Math 127 Homework

Mary Radcliffe

Due 7 March 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

Note: the first two problems are repurposed from HW5. You may have already completed these problems.

1. Given an integer d, define the set $A_{d}=\{n \in \mathbb{N} \mid n$ is divisible by $d\}$.
(a) Suppose p, q are distinct primes. Show that $A_{p} \cap A_{q}=A_{p q}$.
(b) Suppose a, b are integers with $a \mid b$. Prove that $A_{b} \subseteq A_{a}$.
2. (*) Let X, Y be sets in a universe Ω.
(a) Prove that $X \subseteq Y$ if and only if $X \cap Y=X$.
(b) Prove that $X \subseteq Y$ if and only if $X \cup Y=Y$.
3. Prove Theorem 3 (De Morgan's Laws, v2) from the Set Theory Notes
4. Prove the following De Morgan's Law variant for relative complements:

Let $B, A_{1}, A_{2}, \ldots, A_{n}$ be sets. Then

- $B \backslash\left(\bigcup_{k=1}^{n} A_{k}\right)=\bigcap_{k=1}^{n}\left(B \backslash A_{k}\right)$, and
- $B \backslash\left(\bigcap_{k=1}^{n} A_{k}\right)=\bigcup_{k=1}^{n}\left(B \backslash A_{k}\right)$

5. $\left(^{*}\right)$ Sets A and B are called disjoint if $A \cap B=\emptyset$. A collection of sets $A_{1}, A_{2}, \ldots, A_{n}$ are called pairwise disjoint if $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$.
Prove that for any sets $A, B, A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)$, and that the sets $A \backslash B, B \backslash A, A \cap B$ are pairwise disjoint.
6. Prove the following set identities.
(a) $A \backslash B=A \cap B^{c}$
(b) $A \cup(A \cap B)=A$
(c) $A \cap(A \cup B)=A$
(d) $(B \cup C) \backslash A=(B \backslash A) \cup(C \backslash A)$
(e) $(B \cap C) \backslash A=(B \backslash A) \cap(C \backslash A)$
7. $\left(^{*}\right)$ Use the Well-Ordering Principle to prove the Archimedean Property: For all $a, b \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that $n a>b$.
8. For each of the following, give an example of a set in \mathbb{R} that meets the description.
(a) Has a supremum, but does not contain a maximum.
(b) Contains both a maximum and a minimum.
(c) Has neither supremum nor infimum.
9. Use the definition of upper and lower bounds to explain why every number is both a lower and upper bound for \emptyset. As a result, we sometimes say that $\sup (\emptyset)=-\infty$ and $\inf (\emptyset)=\infty$; explain this convention.
10. Use the Well-Ordering Principle to prove that $\forall n \in \mathbb{N}, n!\leq n^{n}$.
11. Prove Parts 1, 4 of Proposition 1 in the Functions Notes.
12. (*) Prove Proposition 2 in the Functions Notes.
13. Which of the following function specifications are well-defined? If one is not well-defined, determine a modification to the specification that would rectify the issue.
(a) $g: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $(x+1) g(x)=2$ for all x.
(b) $f: \mathbb{Q} \rightarrow \mathbb{R}$ defined by $(x+\pi) f(x)=1$ for all x.
(c) $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=\sqrt{x}$.
14. Let $f, g, h, \ell: \mathbb{R} \rightarrow \mathbb{R}$ be functions with the following specifications:

$$
f(x)=x+2 ; \quad g(x)=x^{2} ; \quad h(x)=\frac{1}{x^{2}+1} ; \quad \ell(x)=-x
$$

Write a specification, via a single equation, for each of the following:
(a) $f \circ g$.
(b) $g \circ f$.
(c) $f \circ(g \circ(h \circ \ell))$.
(d) $(f \circ g) \circ(h \circ \ell)$.
15. (*) For each of the following functions, determine if it is injective, surjective, both, or neither. Prove that your answers are correct.
(a) $f: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}, f(x)=x^{2}$.
(b) $g: \mathbb{N} \rightarrow \mathbb{Z}, g(x)=x^{2}$.
(c) $h: \mathbb{R} \rightarrow \mathbb{Z}, h(x)=\lfloor x\rfloor$
(d) $f: \mathbb{N} \rightarrow \mathbb{Z}, f(x)=\left\{\begin{array}{cl}\frac{x}{2} & x \text { is even } \\ -\frac{x-1}{2} & x \text { is odd }\end{array}\right.$
16. Prove that if $f: X \rightarrow Y, g: Y \rightarrow Z$ are functions on sets X, Y, Z, and $g \circ f$ is injective, then f is injective.
17. (*) Prove that if $f: X \rightarrow Y, g: Y \rightarrow Z$ are functions on sets X, Y, Z, and $g \circ f$ is surjective, then g is surjective.

