## Math 127: Chinese Remainder Theorem

Mary Radcliffe

## 1 Chinese Remainder Theorem

Using the techniques of the previous section, we have the necessary tools to solve congruences of the form  $ax \equiv b \pmod{n}$ . The Chinese Remainder Theorem gives us a tool to consider multiple such congruences simultaneously.

First, let's just ensure that we understand how to solve  $ax \equiv b \pmod{n}$ .

**Example 1.** Find x such that  $3x \equiv 7 \pmod{10}$ 

**Solution.** Based on our previous work, we know that 3 has a multiplicative inverse modulo 10, namely  $3^{\varphi(10)-1}$ . Moreover,  $\varphi(10) = 4$ , so the inverse of 3 modulo 10 is  $3^3 \equiv 27 \equiv 7 \pmod{10}$ . Hence, multiplying both sides of the above equation by 7, we obtain

 $3x \equiv 7 \pmod{10}$  $\Leftrightarrow 7 \cdot 3x \equiv 7 \cdot 7 \pmod{10}$  $\Leftrightarrow x \equiv 49 \equiv 9 \pmod{10}$ 

Hence, the solution is  $x \equiv 9 \pmod{10}$ .

**Example 2.** Find x such that  $3x \equiv 6 \pmod{12}$ .

**Solution.** Uh oh. This time we don't have a multiplicative inverse to work with. So what to do? Well, let's take a look at what this would mean. If  $3x \equiv 6 \pmod{12}$ , that means 3x - 6 is divisible by 12, so there is some  $k \in \mathbb{Z}$  such that 3x - 6 = 12k. Now that we're working in the integers, we can happily divide by 3, and we thus obtain that x - 2 = 4k. Hence, we have that  $x \equiv 2 \pmod{4}$  solves the desired congruence.

Of course, the strategy outlined here will not always work. Imagine, if instead of  $3x \equiv 6 \pmod{12}$ , we wanted  $3x \equiv 7 \pmod{12}$ . Obviously that wouldn't be possible, as writing out the corresponding integer equation yields 3x - 7 = 12k, and there are no integers x, k such that 3x - 12k = 7, by Bezout's Lemma.

In general, we have that ax - b = ny for some  $y \in \mathbb{Z}$ , and hence ax - ny = b. This implies that we can find a solution to this congruence if and only if gcd(a, n)|b, again by Bezout's Lemma.

**Proposition 1.** Let  $n \in \mathbb{N}$ , and let  $a, b \in \mathbb{Z}$ . The congruence  $ax \equiv b \pmod{n}$  has a solution for x if and only if gcd(a, n)|b.

Moreover, the strategy we employed in Example 2 will in general work. Suppose that we have  $ax \equiv b \pmod{n}$ , and we have that gcd(a, n) = d. Then in order that this has a solution, we know that b is divisible by d. In particular, there exist integers a', b', n' such that a = a'd, b = b'd, n = n'd. We can then work as we did in Example 2 to rewrite this equation as  $a'x \equiv b' \pmod{n'}$ .

**Example 3.** Find x, if possible, such that

 $2x \equiv 5 \pmod{7},$ and  $3x \equiv 4 \pmod{8}$ 

**Solution.** First note that 2 has an inverse modulo 7, namely 4. So we can write the first equivalence as  $x \equiv 4 \cdot 5 \equiv 6 \pmod{7}$ . Hence, we have that x = 6 + 7k for some  $k \in \mathbb{Z}$ . Now we can substitute this in for the second equivalence:

 $3x \equiv 4 \pmod{8}$  $3(6+7k) \equiv 4 \pmod{8}$  $18+21k \equiv 4 \pmod{8}$  $2+5k \equiv 4 \pmod{8}$  $5k \equiv 2 \pmod{8}.$ 

Recalling that 5 has an inverse modulo 8, namely 5, we thus obtain

 $k \equiv 10 \equiv 2 \pmod{8}.$ 

Hence, we have that k = 2 + 8j for some  $j \in \mathbb{Z}$ . Plugging this back in for x, we have that x = 6 + 7k = 6 + 7(2 + 8j) = 20 + 56j for some  $j \in \mathbb{Z}$ . In fact, any choice of j will work here. Hence, we have that x is a solution to the system of congruences if and only if  $x \equiv 20 \pmod{56}$ .

**Example 4.** Find x, if possible, such that

 $x \equiv 3 \pmod{4}$ , and  $x \equiv 0 \pmod{6}$ .

**Solution.** Let's work as we did above. From the first equivalence, we have that x = 3 + 4k for some  $k \in \mathbb{Z}$ . Then, the second equivalence implies that  $3 + 4k \equiv 0 \pmod{6}$ , and hence  $4k \equiv -3 \equiv 3 \pmod{6}$ . However, this is impossible, since we know that gcd(4, 6) = 2 and 2/3.

Ok, so not every system of congruences will have a solution, but our strategy of trying to solve them will reveal when there is no solution also.

Notice the problem that occurred here: when we considered the first equivalence, we ended up with a coefficient of 4 in front of the k. Since 4 is not relatively prime to 6, there was a chance that the next equivalence would not have a solution, and indeed that is what happened. In general this will be the case: if we consider two equivalences of the form

$$x \equiv b_1 \pmod{n_1}$$
$$x \equiv b_2 \pmod{n_2},$$

then the method we developed above will take the following approach: first, write  $x = b_1 + kn_1$ . Plug that in to the second equation to obtain  $kn_1 \equiv b_2 - b_1 \pmod{n_2}$ . If  $n_1$  and  $n_2$  share factors, then we may not be able to solve this equivalence, per Proposition 1. Hence, we can demand that  $n_1$  and  $n_2$  are relatively prime, and this should solve that problem.

Continuing, then, if we assume that  $n_1$  and  $n_2$  are relatively prime, we have reduced this system to  $kn_1 \equiv b_2 - b_1 \pmod{n_2}$ . Then we obtain  $kn_1 - b_2 + b_1 = jn_2$  for some  $j \in \mathbb{Z}$ . Rearranging, we have  $kn_1 - jn_2 = b_2 - b_1$ . Since  $n_1$  and  $n_2$  are relatively prime, we know from Bezout's Lemma that we will be

able to solve this equation for k and j. Once we know k and j, we can then backsolve to give us a solution for x.

This strategy of considering relatively prime moduli, in general, will yield a solution to this problem. The general form is given by the following theorem.

**Theorem 1.** Let  $n_1, n_2, \ldots, n_k$  be a set of pairwise relatively prime natural numbers, and let  $b_1, b_2, \ldots, b_k \in \mathbb{Z}$ . Put  $N = n_1 n_2 \ldots n_k$ , the product of the moduli. Then there is a unique  $x \pmod{N}$  such that  $x \equiv b_i \pmod{n_i}$  for all  $1 \le i \le k$ .

Note that working mod N should be unsurprising; this is how we ended up in the first example as well. You can see that the method of backsolving for x will end up multiplying the moduli together.

**Proof.** For each *i* with  $1 \le i \le k$ , put  $m_i = \frac{N}{n_i}$ . Notice that since the moduli are relatively prime, and  $m_i$  is the product of all the moduli other than  $n_i$ , we have that  $n_i \perp m_i$ , and hence  $m_i$  has a multiplicative inverse modulo  $n_i$ , say  $y_i$ . Moreover, note that  $m_i$  is a multiple of  $n_j$  for all  $j \ne i$ .

Put  $x = y_1 b_1 m_1 + y_2 b_2 m_2 + \dots + y_k b_k m_k$ .

Notice that for each i with  $1 \leq i \leq k$ , we obtain

 $\begin{aligned} x &\equiv y_1 b_1 m_1 + y_2 b_2 m_2 + \dots + y_k b_k m_k \pmod{n_i} \\ &\equiv y_i b_i m_i \pmod{n_i} \qquad (\text{since each } m_j \text{ with } j \neq i \text{ is a multiple of } n_i) \\ &\equiv b_i \pmod{n_i} \qquad (\text{since } y_i \text{ is an inverse to } m_i \text{ modulo } n_i). \end{aligned}$ 

Therefore, we have that  $x \equiv b_i \pmod{n_i}$  for all  $1 \leq i \leq k$ .

Finally, we wish to show uniqueness of the solution  $(\mod N)$ . Suppose that x and y both solve the congruences. Then we have that for each i,  $n_i$  is a divisor of x - y. Since the  $n_i$  are relatively prime, this means that N is a divisor of x - y, and hence x - y are congruent modulo N.

**Example 5.** Use the Chinese Remainder Theorem to find an x such that

 $x \equiv 2 \pmod{5}$  $x \equiv 3 \pmod{7}$  $x \equiv 10 \pmod{11}$ 

**Solution.** Set  $N = 5 \times 7 \times 11 = 385$ . Following the notation of the theorem, we have  $m_1 = N/5 = 77$ ,  $m_2 = N/7 = 55$ , and  $m_3 = N/11 = 35$ . We now seek a multiplicative inverse for each  $m_i$  modulo  $n_i$ . First:  $m_1 \equiv 77 \equiv 2 \pmod{5}$ , and hence an inverse to  $m_1 \mod n_1$  is  $y_1 = 3$ . Second:  $m_2 \equiv 55 \equiv 6 \pmod{7}$ , and hence an inverse to  $m_2 \mod n_2$  is  $y_2 = 6$ . Third:  $m_3 \equiv 35 \equiv 2 \pmod{11}$ , and hence an inverse to  $m_3 \mod n_3$  is  $y_3 = 6$ . Therefore, the theorem states that a solution takes the form:  $x = y_1 b_1 m_1 + y_2 b_2 m_2 + y_3 b_3 m_3 = 3 \times 2 \times 77 + 6 \times 3 \times 55 + 6 \times 10 \times 35 = 3552$ .

Since we may take the solution modulo N = 385, we can reduce this to 87, since  $2852 \equiv 87 \pmod{385}$ .

**Example 6.** Find all solutions x, if they exist, to the system of equivalences:

 $2x \equiv 6 \pmod{14}$  $3x \equiv 9 \pmod{15}$  $5x \equiv 20 \pmod{60}$ 

**Solution.** As in Example 2, we first wish to reduce this, where possible, using the strategy outlined following the statement of Proposition 1. Since gcd 2, 14 = 2, we can cancel a 2 from all terms in the first equivalence to write  $x \equiv 3 \pmod{7}$ . Likewise, we simplify the other two equivalences to reduce the entire system to

 $x \equiv 3 \pmod{7}$  $x \equiv 3 \pmod{5}$  $x \equiv 4 \pmod{12}.$ 

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the theorem, we have

 $m_1 = 5 * 12 = 60 \equiv 4 \pmod{7}; \quad y_1 \equiv 4^5 \equiv 1024 \equiv 2 \pmod{7}$  $m_2 = 7 * 12 = 84 \equiv 4 \pmod{5}; \quad y_2 \equiv 4^3 \equiv 64 \equiv 4 \pmod{5}$  $m_3 = 7 * 5 = 35 \equiv 11 \pmod{12}; \quad y_3 \equiv 11^3 \equiv (-1)^3 \equiv -1 \equiv 11 \pmod{12}.$ 

Hence, we have  $x = y_1m_1b_1 + y_2m_2b_2 + y_3m_3b_3 = 2 * 60 * 3 + 4 * 84 * 3 + 11 * 35 * 4 = 2908$ . Hence, we have any solution  $x \equiv 2908 \equiv 388 \pmod{420}$ .