
Math 241: Final Exam Review

Practice Problems Solutions
First: problems from Exam 1 review, Exam 2 review, and both the midterms, as well as
homework.
For material presented since that time:

1. The vectors v1 =

 1
1
1

 and v2 =

 −2
4
−2

 are orthogonal in R3. Find a third vector

v3 that is orthogonal to both v1,v2, such that {v1,v2,v3} form a basis for R3.

Solution: v3 =

 1
0
−1

, or any multiple of this vector.

2. Suppose v ∈ Span {u1,u2, . . . ,uk}, where the ui are orthonormal. Prove that v =
(v · u1)u1 + · · ·+ (v · uk)uk.

Solution: Since v ∈ Span {u1,u2, . . . ,uk}, it must be the case that there
exists α1, α2, . . . , αk such that v = α1u1 + α2u2 + · · ·+ αkuk.

Now, for 1 ≤ i ≤ k, note that

v ·ui = (α1u1 +α2u2 + · · ·+αkuk) ·ui = α1u1 ·ui +α2u2 ·ui + · · ·+αkuk ·ui.

Moreover, since the u vectors are orthonormal, uj · ui = 0 for i 6= j and = 1
for i = j. Hence,

v · ui = αi.

Plugging this in to the original expression for v yields the result.

3. Let W =


 x
y
z

 ∈ R3 | y − 2z = 0

. Let v =

 2
2
5

. Calculate ProjW v.

Solution: ProjW v =

 2
18/5
9/5

.

4. Let v1,v2 be vectors in a vector space V , and let W be a subspace of V . Suppose that
ProjW v1 = ProjW v2. Must v1 = v2?

Solution: No. Suppose that V = R3, W is the xy-plane, and v1,v2 have the
same x and y coordinates. Regardless of their z-coordinate, it must be the
case that their projection onto W is the same.



5. Let v1,v2 be vectors in a vector space V , and let W be a subspace of V . Suppose that
ProjW v1 = ProjW v2, and also ProjW⊥ v1 = ProjW⊥ v2. Must v1 = v2?

Solution: Yes. Recall that v1 can be uniquely written in the form v1 =
wa + wb, where wa ∈ W , namely, wa = ProjW v1, and wb ∈ W⊥, and
namely, wb = ProjW⊥ v1. Likewise, v2 can be uniquely written in the from
v2 = w′a + w′b, where w′a ∈ W and w′a = ProjW v2, and w′b ∈ W⊥, and
w′b = ProjW⊥ v2. The hypothesis states that wa = w′a, and wb = w′b. Thus,
v1 = v2.

6. Find a singular value decomposition of the matrix A =

 1 1
−2 2
−1 −1

.

Solution: There is more than one possible answer. Here is one.

A =

 0 1√
2

1√
2

−1 0 0
0 −1√

2
1√
2

 √8 0
0 2
0 0

[ 1√
2
−1√
2

1√
2

1√
2

]

7. Let A =

[
1 2 3 4
−1 −2 −3 −4

]
. How many nonzero singular values does A have? How

do you know?

Solution: A has precisely 1 nonzero singular value. This is because A is rank
1, since every column is a multiple of every other.

8. Show that every rank 1 matrix of dimension m × n can be uniquely represented as
cuvT , where u is a m× 1 vector with ‖u‖ = 1, and v is an n× 1 vector with ‖v‖ = 1.

Solution: Since A is rank 1, every column of A is a multiple of every other
column of A. Let ai be the first nonzero column of A, and let v = 1

‖ai‖ai,

so that ai = ‖ai‖v. We put ‖ai‖ = ci, and note that for every column in
A, by setting cj = ‖aj‖, we obtain that aj = cjv. Note further that this
representation is unique up to sign of v; that is, the only such vectors v that
could have been chosen are v or −v. Hence we may write

A =
[
a1 a2 . . . an

]
=

[
c1v c2v . . . cnv

]
=

[
c1 c2 . . . cn

]
v

Define w =


c1
c2

...
cn

, and define c = ‖w‖ and u = 1
c
w. Then we immediately

have A = cuTv from the above calculation. Note that this representation is



unique up to signs; that is, we may move a negative sign from one term to
another, but as the selection of v was unique up to signs, each other vector
is also unique up to signs.

9. Suppose U is a matrix with orthonormal columns. Show that ‖Ux‖ = ‖x‖ for all x for
which the product is defined.

Solution: Write Ux = x1u1 + · · · + xnun, where the xi are the coordinates
of x and the ui are the columns of U . Then we have

‖Ux‖2 = (Ux) · (Ux)

= (x1u1 + · · ·+ xnun) · (x1u1 + · · ·+ xnun)

= x1u1 · (x1u1 + · · ·+ xnun) + x2u2 · (x1u1 + · · ·+ xnun) + · · ·+ xnun · (x1u1 + · · ·+ xnun)

= x21 + x22 + · · ·+ x2n = ‖x‖2,

since ui · uj = 0 when i 6= j and 1 when i = j.

10. A SVD for the matrix A is as follows (where we have rounded to 2 decimal places for
convenience):

A =

 .40 −.78 .47
.37 −.33 −.87
−.84 −.52 −.16

 7.10 0 0
0 3.10 0
0 0 0

 .3 −.51 −.81
.76 .64 −.12
.58 −.58 .58


Using this decomposition for A, answer the following (without doing ANY arithmetic):

(a) What is the rank of A?

Solution: 2

(b) Find a basis for ColA. Find a basis for NullA.

Solution: A basis for ColA is


 .4

.37
−.84

 ,
 −.78
−.33
−.52

. A basis for

NullA is


 .58
−.58
.58

.

(c) Find a unit vector v so that ‖Av‖ is maximal.

Solution: v =

 .3
−.51
−.81


11. Suppose you have a collection of data {(ti, yi) | 1 ≤ i ≤ N}, where each ti, yi ∈ R,

and you would like to approximate these data with a function that takes the form
y ≈ f(t) = at2 + bt+ c. How would you set up a least squares problem to accomplish
your goal?



Solution: For each data point, we obtain the desired equation yi = at2i +bti+c.

We then form a system of equation A

 a
b
c

 = y, where each row of A takes

the form [t2i , ti, 1] and each coordinate of y is exactly yi. We can then solve
the least squares problem to obtain optimal approximate values for a, b, c.

12. Suppose you wish to approximate a collection of data {(ti, yi) | 1 ≤ i ≤ N}, where
each ti, yi ∈ R, using least squares, with a horizontal line f(t) = c. What is c? Show
that your answer is correct.

Solution: For each data point, we obtain the equation yi = c. Hence, our
least squares problem takes the form

1
1
...
1

 [c] = y,

where y contains the values of yi. Note that ATA = [N ], so (ATA)−1 =
[1/N ], where both of these represent 1 × 1 matrices. Moreover, ATy =∑N

i=1 yi. Hence, ĉ = 1
N

∑N
i=1 yi, the mean of the yi.

13. The lines L1 =


 x
x
x

 ∈ R3

 and L2 =


 y

3y
−1

 ∈ R3

 do not intersect. Write

and solve a least squares problem to find the shortest line segment between these two
lines.

Solution: We wish to find a choice of x and y so that

∥∥∥∥∥∥
 x
x
x

−
 y

3y
−1

∥∥∥∥∥∥
is minimal. Writing this as a matrix equation, we wish to find a choice of

x =

[
x
y

]
so that ∥∥∥∥∥∥

 1 1
1 3
1 0

x−

 0
0
−1

∥∥∥∥∥∥
is minimal.

Using least squares, and taking A =

 1 1
1 3
1 0

 we know that this is minimized

when

x̂ = (ATA)−1AT

 0
0
−1

 =

[
−5

7
2
7

]
.



Thus, the line segment of shortest distance between the two lines is between

the points

 −5
7

−5
7

−5
7

 ∈ L1 and

 2
7
6
7

−1

 ∈ L2.

14. Why is ATA noninvertible when A has linearly dependent columns?

Solution: When A has linearly dependent columns, it has rank less than n,
so it has at most n− 1 nonzero singular values. Note that ATA is an n× n
matrix whose nonzero eigenvalues are the squares of the nonzero singular
values of A. Since there are at most n − 1 nonzero singular values, it must
be the case that any other eigenvalues of ATA are 0, and hence ATA is
noninvertible, as 0 is not possible as an eigenvalue of an invertible matrix.

15. A university registrar keeps track of class attendance, measured as a percentage (so
100 means full attendance, and 30 means 30% of the students attend). For each class
lecture, she records the attendance y, and several features:

• x1 is the day of week, with Monday coded as 1 and Friday coded as 5.

• x2 is the week of the quarter, coded as 1 for the first week, and 10 for the last
week.

• x3 is the hour of the lecture, with 8AM coded as 8, and 4PM coded as 16.

• x4 = max{T − 80, 0}, where T is the outside temperature (so x4 is the number of
degrees above 80◦F ≈ 26.5◦C).

• x5 = max{50− T, 0}, where T is the outside temperature (so x5 is the number of
degrees below 50◦F ≈ 10◦C).

(These features were suggested by a professor who is an expert in the theory of class
attendance.) A 241 student carefully fits the data with the following least squares
regression model,

ŷ = −1.4x1 − 0.3x2 + 1.1x3 − 0.6x4 − 0.5x5 + 68.2,

and validates it properly. Give a short story/explanation, in English, of this model.

Solution: Answers, of course, may vary. It appears that the most predictive
piece of data for attendance is the day of the week, with attendance declining
throughout the week. Later weeks in the quarter have lower attendance,
generally, as well. The second most predictive feature is the time of the
class. If the class is earlier in the day, attendance is less frequent than
later classes. Finally, overly warm and overly cold temperatures are both
negatively associated with attendance (presumably students find something
else to do on warm days, and stay in bed on cold ones!)

16. Carefully prove, in the case that A is an m × 2 matrix with linearly independent
columns, that A(ATA)−1ATb = ProjColA b.



Solution: Write the columns of A as a1 and a2. Using Gram-Schmidt, we
have that we can obtain an orthogonal basis for the columns of A as

v1 = a1, v2 = a2 −
a1 · a2

a1 · a1

a1.

Normalizing this basis, we obtain an orthonormal basis for the columns of A as

q1 =
1

a1 · a1

a1, ,q2 =
a1 · a1

c
a2 −

a1 · a2

c
a1,

where c = (a1 · a1)(a2 · a2)− (a1 · a2)
2. We therefore can write

A = [q1 q2]

[
1

a1·a1
−a1·a2

c

0 a1·a1

c

]
,

a QR-factorization of A. Now, recall that ProjColA b = (b · q1)q1 + (b · q2)q2, and
hence we have

ProjColA b = (b · q1)q1 + (b · q2)q2

= [q1 q2]

[
b · q1

b · q2

]
= Q

qT
1

qT
2

b

= QQTb

On the other hand,

A(ATA)−1ATb = QR(RTQTQR)−1RTQTb

= QR(RTR)−1RTQTb

= QRR−1R−TRTQTb

= QQTb.

Hence, as desired, A(ATA)−1ATb = ProjColA b.


