Math 101 Homework

Mary Radcliffe

due 8 Feb2015

Complete the following problems. Fully justify each response.

1. Let $X = \{1, 2, 3, ..., 2n\}$. Let \mathcal{F} be the collection of subsets of X that have even size. For example, if $X = \{1, 2, 3, 4\}$, then

 $\mathcal{F} = \{ \emptyset, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3,4\} \} \, .$

Is \mathcal{F} a σ -field? If yes, prove it. If not, which properties does it satisfy?

2. Let X be a set, and define

 $\mathcal{F} = \{ S \subset X \mid \text{either } S \text{ is at most countable or } S^c \text{ is at most countable} \}.$

Prove that \mathcal{F} is a σ -field. You may use the fact that the union of countably many countable sets is countable.

3. In the definition of a σ -field, we gave some properties in terms of set operations. Here are some more set operations we can do in a σ -field.

Suppose \mathcal{F} is a σ -field. Prove each of the following:

- (a) $\emptyset \in \mathcal{F}$
- (b) If $A_1, A_2, A_4, \dots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$. (Hint: Use De Morgan's Law)
- (c) If $A, B \in \mathcal{F}$, then $A \setminus B \in \mathcal{F}$.
- 4. Suppose that μ is a measure on a σ -field \mathcal{F} .
 - (a) Prove that if A, B are disjoint sets in \mathcal{F} , then $\mu(A \cup B) = \mu(A) + \mu(B)$.
 - (b) Prove that if $A_1, A_2, \dots \in \mathcal{F}$ are pairwise disjoint, then

$$\mu(\cup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}\mu(A_i).$$