
Math 228: Kuratowski’s Theorem

Mary Radcliffe

1 Introduction

In this set of notes, we seek to prove Kuratowski’s Theorem:

Theorem 1 (Kuratowski’s Theorem). Let G be a graph. Then G is nonplanar if and only if G contains
a subgraph that is a subdivision of either K3,3 or K5.

In order to prove this theorem, let’s first walk through some the definitions here, and verify that both
K3,3 and K5 are nonplanar.

First, let’s consider K3,3. As was seen in the previous set of notes regarding graph embeddings, K3,3

can be embedded on the torus. It was asserted in those notes that K3,3 is not planar, but it was not
proved. Hence, let us prove that assertion here.

Proposition 1. K3,3 is not planar.

Proof. Let us prove by contradiction. Suppose, to the contrary, that K3,3 is planar. Then there is a plane
embedding of K3,3 satisfying v − e + f = 2, Euler’s formula. Note that here, v = 6 and e = 9.

Moreover, since K3,3 is bipartite, it contains no 3-cycles (since it contains no odd cycles at all). So each
face of the embedding must be bounded by at least 4 edges from K3,3. Moreover, each edge is counted
twice among the boundaries for faces. Hence, we must have f ≤ 2e/4 = e/2 = 4.5.

Now, plugging this data in to Euler’s formula, we obtain

2 = v − e + f ≤ 6− 9 + 4.5 = 1.5,

which is clearly false. Hence, it cannot be that K3,3 is planar.

Figure 1: The two nonplanar graphs K3,3 and K5 discussed in the introduction,
and crucial to Kuratowski’s Theorem.
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Now we turn to K5. To prove that K5 is nonplanar, we appeal to a Problem 1 from Homework 9.

Proposition 2. K5 is not planar.

Proof. From Problem 1 in Homework 9, we have that a planar graph must satisfy e ≤ 3v − 6. Note that
for K5, e = 10 and v = 5. Since 10 6≤ 9, it must be that K5 is not planar.

2 Subdivisions and Subgraphs

Good, so we have two graphs that are not planar (shown in Figure 1). It is also straightforward to notice
that if we took one of the edges from one of these graphs, and replaced it with a path of length 2 (essentially,
stick another vertex in the middle of the edge), then the graph should still be nonplanar (see Figure 2).
Indeed, adding this extra vertex in the middle of the edge doesn’t change the fundamental shape of the
structure, which is what makes it nonplanar to begin with.

Figure 2: The graph K5 after subdividing some edges. Notice that the shape of
the structure is still unchanged, even with extra vertices having been included
along some edges, and hence the structure is still nonplanar.

Let us formally define this as a subdivision, as follows. A graph H is said to be a subdivision of a graph
G if H can be obtained from G by successively deleting an edge in G, and replacing that edge with a length
2 path (whose central vertex was not originally part of G). An edge that has been removed and replaced
with a length 2 path is said to be subdivided in H. Fundamentally, we can just think of taking the edge,
and dividing it into two pieces to form two different edges. So the subdivision of K5 shown in Figure 2 is
obtained by making 4 subdivisions, one along the bottom edge, one along the edge in the middle of the
star, and two along the rightmost exterior edge. To formalize what we have discussed:

Lemma 1. Let G be a graph. Then G is planar if and only if every subdivision of G is planar.

That is to say, the act of subdividing a graph does not change the planarity of the graph at all, since
the fundamental shape (the topological shape) has not changed.

We note also here that quite trivially, if we have a planar graph, and we take a subgraph, it too must
be planar. Indeed, we can simply take the original graph, embed it in the plane, and then remove any
edges or vertices not present in the subgraph to produce a plane drawing of the desired subgraph. This
is, certainly, a very trivial property, but as it plays a fundamental role in Kuratowski’s Theorem, I feel
compelled to give it an entire lemma.

Lemma 2. Let G be a planar graph. Then every subgraph of G is also planar.

We are now set up to begin dissecting both the statement and the proof of Kuratowski’s Theorem.
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3 Kuratowski’s Theorem: Setup

We begin this section just by restating the theorem from the beginning of the introduction, to remind
ourselves what we are doing here.

Theorem 1 (Kuratowski’s Theorem). Let G be a graph. Then G is nonplanar if and only if G contains
a subgraph that is a subdivision of either K3,3 or K5.

Note that one direction here is made trivial by the lemmas presented in the previous section. Indeed,
if G contains a nonplanar subgraph, then Lemma 2 immediately implies that G is nonplanar. But by
the discussion in the introduction, we also know that K3,3 and K5 are nonplanar, so if G contains either
of these, it should be nonplanar. Allowing for subdivisions allows us to colloquially phrase Kuratowski’s
Theorem as follows:

Theorem 1 (Kuratowski’s Theorem, layman’s terms). We know two nonplanar graphs, they are K3,3 and
K5. So of course any graph containing those is not planar. In fact, any graph containing something that
has the same basic shape as those is nonplanar (that’s the subdivision thing). And not only that, but every
nonplanar graph has one of these two bad shapes inside it as a subgraph. That’s really the only way to be
nonplanar.

This is the crux of the theorem: the only way to be nonplanar is to have one of these two known bad
shapes as a subgraph.

So, we begin the proof. Before we begin, let me just remind you of a few definitions that will come in
handy.

A cut-vertex in a graph G is a vertex v such that G\{v} has more components than G itself. That is,
it’s a vertex whose removal disconnects some part of the graph that used to be connected.

A block in a graph G is a subgraph B of G such that B has no cut vertices, but if we add any other
vertices to B, it does have cut vertices (that is, it is a maximal subgraph in G having no cut vertices).
In this way we can view any graph G as being built of blocks, that are simply pasted together at the
cut-points.

A graph is called 2-connected if it is connected and has no cut-vertices. We can think of 2-connected
as “if you want to disconnect it, you’ll have to take away 2 things.” (In this way, we can generalize to
“k-connected” by just replacing the number 2 with the number k in the above quotated phrase, and it will
be correct.)

We have one more (nontrivial) lemma before we can begin the proof of the theorem in earnest.

Lemma 3. Let G be a 2-connected graph, and u, v vertices of G. Then there exists a cycle in G that
includes both u and v.

Proof. We will prove this by induction on the distance between u and v.

First, note that the smallest distance is 1, which can be achieved only if u is adjacent to v. Suppose
this is the case. Note that u cannot have degree 1, since otherwise, it must be that v is a cut vertex (see
Figure 3). Hence, u must have another neighbor in G, say w.

Let us consider the graph G\{u}. Notice that this graph is still connected, by the definition of 2-
connectedness, and hence there exists a path in G\{u} between w and v. Moreover, this path cannot use
the vertex u, since it has been deleted from the graph.

Adding u to this path on both ends in G creates a cycle in G, that contains both u and v.

Now, let us suppose the result is known for any u, v having distance at most d − 1. Let u, v ∈ V (G)
have distance exactly d. Let Q be a path of length d between u and v. Take w to be the point in the path
Q adjacent to v. Note that d(u,w) = d− 1, so there exists a cycle C in G that contains both u and w. If
v is a member of this cycle, then we are done, as we have a cycle that contains both u and v.
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u

v

Figure 3: Notice that in the case that u is of degree 1, its neighbor v must be
a cut-vertex, since deleting v would result in at least two components, one of
them being just u by itself, and the others containing the rest of the vertices.

If not, then v appears outside the cycle. Moreover, since G\{w} is connected, there exists a path P
between u and v that does not include the vertex w. We note that this path can contain vertices of the
cycle C, just not the vertex w. Draw this as shown in Figure 4, and then create a cycle including both u
and v by tracing around the exterior of the picture.

u w

v

C

P

Figure 4: The structure of C and P in the case that d(u, v) = d. Note that the
cycle C is drawn in red, and the path P is drawn in black. Both these can have
more vertices that are not drawn. The intersections of P with the cycle C are
drawn arbitrarily, and can occur in many different ways, this is just an example.

Now, with all this setup done, we are ready to begin the proof of Kuratowki’s Theorem.

4 Kuratowski’s Theorem: Proof

For simplicity throughout the proof, we will use lines to indicate not just edges in the graph, but paths
as well. This will keep our drawings from getting too cluttered, and will still show the shapes we are
interested in (since embeddability is all, really, about shapes).

Proof of Kuratowski’s Theorem. We first note that the backward direction is trivial, by immediately ap-
plying Lemmas 1 and 2.

Now, let us consider the forward direction. We wish to show that any nonplanar graph contains a
subdivision of K3,3 or K5. Let us work by contradiction. Suppose that the theorem is not true, so that
there exists a nonplanar graph having neither a subdivision of K3,3 nor a subdivision of K5 as a subgraph.
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From among all such counterexamples, let us choose the minimal counterexample G; where here we mean
G to be minimal in the sense that any graph on either fewer vertices or edges satisfies the theorem.

Claim 1. G must be 2-connected.

Proof of Claim 1. Recall from Homework 9, Problem 2 that a graph is planar if and only if every block of
the graph is planar. Hence, we have that since G is nonplanar, it must contain a nonplanar block. If this
were a proper subgraph, this would be a smaller nonplanar graph that does not contain a subdivision of
K3,3 or K5, contradicting the minimality of G. Hence, G must itself be a block, in which case G must be
2-connected.

Good, so we know our graph G does not contain any cut vertices. In addition, we can rule out the
presence of vertices of degree 2 in G, as follows.

Claim 2. G does not contain any vertices of degree 2.

Proof of Claim 2. Suppose, to the contrary, that G contains a vertex of degree 2, say v. Let the neighbors
of v be u and w. We consider two cases, according to if u is adjacent to w or not.

If u is adjacent to w, consider the graph H obtained from G by removing v. By minimality of G, it
must be that H is planar. Find a plane embedding of H, and then insert the path uvw next to the edge
uw as shown in Figure 5. By inserting this path into the region that has uw on its boundary, we can
ensure a plane embedding of G, which is a contradiction.

u

v
w

Figure 5

For the second case, if u is not adjacent to w, remove the vertex v and replace it with the edge uw
to obtain a graph H. Note that this graph is smaller than G, and hence by minimality of G it must be
planar. Find a plane drawing of H, and then subdivide the edge uw to produce G again. By Lemma 1, it
must be the case that G is also planar, a contradiction.

As in either case we produce a contradiction, we therefore have that G cannot contain any vertex of
degree 2.

Thus, it must be that our graph G is both 2-connected, and has every vertex with degree 3 or more.

The next claim is an exercise in Homework 9.

Claim 3. G must have an edge uv such that G\{uv} is still 2-connected.

Proof of Claim 3. Problem 3 in Homework 9.

Let H = G\{uv}, the subgraph of G obtained by removing the edge (but not the vertices) u and v.
We note that by the minimality of G, we must have that H is planar. Moreover, H is 2-connected, so
there must exist at least one cycle in H that includes both the vertices u and v by Lemma 3.

Form a plane embedding of H in such a way that there is a cycle C satisfying the following:
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• C contains both u and v

• The number of regions inside of C in the embedding is maximal among all other embeddings.

• If C ′ is any other cycle that contains both u and v, the number of regions inside C ′ in a plane
embedding of H is less than (or equal to) the number of regions inside C.

That is to say, we have chosen a cycle containing u and v so that the number of regions inside the cycle
is maximized among ALL cycles containing u and v, among ALL embeddings of H. Write this cycle C as
u = v0, v1, v2, . . . , vk−1, vk = v, vk+1, . . . , v`, v0. Note that it must be the case that k ≥ 2, since u and v
are not adjacent in H.

We make the following observations.

• There is no path connecting two vertices in the set {v0, v1, . . . , vk} that lies exterior to C.

• There is no path connecting two vertices in the set {vk, vk+1, . . . , v`, v0} that lies exterior to C.

u=v0 v=vk

C
vi

vj

P

Figure 6: A path P as described in the proof of the observations, connecting
two vertices between v0 and vk.

These two observations are proved in the same way, and hence we shall only address the first one here.
Consider the graph shown in Figure 6, supposing that there is a path of this type between vertices vi and
vj . Note then that we could construct a cycle C ′ including u and v as v0, v1, . . . , vi, P, vj , vj+1, . . . , v`, v0
(this is obtained by just tracing around the exterior of the drawing in Figure 6). Note further that
this cycle C ′ contains all the regions that C contains, plus at least one more. This contradictions the
maximality property for C, and hence it is impossible. The exact same construction suffices to prove the
other observation.

However, we cannot add the edge uv, since G is not planar, so it must be that there is a path lying
exterior to C that connects some vertex in {v1, v2, . . . , vk−1} to some vertex in {vk+1, vk+2, . . . , v`}. Say
these vertices are vi and vj . This is shown in Figure 7.

u=v0 v=vk

Cvi

vj

P

Figure 7: The necessary path P that blocks us from adding the edge uv exterior
to C in the embedding of H.
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We note that no vertex of P is adjacent to any other vertex of C, as we would necessarily have two
vertices on the same side of vk and hence be in the case observed above, in which we can build a cycle
containing both u and v and more regions.

Now, it must be the case that we could not have placed the path P interior to C, otherwise we would
do so and thus be able to include the edge uv exterior to C. Hence, there must be some impedimentary
structure inside C blocking us from drawing P in the interior.

We claim, without proof (although you should be able to prove this!) that the impedimentary structure
inside C must take one of the forms illustrated in Figure 8.

u=v0 v=vk

Cvi

vj

P

u=v0 v=vk

Cvi

vj

P

u=v0 v=vk

Cvi

vj

P

u=v0 v=vk

Cvi

vj

P

Figure 8: The possible impediments to including the edge uv in the embedding
of H. Note here that all lines indicate paths, not edges. In the top right
structure, we have indicated one vertex with a star. In fact, this impedimentary
structure could exist in many different ways, by choosing any of v0, vi, vk, vj as
the starred vertex, and setting the other two vertices in a symmetric way. All
these cases have identical analysis, though, so we shall only deal with one such.

We note that in any of these four cases, when we add back in the edge uv as we have in G, we will be
able to find a subdivision of K3,3 or K5 inside G, as shown in Figure 9. For the sake of simplicity, in that
figure we have removed all vertex labels, and highlighted the desired substructures using some colors.

Therefore, we have reached a contradiction: G does contain a subgraph that is a subdivision of either
K3,3 or K5. Hence, our initial assumption must be untrue: there is no nonplanar graph that does not
contain a subdivision of K3,3 or K5 as a subgraph. Therefore, the theorem holds.

5 Generalizations and the Topological Minor Theorem

Kuratowski’s Theorem is an excellent, useful way of determining if a graph is planar or not. But as we
saw in previous notes, if a graph is not planar, then we’d like to try to embed it in a torus with as few
holes as possible. So there is a natural question: Is there a generalization of Kuratowski’s Theorem that
will tell us when a graph embeds into a torus with g holes? The answer, through a very beautiful and

7



Figure 9: Here we find the subgraphs that are subdivisions of K3,3 or K5 in each
of the impedimentary structures shown in Figure 8. For the top two graphs,
as well as the bottom left, we have a subdivision of K3,3. The two partite sets
are shown in yellow and red, and any paths used to construct the subgraph
are black. Any edges that are greyed out are not needed in the construction of
the subgraph. In the bottom right graph, careful observation reveals that the
graph itself is K5 (well, a subdivision of K5, at least, since each edge actually
represents a path in G).
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difficult piece of mathematics, is yes:

Theorem 2 (Topological Minor Theorem). For any g ≥ 0, there exists a finite list of graphs Gg such that
a graph G embeds into a torus with g holes if and only if it contains no subgraph that is a topological minor
of a graph in Gg.

Immediately, your hand should go up, and you should say “what’s a topological minor!?” The basic
understanding you should take from that phrase “topological minor” is that the subgraph has the same
basic shape as a graph from Gg, just as in Kuratowski’s Theorem we take subdivisions as representing the
same basic shape as K3,3 or K5. The full definition1 of topological minor is below in the footnote.

So, that sounds good, we can get finite lists of subgraph shapes to exclude for any kind of torus! We
usually call the lists Gg the set of forbidden minors for the g-holed torus. The first followup question you
should have is: what graphs are in Gg?

Unfortunately, we don’t know the answer for any choice of g except g = 0 (which is Kuratowski’s
Theorem itself). We do know a few things, and the things we know are not very promising.

Theorem 3. The set of topological minors for the 1-holed torus has size at least 16000.

Suffice it to say that 16000 is a pretty unreasonable number to expect to be working with in order
to determine if a graph is or is not toroidal (i.e., has an embedding on the torus). We can narrow this
down, actually, if we are picky about which minors we’re interested in, but that still doesn’t give us much
direction in terms of the practical aspects of determining if we have a graph that can be embedded on the
torus.

We do have a complete, not too gigantic list of forbidden minors for at least one other surface, and that
is the projective plane. The projective plane is nonorientable, like the Möbius strip. The Möbius strip is
like a circle with a twist; you can sort of think of the projective plane as like a sphere with a twist, so
that when you start walking in one direction, you’ll return to where you came from backwards. For this
surface, we know the forbidden minors.

Theorem 4. The projective plane has a list of forbidden minors containing only 35 graphs.

The question of how to determine the forbidden minors for a given surface and how to prove they are
correct is still unsolved. As we have seen, our proof of Kuratowski’s Theorem was highly reliant on specific
structure of the forbidden minors themselves. It seems unlikely that such a proof could be replicated on
the torus, where the minor set is huge. It is likely these proofs will end up being performed by computers,
if and when we have a candidate set for forbidden minors.

1To define topological minor, we must first define contraction along an edge. Let G be a graph, and let uv be an edge
of G. The contraction of G along uv, often denoted by G/{uv} is the graph obtained by deleting the vertices u and v, and
replacing them with a single vertex w, where w is adjacent to every neighbor of u and v (if they have a common neighbor, this
will result in a multiple edge out of w). That is, think of squeezing u and v together into a single vertex, with out affecting
any of their neighbors. If you think about embedding a graph, certainly if you can embed a graph G into some surface, the
embedding will not really change if we perform contraction, so you should be able to perform any contraction you wish and
still keep the existing embedding.

A topological minor of a graph G is any graph H that can be transformed into G by a series of contractions, edge deletions,
and/or removal of isolated vertices. So the original H should have the structure essentially of G inside of it, but we need to
smush things around a little to get it to look exactly like H. This is the idea of the Minor Theorem: G morally contains a
subgraph that “looks like” something from Gg , even if it’s not exactly that graph.
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