Math 301 Homework

Mary Radcliffe

Due 15 February 2018

Complete the following problems. Fully justify each response.

- 1. Let p and q be propositional variables. Prove that $p \iff q$ is logically equivalent to $\neg (((\neg p) \land q) \lor (p \land (\neg q))).$
- 2. Suppose it is known that every continuous function on a closed interval [a, b] in \mathbb{R} has a maximum value. Now, suppose I have a function f, which I tell you has a maximum value on the interval [a, b]. What can you conclude about the continuity of f? Use the language of propositional logic to explain your answer.
- 3. Let p(x, y) be the statement that xy = 1. Suppose that x is a member of the positive integers $\{1, 2, 3, ...\}$ and y is a member of the rationals. Consider the following two statements:
 - (a) $\forall x, \exists y, p(x, y)$
 - (b) $\exists y, \forall x, p(x, y)$

How do these statements differ? Are either of them true?

- 4. For each of the following statements about sets, determine if the statement is true or false. If true, prove the statement. If false, explain why.
 - (a) For any set $X, \emptyset \in X$.
 - (b) For any set $X, \emptyset \subseteq X$.
 - (c) $\{x \in \mathbb{Z} \mid x \ge 0\} = \mathbb{N}.$
 - (d) $\emptyset \subseteq \mathcal{P}(\emptyset)$.
 - (e) $\emptyset \in \mathcal{P}(\emptyset)$.
- 5. Prove that $X \subseteq Y$ if and only if $X \cap Y = X$.
- 6. Prove that $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$.