Math 127 Homework

Mary Radcliffe

Due 8 March 2018

Complete the following problems. Fully justify each response.

- 1. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$ with $n \ge 1$, and $k, \ell \in \mathbb{N}$ with $k \equiv \ell \pmod{n}$ and $a \equiv b \pmod{n}$.
 - (a) Is it true that $a^k \equiv b^k \pmod{n}$? If so, prove it. If not, provide a counterexample.
 - (b) Is it true that $a^k \equiv a^{\ell} \pmod{n}$? If so, prove it. if not, provide a counterexample.
- 2. Let $a \in \mathbb{Z}$, and let $n \in \mathbb{N}$ with $n \ge 1$. Suppose that $a \perp n$. Show that u, u' are both multiplicative inverses for a if and only if u is a multiplicative inverse for a and $u \equiv u' \pmod{n}$.
- 3. Let p be a positive prime, and $k \in \mathbb{N}$ with $k \ge 1$. Prove that $\varphi(p^k) = p^k p^{k-1}$.
- 4. Read the proof of Theorem 3.3.49 and Example 3.3.51. Then prove that for any $b \in \mathbb{N}$ with $b \geq 2$, and $a \in \mathbb{N}$, a is divisible by b 1 if and only if the sum of the base b digits of a is divisible by b 1.
- 5. For each of the following functions, determine if it is injective, surjective, both, or neither. Prove that your answers are correct.
 - (a) $f : \mathbb{Z} \to \mathbb{N}, f(x) = x^2$.
 - (b) $g: \mathbb{N} \to \mathbb{Z}, g(x) = x^2$.
 - (c) $h : \mathbb{R} \to \mathbb{Z}, h(x) = \lfloor x \rfloor$ (note: $\lfloor x \rfloor$ is the number you get by rounding x down to the nearest integer. Formally, we define

$$\lfloor x \rfloor = \max\{y \in \mathbb{Z} \mid y \le x\}.$$

You may be reasonably skeptical that such a number exists, since we cannot apply the Well-Ordering Principle here.... so if you are skeptical, prove it.)

(d)
$$f: \mathbb{N} \to \mathbb{Z}, f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x+1}{2} & x \text{ is odd} \end{cases}$$

6. Let $f: X \to Y$ and $g: Y \to Z$ be bijective functions. Prove that $g \circ f$ is also bijective. Is the converse true?