Mary Radcliffe Math 241 Homework 7 Solution

Anika Li

Due 25 October 2018

Complete the following problems. Fully justify each response.

1. Calculate each of the following determinants:

(a)
$$\det \begin{pmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \end{pmatrix} = 2 * 1 - 3 * (-1) = 2 + 3 = 5$$

(b) $\det \begin{pmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{pmatrix}$
 $= 1 * \det \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} - 2 * \det \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} + (-1) * \det \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$
 $= 1 * 0 - 2 * 0 - 1 * 2 = -2$

(2.5 each, 5 in total)

2. Prove that the determinant of an upper triangular matrix is equal to the product of the diagonal entries of the matrix.

Prove by Induction: induce on the dimension of the upper triangular matrix nxn.

BC:
$$n = 1$$
: $\det \left(\begin{bmatrix} a \end{bmatrix} \right) = a \checkmark$
 $n = 2$: $\det \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = a * c - b * 0 = a * c \checkmark$

IH: the determinant of an (n-1)*(n-1) upper triangular matrix is equal to the product of the diagonal entries of the matrix.

IS: NTS the claim holds for an n * n upper triangular matrix. Let A be an n * n upper triangular matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$\det(A) = a_{11} * \det \begin{pmatrix} \begin{bmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} + a_{12} * \det \begin{pmatrix} \begin{bmatrix} 0 & a_{23} & \dots & a_{2n} \\ 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \\ 0 & \dots & \dots$$

Therefore, the determinant of an upper triangular matrix is equal to the product of the diagonal entries of the matrix.

(1 for base case, 1 for IH, 3 for IS)

3. Complete problems 12.14.2, 12.14.3, 12.14.9 on pages 483-485 in Coding the Matrix.

$$\begin{aligned} & \text{(a)} \begin{bmatrix} 7 & -4 \\ 2 & 1 \end{bmatrix} - \lambda_1 I = \begin{bmatrix} 7-5 & -4 \\ 2 & 1-5 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 2 & -4 \end{bmatrix} \\ & \Rightarrow 2x_1 - 4x_2 = 0 \Rightarrow x_1 = 2x_2 \Rightarrow v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ & \begin{bmatrix} 7 & -4 \\ 2 & 1 \end{bmatrix} - \lambda_2 I = \begin{bmatrix} 7-3 & -4 \\ 2 & 1-3 \end{bmatrix} = \begin{bmatrix} 4 & -4 \\ 2 & -2 \end{bmatrix} \\ & \Rightarrow 2x_1 - 2x_2 = 0 \Rightarrow 2x_1 = x_2 \Rightarrow v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ & \text{(0.5 point for each eigenvector, 1 point in total)} \\ & \text{(b)} \begin{bmatrix} 4 & 0 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix} - \lambda_1 I = \begin{bmatrix} 4-3 & 0 & 0 \\ 2 & 0-3 & 3 \\ 0 & 1 & 2-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -3 & 3 \\ 0 & 1 & -1 \end{bmatrix} \\ & \Rightarrow x_1 = 0, 2x_1 - 3x_2 + 3x_3 = 0, x_2 - x_3 = 0 \\ & \Rightarrow x_1 = 0, x_2 = x_3 \\ & \Rightarrow v_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \\ & \begin{bmatrix} 4 & 0 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix} - \lambda_2 I = \begin{bmatrix} 4+1 & 0 & 0 \\ 2 & 0+1 & 3 \\ 0 & 1 & 2+1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 3 \end{bmatrix} \\ & \Rightarrow 5x_1 = 0, 2x_1 + x_2 + 3x_3 = 0, x_2 + 3x_3 = 0 \\ & \Rightarrow x_1 = 0, x_2 = -3x_3 \\ & \Rightarrow v_2 = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix} \end{aligned}$$

(0.5 point for each eigenvector, 1 point in total) 12.14.3:

(a)
$$Av_1 = \lambda_1 v_1$$

$$\Rightarrow \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = -1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \Rightarrow \lambda_1 = -1$$

$$Av_2 = \lambda_2 v_2$$

$$Av_2 = \lambda_2 v_2$$

$$\Rightarrow \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \lambda_2 = 5$$

(0.5 point for each eigenvalue, 1 point in total)

$$(b)Av_1 = \lambda_1 v_1$$

$$\Rightarrow \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \lambda_1 = 2$$

$$Av_2 = \lambda_2 v_2$$

$$\Rightarrow \begin{bmatrix} 5 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} \Rightarrow \lambda_2 = 5$$

(0.5 point for each eigenvalue, 1 point in total) 12.14.9

Let v_i be the eigenvector correspond to the eigenvalue λ_i For an arbitrary v_i

$$(A - kI)v_i = Av_i - kIv_i = Av_i - kv_i = \lambda_i v_i - kv_i = (\lambda_i - k)v_i$$

Thus the eigenvalues of $A - kI$ are $\lambda_i - k, i = 1, ..., m$
(1 point)

4. Suppose that λ is an eigenvalue of the invertible matrix A having a corresponding eigenvector v. Prove that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} . What is a corresponding eigenvector?

$$Av = \lambda v$$

$$A^{-1}Av = A^{-1}\lambda v$$

$$v = A^{-1}\lambda v$$

$$\frac{1}{\lambda}v = A^{-1}v$$

v is the corresponding eigenvector

(4 points for the proof, 1 points for the corresponding eigenvector)

- 5. Use the previous problem to prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.
 - (\Rightarrow) AFSOC 0 is an eigenvalue of A

Since A is invertible, from Problem 4, we know that $\frac{1}{0}$ is an eigenvalue for A^{-1} , which is a contradiction.

- (\Leftarrow) If 0 is not an eigenvalue of A, there isn't a trivial solution that Av = 0v = 0, so A is invertible
- (2.5 for each direction, 5 in total)
- 6. Complete the problem set found at autolab.andrew.cmu.edu. The submission for this is directly on autolab, no need to hand it in on paper.