Math 127 Homework

Mary Radcliffe

Due 31 January 2019

Complete the following problems. Fully justify each response. You need only turn in those problems marked with a (*).

1. (*) Let a, b, c be integers. Prove that if a divides b and b divides c, then a also divides c.
2. $\left(^{*}\right)$ Let n, m be integers. Prove that $n+m$ is odd if and only if one of n, m is even and the other is odd.
3. $\left(^{*}\right)$ Find all real solutions x to the equation $\sqrt{x+1}+\sqrt{x-3}=4$. Prove that your answer is correct.
4. Follow the method of Example 9 to prove that if p is a positive prime integer, then \sqrt{p} is irrational.
5. Let x be a rational number and y an irrational number. Prove that $x+y$ is irrational using the method of contradiction.
6. (*) Complete the proof of Example 12: that is, show that if a, b, c are all odd integers, and k and ℓ are both integers, and $a k^{2}+b k \ell+c \ell^{2}=0$, then k and ℓ are both even.
7. Using Example 6 as a model, show that if n is a positive integer, then n is divisible by 9 if and only if the sum of the base 10 digits of n is divisible by 9 .
8. (*) Use the method of proof by contradiction to prove that there are infinitely many prime numbers. You may wish to use the result from Example 11 to help you.
