Math 301: Homework 9

Mary Radcliffe

due 9 Dec 2016

Complete the following problems. Fully justify each response. Turn in ONLY problems 1, 2, and 3.

- 1. Complete problem 14 from Applied Combinatorics on page 125 (figure 6.18 is on page 126).
- 2. Complete problem 3 from Networks Crowds and Markets on page 687 (literally the last page of the book)
- 3. Consider the Erdős-Rényi graph $G_{n,p}$, in the regime that $np = C \log n$, for C constant.
 - (a) Arbitrarily root G at some vertex $v = v_0$. Consider the Galton-Watson branching process from v_0 , allowing repetition of vertices on multiple levels. Define

 $L_i = \{ v \in V(G) \mid v \text{ appears on the } i^{\text{th}} \text{ level of the GW process} \},$

so $L_0 = \{v_0\}, L_1 = N(v_0), L_2 = \{$ vertices that can be reached by a walk of length 2 from $v_0\}$, etc.

Show that for any vertex $v \in V(G)$, $\mathbb{P}(v \in L_k) \ge n^{k-1}p^k$.

- (b) Use the above analysis to show that if $k > \frac{\log n + \log(C-1)}{\log(C)}$, then diam $(G) \le 2k$ with probability 1 o(1).
- 4. Let $w = (w_1, w_2, \ldots, w_n)$ be a degree sequence, and let G = G(w) be the corresponding Chung-Lu random graph. Prove that with probability 1 o(1), we have $\deg(v_i) = w_i(1 + o(1))$ for every vertex $v_i \in V(G)$.
- 5. Suppose you wish to model a proximity network, in which people whose homes are in geographic proximity are more likely to come into contact with one another. Why might a RGG not quite fulfill your needs? What tweaks could you make to the model to improve its usefulness?
- 6. Define a random graph as follows.
 - Begin with a fixed graph G, where G is the $n \times n$ integer lattice having $(x, y) \sim (w, z)$ if and only if the Hamming distance between (x, y) and (w, z) is exactly 1. (In other words, draw the integer grid. Treat each intersection as a node, and lines as edges between nodes.)
 - Fix some m, and randomly choose m pairs of vertices in G to add edges.

This graph, a variant on the Kleinberg Small World model, was originally developed by Watts and Strogatz.

- (a) What is the diameter of the $n \times n$ integer lattice?
- (b) Determine a bound on the diameter of the random graph produced by the above process (which should depend somewhat on m).