Math 127: Chinese Remainder Theorem

Mary Radcliffe

1 Chinese Remainder Theorem

Using the techniques of the previous section, we have the necessary tools to solve congruences of the form $a x \equiv b(\bmod n)$. The Chinese Remainder Theorem gives us a tool to consider multiple such congruences simultaneously.

First, let's just ensure that we understand how to solve $a x \equiv b(\bmod n)$.
Example 1. Find x such that $3 x \equiv 7(\bmod 10)$
Solution. Based on our previous work, we know that 3 has a multiplicative inverse modulo 10 , namely $3^{\varphi(10)-1}$. Moreover, $\varphi(10)=4$, so the inverse of 3 modulo 10 is $3^{3} \equiv 27 \equiv 7(\bmod 10)$. Hence, multiplying both sides of the above equation by 7 , we obtain

$$
\begin{array}{r}
3 x \equiv 7(\bmod 10) \\
\Leftrightarrow 7 \cdot 3 x \equiv 7 \cdot 7(\bmod 10) \\
\Leftrightarrow x \equiv 49 \equiv 9(\bmod 10)
\end{array}
$$

Hence, the solution is $x \equiv 9(\bmod 10)$.

Example 2. Find x such that $3 x \equiv 6(\bmod 12)$.
Solution. Uh oh. This time we don't have a multiplicative inverse to work with. So what to do? Well, let's take a look at what this would mean. If $3 x \equiv 6(\bmod 12)$, that means $3 x-6$ is divisible by 12 , so there is some $k \in \mathbb{Z}$ such that $3 x-6=12 k$. Now that we're working in the integers, we can happily divide by 3 , and we thus obtain that $x-2=4 k$. Hence, we have that $x \equiv 2(\bmod 4)$ solves the desired congruence.

Of course, the strategy outlined here will not always work. Imagine, if instead of $3 x \equiv 6(\bmod 12)$, we wanted $3 x \equiv 7(\bmod 12)$. Obviously that wouldn't be possible, as writing out the corresponding integer equation yields $3 x-7=12 k$, and there are no integers x, k such that $3 x-12 k=7$, by Bezout's Lemma.

In general, we have that $a x-b=n y$ for some $y \in \mathbb{Z}$, and hence $a x-n y=b$. This implies that we can find a solution to this congruence if and only if $\operatorname{gcd}(a, n) \mid b$, again by Bezout's Lemma.
Proposition 1. Let $n \in \mathbb{N}$, and let $a, b \in \mathbb{Z}$. The congruence $a x \equiv b(\bmod n)$ has a solution for x if and only if $\operatorname{gcd}(a, n) \mid b$.

Moreover, the strategy we employed in Example 2 will in general work. Suppose that we have $a x \equiv$ $b(\bmod n)$, and we have that $\operatorname{gcd}(a, n)=d$. Then in order that this has a solution, we know that b is divisible by d. In particular, there exist integers $a^{\prime}, b^{\prime}, n^{\prime}$ such that $a=a^{\prime} d, b=b^{\prime} d, n=n^{\prime} d$. We can then work as we did in Example 2 to rewrite this equation as $a^{\prime} x \equiv b^{\prime}\left(\bmod n^{\prime}\right)$.

Example 3. Find x, if possible, such that

$$
\begin{array}{r}
2 x \equiv 5(\bmod 7) \\
\text { and } 3 x \equiv 4(\bmod 8)
\end{array}
$$

Solution. First note that 2 has an inverse modulo 7 , namely 4 . So we can write the first equivalence as $x \equiv 4 \cdot 5 \equiv 6(\bmod 7)$. Hence, we have that $x=6+7 k$ for some $k \in \mathbb{Z}$. Now we can substitute this in for the second equivalence:

$$
\begin{aligned}
3 x & \equiv 4(\bmod 8) \\
3(6+7 k) & \equiv 4(\bmod 8) \\
18+21 k & \equiv 4(\bmod 8) \\
2+5 k & \equiv 4(\bmod 8) \\
5 k & \equiv 2(\bmod 8) .
\end{aligned}
$$

Recalling that 5 has an inverse modulo 8 , namely 5 , we thus obtain

$$
k \equiv 10 \equiv 2(\bmod 8)
$$

Hence, we have that $k=2+8 j$ for some $j \in \mathbb{Z}$.
Plugging this back in for x, we have that $x=6+7 k=6+7(2+8 j)=20+56 j$ for some $j \in \mathbb{Z}$. In fact, any choice of j will work here. Hence, we have that x is a solution to the system of congruences if and only if $x \equiv 20(\bmod 56)$.

Example 4. Find x, if possible, such that

$$
\begin{aligned}
x & \equiv 3(\bmod 4), \\
\text { and } x & \equiv 0(\bmod 6)
\end{aligned}
$$

Solution. Let's work as we did above. From the first equivalence, we have that $x=3+4 k$ for some $k \in \mathbb{Z}$. Then, the second equivalence implies that $3+4 k \equiv 0(\bmod 6)$, and hence $4 k \equiv-3 \equiv 3(\bmod 6)$. However, this is impossible, since we know that $\operatorname{gcd}(4,6)=2$ and $2 \not \subset 3$.

Ok, so not every system of congruences will have a solution, but our strategy of trying to solve them will reveal when there is no solution also.

Notice the problem that occurred here: when we considered the first equivalence, we ended up with a coefficient of 4 in front of the k. Since 4 is not relatively prime to 6 , there was a chance that the next equivalence would not have a solution, and indeed that is what happened. In general this will be the case: if we consider two equivalences of the form

$$
\begin{gathered}
x \equiv b_{1}\left(\bmod n_{1}\right) \\
x \equiv b_{2}\left(\bmod n_{2}\right)
\end{gathered}
$$

then the method we developed above will take the following approach: first, write $x=b_{1}+k n_{1}$. Plug that in to the second equation to obtain $k n_{1} \equiv b_{2}-b_{1}\left(\bmod n_{2}\right)$. If n_{1} and n_{2} share factors, then we may not be able to solve this equivalence, per Proposition 1. Hence, we can demand that n_{1} and n_{2} are relatively prime, and this should solve that problem.

Continuing, then, if we assume that n_{1} and n_{2} are relatively prime, we have reduced this system to $k n_{1} \equiv b_{2}-b_{1}\left(\bmod n_{2}\right)$. Then we obtain $k n_{1}-b_{2}+b_{1}=j n_{2}$ for some $j \in \mathbb{Z}$. Rearranging, we have $k n_{1}-j n_{2}=b_{2}-b_{1}$. Since n_{1} and n_{2} are relatively prime, we know from Bezout's Lemma that we will be
able to solve this equation for k and j. Once we know k and j, we can then backsolve to give us a solution for x.

This strategy of considering relatively prime moduli, in general, will yield a solution to this problem. The general form is given by the following theorem.

Theorem 1. Let $n_{1}, n_{2}, \ldots, n_{k}$ be a set of pairwise relatively prime natural numbers, and let $b_{1}, b_{2}, \ldots, b_{k} \in$ \mathbb{Z}. Put $N=n_{1} n_{2} \ldots n_{k}$, the product of the moduli. Then there is a unique $x(\bmod N)$ such that $x \equiv$ $b_{i}\left(\bmod n_{i}\right)$ for all $1 \leq i \leq k$.

Note that working $\bmod N$ should be unsurprising; this is how we ended up in the first example as well. You can see that the method of backsolving for x will end up multiplying the moduli together.

Proof. For each i with $1 \leq i \leq k$, put $m_{i}=\frac{N}{n_{i}}$. Notice that since the moduli are relatively prime, and m_{i} is the product of all the moduli other than n_{i}, we have that $n_{i} \perp m_{i}$, and hence m_{i} has a multiplicative inverse modulo n_{i}, say y_{i}. Moreover, note that m_{i} is a multiple of n_{j} for all $j \neq i$.

Put $x=y_{1} b_{1} m_{1}+y_{2} b_{2} m_{2}+\cdots+y_{k} b_{k} m_{k}$.
Notice that for each i with $1 \leq i \leq k$, we obtain

$$
\begin{aligned}
x & \equiv y_{1} b_{1} m_{1}+y_{2} b_{2} m_{2}+\cdots+y_{k} b_{k} m_{k}\left(\bmod n_{i}\right) \\
& \equiv y_{i} b_{i} m_{i}\left(\bmod n_{i}\right) \quad\left(\text { since each } m_{j} \text { with } j \neq i \text { is a multiple of } n_{i}\right) \\
& \equiv b_{i}\left(\bmod n_{i}\right) \quad\left(\text { since } y_{i} \text { is an inverse to } m_{i} \text { modulo } n_{i}\right) .
\end{aligned}
$$

Therefore, we have that $x \equiv b_{i}\left(\bmod n_{i}\right)$ for all $1 \leq i \leq k$.
Finally, we wish to show uniqueness of the solution $(\bmod N)$. Suppose that x and y both solve the congruences. Then we have that for each i, n_{i} is a divisor of $x-y$. Since the n_{i} are relatively prime, this means that N is a divisor of $x-y$, and hence $x-y$ are congruent modulo N.

Example 5. Use the Chinese Remainder Theorem to find an x such that

$$
\begin{array}{r}
x \equiv 2(\bmod 5) \\
x \equiv 3(\bmod 7) \\
x \equiv 10(\bmod 11)
\end{array}
$$

Solution. Set $N=5 \times 7 \times 11=385$. Following the notation of the theorem, we have $m_{1}=$ $N / 5=77, m_{2}=N / 7=55$, and $m_{3}=N / 11=35$.
We now seek a multiplicative inverse for each m_{i} modulo n_{i}. First: $m_{1} \equiv 77 \equiv 2(\bmod 5)$, and hence an inverse to $m_{1} \bmod n_{1}$ is $y_{1}=3$.
Second: $m_{2} \equiv 55 \equiv 6(\bmod 7)$, and hence an inverse to $m_{2} \bmod n_{2}$ is $y_{2}=6$.
Third: $m_{3} \equiv 35 \equiv 2(\bmod 11)$, and hence an inverse to $m_{3} \bmod n_{3}$ is $y_{3}=6$.
Therefore, the theorem states that a solution takes the form:

$$
x=y_{1} b_{1} m_{1}+y_{2} b_{2} m_{2}+y_{3} b_{3} m_{3}=3 \times 2 \times 77+6 \times 3 \times 55+6 \times 10 \times 35=3552 .
$$

Since we may take the solution modulo $N=385$, we can reduce this to 87 , since $2852 \equiv$ $87(\bmod 385)$.

Example 6. Find all solutions x, if they exist, to the system of equivalences:

$$
\begin{array}{r}
2 x \equiv 6(\bmod 14) \\
3 x \equiv 9(\bmod 15) \\
5 x \equiv 20(\bmod 60)
\end{array}
$$

Solution. As in Example 2, we first wish to reduce this, where possible, using the strategy outlined following the statement of Proposition 11. Since gcd $2,14=2$, we can cancel a 2 from all terms in the first equivalence to write $x \equiv 3(\bmod 7)$. Likewise, we simplify the other two equivalences to reduce the entire system to

$$
\begin{array}{r}
x \equiv 3(\bmod 7) \\
x \equiv 3(\bmod 5) \\
x \equiv 4(\bmod 12)
\end{array}
$$

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the theorem, we have

$$
\begin{array}{r}
m_{1}=5 * 12=60 \equiv 4(\bmod 7) ; \quad y_{1} \equiv 4^{5} \equiv 1024 \equiv 2(\bmod 7) \\
m_{2}=7 * 12=84 \equiv 4(\bmod 5) ; \quad y_{2} \equiv 4^{3} \equiv 64 \equiv 4(\bmod 5) \\
m_{3}=7 * 5=35 \equiv 11(\bmod 12) ; \quad y_{3} \equiv 11^{3} \equiv(-1)^{3} \equiv-1 \equiv 11(\bmod 12)
\end{array}
$$

Hence, we have $x=y_{1} m_{1} b_{1}+y_{2} m_{2} b_{2}+y_{3} m_{3} b_{3}=2 * 60 * 3+4 * 84 * 3+11 * 35 * 4=2908$.
Hence, we have any solution $x \equiv 2908 \equiv 388(\bmod 420)$.

