Math 301: Homework 2

Mary Radcliffe

due 19 Sept 2016

Complete the following problems. Fully justify each response.

- 1. Use generating functions to find a closed form for a_n for each of the following recurrence relations.
 - $a_{n+1} = \alpha a_n + \beta$ for $n \ge 0, a_0 = 0$.
 - $a_{n+2} = 2a_{n+1} a_n$ for $n \ge 0, a_0 = 0, a_1 = 1$
- 2. Merge sorting is an algorithm for sorting a list S of numbers. It works as follows:
 - (a) If S contains just one element, it is sorted.
 - (b) If S contains n > 1 elements, choose some k < n. Divide the list into two parts, one having k elements and one having n-k elements. Recursively apply a merge sort to each part.
 - (c) Once every part is sorted, merge the parts by comparing successive elements.

For example, if we had two sorted parts $\{1, 2, 5, 7\}$ and $\{3, 6, 8\}$, our final step would look as follows: Compare 1, 3, and take 1 to be first. Compare 2, 3, and take 2 next. Compare 5, 3, and take 3 next. This continues until all elements from both sets have been added to a new, totally sorted array.

Given a set S containing 2^k elements, define m_k to be the maximum number of comparisons that must be made to perform a merge sort on S, in which each time we divide the list into two parts, they are equal in size (this is actually the optimum procedure). That is to say, m_k is an approximation of the longest running time of a merge sort on a set of 2^k elements. Find a recurrence relation for m_k , and solve it.

- 3. For even n, let e_n be the number of permutations with all cycles even, o_n the number of permutations with all cycles odd, and $p_n = n!$ the total number of permutations. Let E(x), O(x), and P(x) denote the corresponding exponential generating functions. Prove the following:
 - (a) $P(t) = (1 t^2)^{-1}$
 - (b) $E(t) = (1 t^2)^{-1/2}$
 - (c) E(t)O(t) = P(t)
 - (d) $e_n = o_n$ for all even n.