
Math 127: Equivalence Relations

Mary Radcliffe

1 Equivalence Relations

Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations,
but there are many other types of relations (such as order relations) that exist.

Definition 1. Let X,Y be sets. A relation R = R(x, y) is a logical formula for which x takes the range
of X and y takes the range of Y , sometimes called a relation from X to Y . If R(x, y) is true, we say that
x is related to y by R, and we write xRy to indicate that x is related to y by R.

Example 1. Let f : X → Y be a function. We can define a relation R by R(x, y) ≡ (f(x) = y).

Example 2. Let X = Y = Z. We can define a relation R by R(a, b) ≡ a|b.

There are many other examples at hand, such as ordering on R, multiples in Z, coprimality relationships,
etc. The definition we have here is simply that a relation gives some way to connect two elements to each
other, that can either be true or false.

Of course, that’s not a very useful thing, so let’s add some conditions to make the relation carry more
meaning. For this, we shall focus on relations from X to X, also called relations on X. There are several
properties that will be interesting in considering relations:

Definition 2. Let X be a set, and let ∼ be a relation on X.

• We say that ∼ is reflexive if x ∼ x ∀x ∈ X.

• We say that ∼ is symmetric if x ∼ y ⇒ y ∼ x ∀x, y ∈ X.

• We say that ∼ is antisymmetric if x ∼ y ∧ y ∼ x⇒ x = y ∀x, y ∈ X.

• We say that ∼ is transitive if x ∼ y ∧ y ∼ z ⇒ x ∼ z ∀x, y, z ∈ X.

Example 3. Let X = Z, and define a relation ∼ by x ∼ y ≡ gcd(x, y) = 1. Let’s consider what
properties ∼ satisfies.

• Reflexivity: NO. Take |x| > 1, then gcd(x, x) = x 6= 1, so x ∼ x is almost never true.

• Symmetry: YES. Since gcd(x, y) = gcd(y, x), we definitely have symmetry.

• Antisymmetry: NO. Obviously we can’t have symmetry and antisymmetry at the same time.

• Transitivity: NO. Take x = 10, y = 9, z = 20. Then we have x ∼ y and y ∼ z, but we
definitely don’t get x ∼ z.
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Example 4. Let X = R, and define a relation ≤ as is standard. Let’s consider what properties ≤
satisfies.

• Reflexivity: YES. Certainly x ≤ x is always true.

• Symmetry: NO. It doesn’t make sense that x ≤ y ⇒ y ≤ x.

• Antisymmetry: YES. If x ≤ y ∧ y ≤ x, it is standard to conclude that x = y.

• Transitivity: YES. If x ≤ y ∧ y ≤ z, we know that x ≤ z.

What we are most interested in here is a type of relation called an equivalence relation.

Definition 3. A relation R on X is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Example 5. Define a relation ∼ on Z by x ∼ y if x and y have the same parity (even or odd). We
claim that ∼ is an equivalence relation:

• Reflexivity: Since x has the same parity as x, x ∼ x.

• Symmetry: If x ∼ y, then x and y have the same parity. Thus y and x have the same parity,
and hence y ∼ x.

• Transitivity: If x ∼ y, then x and y have the same parity. If y ∼ z, then y and z have the
same parity. Since y has only one parity, we can thus conclude that x and z have the same
parity, so x ∼ z.

Therefore ∼ is an equivalence relation.

What we notice about this example is that the equivalence relation we defined sliced up Z into two
groups: the evens, and the odds. Everything in the evens group is related to everything else in the evens
group under ∼, and everything in the odds group is related to everything else in the odds group under ∼,
but there are no relations between the evens and odds. In general, this is exactly how equivalence relations
will work.

Theorem 1. Let X be a set. Let

S = {R | R is an equivalence relation on X},

and let
U = {pairwise disjoint partitions of X}.

Then there is a bijection F : S → U , such that ∀R ∈ S, if xRy, then x and y are in the same set of F (R).

Proof. We first define the function F . Given a relation R, define [x]R = {y ∈ X | xRy}. We then define
the function F by F (R) = {[x]R | x ∈ X}. We must first show that F is well defined; that is, that F (R)
is a pairwise disjoint partition of X.

We note that there are two properties to verify: that these sets are pairwise disjoint, and that they
cover all of X. First, let us consider pairwise disjointness. Let x ∈ X, and note that x ∈ [x]R by symmetry,
so x ∈ ∪A∈F (R)A. This verifies that F (R) covers all of X.

Now, let us suppose that for some y ∈ X, we also have that x ∈ [y]R for some y ∈ X. Let z ∈ [y]R.
Then y ∼ x and y ∼ z, so by symmetry and transitivity, we have x ∼ z. Thus, z ∈ [x]R ∀z ∈ [y]R, so
[y]R ⊆ [x]R. But then y ∈ [x]R, so by repeating this argument we obtain [x]R ⊆ [y]R. Thus, [y]R = [x]R,
and hence x appears only in the set [x]R in F (R). This establishes pairwise disjointness.

Hence, the function is well-defined.
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Next, we establish bijectivity.

For injectivity, suppose that R1 and R2 are equivalence relations on X, and R1 6≡ R2. Then there
exist x, y ∈ X that are related under one of R1, R2, but not the other; wolog, say xR1y and x 6 R2y. Then
y ∈ [x]R1

, but y /∈ [x]R2
, and hence F (R1) 6= F (R2). Thus, the function is injective.

For surjectivity, let U be a pairwise disjoint partition of X. Define a relation R on X by xRy ≡
(x, y are in the same set in U). It is straightforward to establish that this is an equivalence relation, and
that F (R) = U . Hence F is surjective.

We note, moreover, that the property described on F is immediate by definition of F . �

This theorem allows us fundamentally to think about equivalence relations as giving a mathematically
precise way to simply break up a set into a partition that has properties we like. Indeed, we often care
almost exclusively about the partitioning we have performed, and hence we give this a special name.

Definition 4. Let ∼ be an equivalence relation on X. The set [x]∼ as defined in the proof of Theorem 1
is called the equivalence class, or simply class of x under ∼. We write X/ ∼= {[x]∼ | x ∈ X}.

Example 6. If we consider the equivalence relation as defined in Example 5, we have two equiva-
lence classes: odds and evens. We can then write Z/ ∼= {{odd integers}, {even integers}}.

2 Modular Arithmetic

The most important reason that we are thinking about equivalence relations is to apply them to a particular
situation. Specifically, we are interested in developing some theory around what is usually called modular
arithmetic.

Definition 5. Let n ∈ N and let a, b ∈ Z. We say that a is congruent to b modulo n if n|(a− b). We write
this as a ≡ b (modn).

We note the following theorem, whose proof is left as an exercise to the interested reader (but is quite
straightforward).

Theorem 2. Let n ∈ N and let a, b ∈ Z. TFAE:

1. a ≡ b (modn).

2. a and b leave the same remainder when divided by n.

3. a = b + kn for some k ∈ Z.

Notice that this theorem is sufficient to establish the following corollary:

Corollary 1. Congruence modulo n is an equivalence relation on Z.

This is immediate, as the dividing of Z into classes based on what remainder is left when dividing by n
is clearly a pairwise disjoint partition of Z, since remainders are unique by the Division Theorem. Hence,
using part (b) of Theorem 2 together with Theorem 1, we immediately have that congruence forms an
equivalence relation on Z.

Definition 6. Let n ∈ N. We denote by Zn or Z/nZ the set of equivalence classes under the relation of
congruence modulo n.
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Now, what we’d really like to do is think about how we can perform arithmetic operations modulo
n, and if there is a consistent way to do so. That is to say, is there a well-defined way to understand
[a]n + [b]n? Certainly, we could think of this as [a + b]n, but the question that must be answered here
is whether this is a well-defined operation. Since there are many different elements in [a]n, would the
arithmetic look different if we selected a different representative, instead of a?

The good news is that, in most cases, the answer is no. The following theorem establishes that
performing addition, multiplication, and subtraction is well-defined modulo n.

Theorem 3. Let a1, a2, b1, b2 ∈ Z, and let n ∈ N. Suppose, further, that a1 ≡ a2 (modn) and b1 ≡
b2 (modn). Then

1. a1 + b1 ≡ a2 + b2 (modn).

2. a1b1 ≡ a2b2 (modn).

3. a1 − b1 ≡ a2 − b2 (modn).

Proof. The proofs of all three properties are similar. We include here only the proof of property 2, and
leave the remaining proofs as an exercise.

Note that as a1 ≡ a2 (modn), we have by Theorem 2 that a1 and a2 have the same remainder when
divided by n, so there exist q1, q2, r such that 0 ≤ r < n and a1 = q1n + r, a2 = q2n + r. Likewise, there
exist q′1, q

′
2, r
′ such that 0 ≤ r′ < n and b1 = q′1n + r′ and b2 = q′2n + r′.

Consider, then

a1b1 − a2b2 = (q1n + r)(q′1n + r′)− (q2n + r)(q′2n + r′)

= q1q
′
1n

2 + q1nr
′ + q′1nr + rr′ − (q2q

′
2n

2 + q2nr
′ + q′2nr + rr′)

= n(q1q
′
1n + q1r

′ + q′1r − q2q
′
2n− q2r

′ − q′2r) + rr′ − rr′

= n(q1q
′
1n + q1r

′ + q′1r − q2q
′
2n− q2r

′ − q′2r).

Then we have that n|(a1b1 − a2b2), and hence by definition a1b1 ≡ a2b2 (modn). �

This allows us to perform these three basic arithmetic operations modulo n.

Example 7. Determine x so that

3x + 9 = 2x + 6 (mod 7).

Solution. We can perform subtraction, addition, and multiplication modulo 7. Moreover, as the
theorem shows, we can replace a number with any other number that it shares congruence with
modulo 7. First, we subtract 2x from both sides, and then subtract 9 from both sides, to obtain

x ≡ −3 (mod 7).

In general, we’d prefer to have positive numbers, so since −3 ≡ 4 (mod 7), we can write

x ≡ 4 (mod 7).

Ok, this is pretty great, but it’s missing one operation! How do we perform division modulo n? Or
even, can we?
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Example 8. Determine x so that
3x ≡ 1 (mod 7).

Notice that there’s no meaningful way to write x ≡ 1
3 (mod 7), since the equivalence relation of

congruence modulo 7 is defined only in the integers. However, because we’re very clever, we notice
that 15 and 1 give the same remainder when divided by 7, so we can say that x ≡ 5 (mod 7) will
solve our problem.

But.... what if we’re not very clever? Or what if the numbers are too big to just see the answer via
observation. And also, will this always even work?

This leads us to our next section.

2.1 Multiplicative Inverses

As a reminder of how we defined division way back when, we had the following definition for the number
1
n :

Definition 7. Let n ∈ Z, with n 6= 0. We define 1
n to be a number such that 1

nn = 1.

That is to say, our definition of division is really based on multiplication. The reciprocal if n is defined
to be a number such that when you multiply by n, you get back to 1, the multiplicative identity. This is
the definition we will adapt for modular arithmetic.

Definition 8. Let n ∈ N and let a ∈ Z. We say that u is a multiplicative inverse for a (modn) if
au ≡ 1 (modn).

So, in Example 8, we showed that 5 is a multiplicative inverse for 3 modulo 7. Let’s take a look at
another example:

Example 9. Determine x so that 3x ≡ 1 (mod 6).

Solution. Well, in the previous example we just checked that we had an x that worked. Since
multiplication is the same for equivalent values, we can just try all the possible equivalence classes.
That is to say, we can try all x between 1 and 6 to see if they are the inverse:

3 · 1 ≡ 3 6≡ 1 (mod 6)

3 · 2 ≡ 6 6≡ 1 (mod 6)

3 · 3 ≡ 3 6≡ 1 (mod 6)

3 · 4 ≡ 6 6≡ 1 (mod 6)

3 · 5 ≡ 3 6≡ 1 (mod 6)

3 · 6 ≡ 6 6≡ 1 (mod 6)

So.... nothing works. No such x exists.

So sometimes inverses exist, and sometimes they don’t. Let’s take a look at a few examples to see if
we can develop some intuition as to why. Here, you can imagine that the existence of inverses has been
brute forced, as in the previous example.
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Example 10. Which numbers have inverses modulo 6?

By exhaustive checking:

1 has an inverse, 1

2 does not have an inverse

3 does not have an inverse

4 does not have an inverse

5 has an inverse, 5

6 does not have an inverse

Example 11. Which numbers have inverses modulo 7?

By exhaustive checking:

1 has an inverse, 1

2 has an inverse, 4

3 has an inverse, 5

4 has an inverse, 2

5 has an inverse, 3

6 has an inverse, 6

7 does not have an inverse

Example 12. Which numbers have inverses modulo 8?

By exhaustive checking:

1 has an inverse, 1

2 does not have an inverse

3 has an inverse, 3

4 does not have an inverse

5 has an inverse, 5

6 does not have an inverse

7 has an inverse, 7

8 does not have an inverse

Examining the above 3 examples, you might notice a pattern: multiplicative inverses do not exist
anytime the number we are interested in shares a factor with the modulus. This, in general, is the feature
we are looking for.

Theorem 4. Let n ∈ N and a ∈ Z. Then a has a multiplicative inverse modulo n if and only if a ⊥ n.

Proof. Notice:

a has an inverse modulo n ⇔ ∃u ∈ Z, n|(au− 1) (by definition)

⇔ ∃u, v ∈ Z, au− 1 = nv

⇔ ∃u, v ∈ Z, au− nv = 1

⇔ a ⊥ n (by Bezout’s Lemma)
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Cool, so we know exactly when inverses exist! Moreover, we can explain what’s going on with 7: 7 is
prime, so it’s relatively prime to every number (other than 7 itself). This is of course always going to work
for primes:

Corollary 2. Let p ∈ N be a prime, and let a ∈ Z, with p 6 |a. Then a has an inverse modulo p.

This, however, doesn’t really help us to find inverses. We know when they exist, but we don’t really
know what they are. In homework, you will show that they are unique (modn), but we don’t have a
mechanism for calculating them, at least not yet. So let’s build one.

Definition 9. Let n ∈ N, and let a ∈ Z. We define the order of a modulo n as

inf{k > 0 | ak ≡ 1 (modn)},

if such a number exists. If not, we say that the order of a modulo n is infinite.

Theorem 5. Let n ∈ N and let a ∈ Z. Then a is of finite order modulo n if and only if a ⊥ n.

Proof. First, suppose that a 6⊥ n. Then a does not have a multiplicative inverse modulo n. Suppose, for
the sake of contradiction, that the order of a is finite; say the order of a is k > 0. Then ak ≡ 1 (modn),
and hence a(ak−1) ≡ 1 (modn), so ak−1 is a multiplicative inverse for a, which is impossible.

For the other direction, suppose that a ⊥ n. Then by Theorem 4, a does have a multiplicative inverse
modulo n, say u.

Now, consider S = {ak (modn) | k ∈ N}. Notice that as there are only n distinct equivalence classes
modulo n, we have that |S| ≤ n. Hence, by the Pigeonhole Principle, there must exist k, ` ∈ N, with k 6= `
and ak ≡ a` (modn). WOLOG, suppose that k > `. Then we have

ak ≡ a` (modn) ⇒ aku` ≡ a`u` (modn)

⇒ ak−`a`u` ≡ a`u` (modn)

⇒ ak−` ≡ 1 (modn)

⇒ the order of a is at most k − `, which is finite.

�

Cool! So if we wanted to find an inverse to an element, it is enough just to multiply that element by
itself, and eventually we’ll get to the identity. For example:

Example 13. Calculate a multiplicative inverse for 8 (mod 17).

Solution. By Theorem 5, we know that for some k > 0, we have that 10k ≡ 1 (mod 17). We then
would have that the inverse of 10 is 10k−1. So we can just check what the order of 10 is mod 17,
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by repeatedly multiplying by 10 until we get 1.

101 ≡ 10 (mod 17)

102 ≡ 100 ≡ 15 (mod 17)

103 ≡ 10 · 15 ≡ 150 ≡ 14 (mod 17)

104 ≡ 10 · 14 ≡ 140 ≡ 4 (mod 17)

105 ≡ 10 · 4 ≡ 40 ≡ 6 (mod 17)

106 ≡ 10 · 6 ≡ 60 ≡ 9 (mod 17)

107 ≡ 10 · 9 ≡ 90 ≡ 5 (mod 17)

108 ≡ 10 · 5 ≡ 50 ≡ 16 (mod 17)

109 ≡ 10 · 16 ≡ 160 ≡ 7 (mod 17)

1010 ≡ 10 · 7 ≡ 70 ≡ 2 (mod 17)

1011 ≡ 10 · 2 ≡ 20 ≡ 3 (mod 17)

1012 ≡ 10 · 3 ≡ 30 ≡ 13 (mod 17)

1013 ≡ 10 · 13 ≡ 130 ≡ 11 (mod 17)

1014 ≡ 10 · 11 ≡ 110 ≡ 8 (mod 17)

1015 ≡ 10 · 8 ≡ 80 ≡ 12 (mod 17)

1016 ≡ 10 · 12 ≡ 120 ≡ 1 (mod 17)

Therefore, we obtain that the multiplicative inverse of 10 (mod 17) is 1015, which by our same set
of calculations is congruent to 12 (mod 17).

This, however, was a lot of freakin work. It basically was terrible. It would be very nice if we could
get a simpler approach than just brute force multiplication, because it required a lot of steps. This will be
the subject of the totient theorem in the next section.

2.2 Euler’s Totient Theorem

Euler’s totient function is a tool that shows up in lots of places in mathematics. We begin this section
here by defining the totient and stating the theorem.

Definition 10. Let n ∈ N. We define Euler’s ϕ-function on n to be

ϕ(n) = |{m ∈ N | m < n ∧m ⊥ n}|.

That is to say, ϕ(n) is just the number of integers less than n to which n is coprime. Since we know
that every integer is congruent to a number at most n modulo n, we can also see this as asking how many
equivalence classes modulo n have multiplicative inverses.

Example 14. If p is prime, then ϕ(p) = p− 1.

This is immediate, since p being prime means that p shares no factors with any number less than
p. Hence, every positive integer less than p is coprime to p, so ϕ(n) = p− 1.

Example 15. If p is an odd prime, then ϕ(2p) = p− 1.
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Notice that 2p can only share a factor with m < 2p if either m is even or if m = p. Notice that
there are

⌊
2p−1

2

⌋
= 2p−2

2 = p − 1 even numbers less than 2p, and hence there are p − 1 + 1 = p
numbers less than 2p with which 2p shares a factor. Thus, the number of numbers less than 2p
with which 2p is coprime is (2p− 1)− (p) = p− 1, so ϕ(2p) = p− 1.

Of course, the purpose of this section was ultimately to connect this idea to finding multiplicative
inverses modulo n for some n. In particular, we have the following important theorem, known as Euler’s
Totient Theorem.

Theorem 6 (Euler’s Totient Theorem). Let n ∈ N, and let a ∈ Z with a ⊥ n. Then aϕ(n) ≡ 1 (modn).

Before we prove the theorem, let’s think about what this tells us. We already know that if a is coprime
to n, then we can find its multiplicative inverse by looking at powers of a. However, up to this point,
we didn’t know what power to look at, so we just had to keep slamming powers until we got the one we
wanted. Now, though, we can simply take the power of a given by the ϕ function.

Example 16. Let’s revisit Example 13 with this newfound knowledge.
We wish to calculate the multiplicative inverse of 10 (mod 17). Since 17 is prime, we know that
ϕ(17) = 16. By Euler’s Totient Theorem, we know that 10ϕ(17) = 1016 ≡ 1 (mod 17). Hence, the
multiplicative inverse of 10 modulo 17 is 1015.
Now, of course, that’s exactly what we discovered in the previous example. However, now that we
know that what we’re after is 1015, we can calculate it much more efficiently. Consider:

102 ≡ 100 ≡ 15 (mod 17)

104 ≡ (102)2 ≡ 152 ≡ 225 ≡ 4 (mod 17)

108 ≡ (104)2 ≡ 42 ≡ 16 (mod 17)

Now, we can put these pieces together to get what we’re really after, which is 1015:

1015 ≡ 10810410210 (mod 17)

≡ 16 · 4 · 15 · 10 (mod 17)

≡ 160 · 60 (mod 17)

≡ 7 · 9 (mod 17)

≡ 63 ≡ 12 (mod 17).

This is, generally, a lot less work than having to calculate all the powers of 10 modulo 17.

What remains, then, is to demonstrate a proof of the totient theorem.

Proof. [Proof of Theorem 6.] For simplicity, write ϕ = ϕ(n). Since a ⊥ n, we know that a has a
multiplicative inverse modulo n; let u denote this inverse.

Define X = {m < n | m ⊥ n}, the set of integers from 1 to n that are coprime to n. By definition,
|X| = ϕ, and hence we can write X = {x1, x2, . . . , xϕ}.

Claim 1: axi ∈ X for all 1 ≤ i ≤ ϕ.

Proof of Claim 1: Since a ⊥ n and xi ⊥ n, we must have that axi ⊥ n. This is immediate if
we consider the gcd in terms of prime decompositions, as in Homework 10, problem 3.

Hence, we can define a function f : X → X by f(xi) = axi (modn), and this function is well defined.
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Claim 2: f is bijective.

Proof of Claim 2: First, suppose that f(xi) ≡ f(xj) (modn). Then we must have that
axi ≡ axj (modn). Multiplying by u on both sides, we thus obtain that xi ≡ xj (modn), and
hence f is injective.

Therefore, since f : X → X is injective, we must have that |X| = |f(X)|. But this must imply
that f(X) = X, since X is finite, and hence f is also surjective.

Therefore, f is bijective.

For 1 ≤ i ≤ ϕ, put yi = f(xi). Since f is a bijection, we have that X = {x1, x2, . . . , xϕ} =
{y1, y2, . . . , yϕ} are two different enumerations of X, possibly listing the elements in a different order.

Therefore, if we consider
∏

x∈X x, we can write this as either x1x2 . . . xϕ or as y1y2 . . . yϕ and we will
get the same outcome. Thus, we have

x1x2 . . . xϕ ≡ y1y2 . . . yϕ (modn)

≡ f(x1)f(x2) . . . f(xϕ) (modn) (by definition of yi)

≡ ax1ax2 . . . axϕ (modn) (by definition of f)

≡ aϕx1x2 . . . xϕ (modn)

Now, since xi ∈ X for all i, we have that xi ⊥ n for all i, so each xi has a multiplicative inverse modulo
n. In particular, put ui to be the inverse to xi for each 1 ≤ i ≤ ϕ. Then multiplying both sides of the
above equation by u1u2 . . . uϕ, we obtain

x1x2 . . . xϕ ≡ aϕx1x2 . . . xϕ (modn)

x1x2 . . . xϕu1u2 . . . uϕ ≡ aϕx1x2 . . . xϕu1u2 . . . uϕ (modn)

(x1u1)(x2u2) . . . (xϕuϕ) ≡ aϕ(x1u1)(x2u2) . . . (xϕuϕ) (modn)

1 ≡ aϕ (modn)

�
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