω(n3/2) edges in H.

To see that H is Berge-C4-free, consider 4 vertices xyzw. If these vertices were to
form a Berge-C4 in H, this would mean that in Gπ there were 4 triangles containing
the edges xy yz zw and wx respectively. This would mean that xyzw forms a C4

in Gπ, a contradiction.

It is not known how to construct Berge C4 free hypergraphs for general r. You can
do some tricks with projective planes if r = 4 and maybe if r = 5, please see me if
you would like to know more details. To my knowledge, no construction is known
with r at least say 7.

(b) (****) For a family of hypergraphs F , define the multicolor Ramsey number r
(3)
k (F)

to be the minimum n such that for any k coloring of the edge set of the complete
3-uniform hypergraph, there is a monochromatic copy of some graph in F . Show
that r

(3)
k (Berge − C4) = Θ(k2/3). (The upper bound is the same as in problem 2,

using the Turán number and the pigeonhole principle. For the lower bound, it is
equivalent to showing that the complete 3-uniform hypergraph on n vertices can
be edge-partitioned into O(n3/2) subgraphs, each of which has no Berge-C4).

I am still offering a 5/30 exam point bounty for this one.
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