Math 301 Homework

Mary Radcliffe

Due 25 September 2017

Complete the following problems. Fully justify each response.

- 1. A group of n people is to be divided into committees. From each committee, an even number of people will be chosen to serve on a subcommittee. Find the exponential generating function for the number of ways to do this.
- 2. For even n, let e_n be the number of permutations with all cycles even, o_n the number of permutations with all cycles odd, and $p_n = n!$ the total number of permutations. Let E(x), O(x), and P(x) denote the corresponding exponential generating functions. Prove the following:
 - (a) $P(t) = (1 t^2)^{-1}$
 - (b) $E(t) = (1-t^2)^{-1/2}$ (A suggested strategy: first, show that the number of matchings in a graph on 2n vertices is $\frac{(2n)!}{2^n n!}$ (compare to problem 1 from Homework 2). Show, also that e_n is equal to the number of pairs of matchings in a graph on 2n vertices, and use this to show the desired result.)
 - (c) E(t)O(t) = P(t)
 - (d) $e_n = o_n$ for all even n.
- 3. Prove the following theorem for exponential generating functions.

Let a_n be the number of ways to build a structure of type A on an *n*-element set, where $a_0 = 0$, and b_n the number of ways to build a structure of type B on an n-element set, where $b_0 = 1$. Let c_n denote the number of ways to partition the set [n] into an unspecified number of nonempty subsets, build a structure of type A on each subset, and then a structure of type B on the set of subsets themselves.

If
$$A(x) = \sum_{n \ge 1} \frac{a_n}{n!} x^n$$
, $B(x) = \sum_{n \ge 0} \frac{b_n}{n!} x^n$, and $C(x) = \sum_{n \ge 0} \frac{c_n}{n!} x^n$,
then
 $C(x) = B(A(x)).$

$$C(x) = B(A(x)).$$