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ABSTRACT OF THE DISSERTATION

Random Graphs with Attribute Affinity

by

Mary L Radcliffe

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Fan Chung Graham, Chair

In this thesis, we study problems related to random graphs generated via

attribute affinity. A random graph with attribute affinity is a graph for which

we associate to each vertex an attribute vector from an alphabet Γ, and generate

edges randomly, where the probability of an edge is determined by comparing the

attributes of the associated vectors. In particular, we shall do the following:

• For general random graphs in which the probability that vi ∼ vj is pij, we

develop a technique for obtaining concentration of both the adjacency and

normalized Laplacian eigenvalues. This technique can be used to asymptoti-

cally establish the spectra of a stochastic Kronecker graph, an affinity graph

with vertex set fixed at Γt.
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• We then generalize these results to a multiplicative attribute graph, an

attribute affinity model in which the vertex set is chosen randomly from

Γt. Specifically, we can determine asymptotically the normalized Laplacian

eigenvalues in this regime. This allows us to determine asymptotic bounds

on the diameter of the graph, which was shown to be asymptotically constant

by Kim and Leskovec [43].

• We establish a necessary and sufficient condition for the emergence of a giant

component of a stochastic Kronecker graph with Γ = {0, 1}. Moreover, the

proof is adapted to establish the uniqueness and asymptotic size of such a

component. This extends previous work of Mahdian and Xu [55], in which

necessary and sufficient conditions were established in certain cases.

• Using techniques similar to those for the spectrum, we can determine the

uniqueness and asymptotic size of a giant component in a multiplicative at-

tribute graph, when it exists. Conditions on the emergence of the component

were established by Kim and Leskovec [43].
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Chapter 1

Mathematical Preliminaries and

Overview

1.1 Notation

Throughout this paper, we use standard graph theory notation and termi-

nology. A graph G = (V,E) is a set V of vertices and a set E ⊂
(
V
2

)
of edges.

The number of vertices in G is denoted by n. Given a vertex v ∈ V , we will write

deg(v) to denote the degree of the vertex. Here we will consider graphs that may

have edges from a vertex v to itself; such an edge will contribute 1 to the degree

of the vertex and will be referred to as a self-loop. We will write dmax and dmin

to denote the largest and smallest degrees, respectively. If every vertex of G has

degree d, then G is called d-regular.

If two vertices are adjacent in G, we will often write u ∼ v or uv ∈ E(G).

If H is a subgraph of G, we will write u ∼H v to denote that uv ∈ E(H).

The distance between two vertices u and v, denoted dist(u, v), is the number

of edges in the shortest path between u and v. The diameter of the graph is defined

to be diam(G) = maxu,v∈V dist(u, v), so that between any two vertices u, v ∈ V

there is a path of length at most diam(G) between u and v.

Given a set S ⊂ V , we define vol (S) =
∑

v∈S deg(v). We will write

1



2

vol (V ) = vol (G). For two subsets S, T ⊂ V , define

e(S, T ) = |{{u, v} ∈ E(G) : u ∈ S, v ∈ T}|.

If S = {v} is a single vertex, we will write e(S, T ) = e(v, T ).

A weighted graph is a graph G together with a function w : E → R+ that

assigns a weight w(e) to each edge e ∈ E. In this context, the degree of a vertex

v is the sum of the weights of the edges incident to v.

We shall also use standard matrix notation throughout. The n × 1 vector

with every entry equal to 1 will be denoted by 1n, or simply 1 if the dimension is

understood. The n× n matrix with every entry equal to 1 will be denoted by Jn,

or J if the dimension is understood.

A matrixM is Hermitian if for all i, j, we haveMij = M̄ji. For a Hermitian

matrix M , all eigenvalues are real [41]; we write the eigenvalues of M to be λ1 ≥
λ2 ≥ · · · ≥ λn, unless otherwise specified. We write ‖M‖ = maxi=1,2,...,n |λi|. Note
that although in the case of general matrices this is a semi-norm, by restricting to

Hermition matrices, ‖ · ‖ is in fact a norm, called the spectral norm. We define

a matrix to be positive semidefinite if all of its eigenvalues are nonnegative. We

can therefore define a partial ordering on the set of Hermitian matrices, called the

semidefinite ordering, such that

A � B if and only if B − A is positive semidefinite.

That is to say, A � B if and only if ‖B − A‖ ≥ 0.

We will make frequent use of the following well-known theorem, known as

Weyl’s Theorem (see, for example, [41]).

Theorem 1.1 (Weyl’s Theorem). If M and N are Hermitian matrices, then

max
1≤i≤n

|λi(M)− λi(N)| ≤ ‖M −N‖.

We shall use several applications of functions to matrices. In general, if f is

a function with Taylor expansion f(x) =
∑∞

n=0 anx
n, we take f(A) =

∑∞
n=0 anA

n.

We note that notions of convergence are as in [41]. In particular, we will often

use the matrix exponential, exp(A) =
∑∞

n=0
1
n!
An. We note that exp(A) is always
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positive definite when A is Hermitian, and that exp(A) converges for all choices

of A. Moreover, we shall require brief use of the matrix logarithm. In general, if

B = exp(A), we say that A is a logarithm of B. As our matrices will be Hermitian,

it is sufficient for uniqueness of this function to require that the logarithm also be

Hermitian (see, for example, [64]).

We shall also make use of the Kronecker product of matrices. Given two

matrices A and B, we define the Kronecker product A⊗B as

A⊗B =


A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

... . . . ...

Am1B Am2B . . . AmnB

 .

The Kronecker product satisfies the following properties (see, for example,

[53], [49]).

Theorem 1.2. Let A,B,C and D be n× n matrices. Then

• (A⊗B)(C ⊗D) = AC ⊗BD

• A⊗ (B ⊗ C) = (A⊗B)⊗ C

• if λ1, λ2, . . . , λn are the eigenvalues of A and µ1, µ2, . . . , µn are the eigenvalues

of B, then the eigenvalues of A⊗B are {λiµj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Throughout the remainder of this paper, log will refer to the natural loga-

rithm.

1.2 Spectral Graph Theory

Spectral graph theory is the study of eigenvalues of matrices associated

to graphs, and the connections between these eigenvalues and properties of the

associated graphs. Here we will focus on two such matrices.
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The adjacency matrix of a graph is an n × n matrix, denoted by AG, or

simply A if the graph is understood, indexed by V , in which

Aij =

{
1 vi ∼ vj

0 otherwise
. (1.1)

Let µ1 ≥ µ2 ≥ · · · ≥ µn denote the eigenvalues of A. The largest eigenvalue µ1

has the property that dmax ≥ µ1 ≥
√
dmax. Moreover, it is easy to see that if A is

a d-regular graph, then µ1 = d, with corresponding eigenvector 1.

The second largest eigenvalue of the adjacency matrix is also of great im-

portance. For regular graphs, we have the following bound.

Theorem 1.3 (Alon-Boppana Bound [3]). Let G be a d-regular graph with d ≥ 3.

Then

µ2 ≥ 2
√
d− 1

(
1−O

(
log(d− 1)

log n

))
.

Graphs for which µ2 ≤ 2
√
d− 1 are called Ramanujan graphs. For regular

graphs, the second largest eigenvalue of the adjacency matrix is related to expan-

sion in the graph. The following result, known as the Expander Mixing Lemma

(see, for example, [47]) illustrates that relationship. In particular, we see that

the difference between the number of edges between any two sets and the average

number of edges is controlled by µ2.

Theorem 1.4 (Expander Mixing Lemma). Suppose G is a d-regular graph. Let

S, T ⊆ V (G). Then ∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ µ2

√
|S||T |

Moreover, the second largest eigenvalue is related to connectivity and di-

ameter properties. In particular, we have the following (see, for example, [17]).

Theorem 1.5. Let G be a d-regular graph. Then the diameter of G satisfies

diam(G) ≤ log(n− 1)

log
(

2d−µ2−µn
µ2−µn

) + 1
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Notice that in the preceding three theorems, we require G to be a regular

graph. In fact, the spectrum of the adjacency matrix can be overwhelmed by degree

information, as shown by Chung, Lu, and Vu in [22]. These authors show that the

eigenvalues of the adjacency matrix of a random power law graph are themselves

power law. Thus, any structural information about the graph is subsumed by the

degree sequence. Therefore, in order to obtain analogous structural results for

irregular graphs, we turn to the normalized Laplacian matrix L.
For a graph G, define DG (or simply D if the graph is understood) to be

the n × n diagonal matrix with Dii = deg(vi), called the degree matrix. The

normalized Laplacian is defined to be LG = I−D−1/2AD−1/2, with the convention

that D−1/2
ii = 0 if deg(vi) = 0, and written as simply L if the graph is understood.

It is easy to check that the eigenvalues of L are between 0 and 2, and 0 is an

eigenvalue with eigenvector D1/21. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 be the

eigenvalues of L.
As with the adjacency matrix, the eigenvalues of L provide significant struc-

tural information about the graph. The following theorem gives some basic facts

about the spectrum of L. We will repeatedly use item 4 regarding connectivity of

a graph based on λ1, and thus we here provide a short proof, adapted from [17].

Theorem 1.6. Let G be a graph with L and λi as above. Then

1. λn−1 = 2 if and only if G is bipartite.

2. if G is bipartite and λi is an eigenvalue of L, then 2− λi is an eigenvalue of

L with the same multiplicity.

3. the spectrum of G is the union of the spectra of its connected components.

4. G is connected if and only if λ1 > 0.
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Proof of 4. By the Rayleigh-Ritz Theorem (see, for example, [41]), we have that

λ1 = inf
f⊥D1/21

〈f,Lf〉
〈f, f〉

= inf
f⊥D1/21

〈f,D−1/2(D − A)D−1/2〉
〈f, f〉

= inf
f⊥D1/21
g=D−1/2f

〈g, (D − A)g〉
〈Dg, g〉

= inf
g⊥D1

∑
u∼v(g(u)− g(v))2∑

v∈V g(v)2dv

Thus, λ1 = 0 if and only if there exists a g ⊥ D1 such that
∑

u∼v(g(u) −
g(v))2 = 0. Suppose G is connected. Then in order to achieve the sum above, we

must have that g(u) = g(v) for any two vertices that are adjacent, and thus as

there is a path between any two vertices, g(u) = g(v) for any u, v ∈ G and g is a

constant vector. However, no nonzero constant vector is perpendicular to D1, and

thus λ1 > 0.

If G is disconnected, then the spectrum of L is the union of the spectra of

the connected components. As each component has an eigenvalue 0 and there are

at least two components, λ1 = 0.

Let λ̄ = max{1−λ1, λn−1−1}. This is often referred to as the spectral gap of

G. As with µ2 for the adjacency matrix, λ̄ is related to expansion and connectivity

properties of G. In particular, we obtain the following analog of Theorem 1.4 for

irregular graphs. As with the Expander Mixing Lemma for regular graphs, this

is essentially a bound on the difference between the number of edges between two

sets and the average number of edges between sets with the same volume.

Theorem 1.7 (Expander Mixing Lemma for general graphs). Let G be a graph

and S, T ⊂ V . Then∣∣∣∣e(S, T )− vol (S) vol (T )

vol (G)

∣∣∣∣ ≤ λ̄
√

vol (S) vol (T ).

Moreover, λ1 is also related to the diameter of the graph, as illustrated in

the following theorem (see, for example, [17]).
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Theorem 1.8. The diameter of G satisfies

1

diam(G) vol (G)
≤ λ1 ≤ 1− 2

√
dmax − 1

dmax

(
1− 2

diam(G)

)
+

2

diam(G)
. (1.2)

Another way in which λ1 is related to expansion properties is by way of the

Cheeger constant. We define the Cheeger constant hG to be

hG = min
S⊂V

e(S, S̄)

min{vol (S) , vol
(
S̄
)
}
. (1.3)

In essence, the Cheeger constant is measuring the smallest cut-size in a

graph. A graph with good expansion properties should have a relatively large

Cheeger constant, as any set that can be disconnected from the graph with rela-

tively few edges does not expand. In fact, this intuition is confirmed by a relation-

ship between λ1 and hG, known as the Cheeger inequality. Various proofs of the

Cheeger Inequality can be found in [18] and [17].

Theorem 1.9 (Cheeger Inequality). For a graph G, we have

h2
G

2
≤ λ1 ≤ 2hG. (1.4)

An isomorphism of a graph G is a bijective function φ : V (G) → V (G)

such that u ∼ v if and only if φ(u) ∼ φ(v). In this case, we can induce a bijection

from φ on the edges of G, also written as φ by abuse of notation, such that

φ(uv) = φ(u)φ(v). A graph is called edge transitive if for any two edges uv, wx ∈ E,

there exists an isomorphism of G such that φ(uv) = wx. We shall use the following

theorem regarding hG for edge transitive graphs, found in [17].

Theorem 1.10. If G is an edge-transitive graph with diameter diam(G), then

hG ≥
1

2 diam(G)
. (1.5)

1.3 Probability

The main focus of this thesis will be to explore spectral and connectivity

properties of several random graph families. We will thus require some probabilistic
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techniques. In particular, we will often use results related to how far a random

variable differs from its mean. Such theorems are referred to as concentration

inequalities. The first and perhaps simplest such inequality is Markov’s Inequality.

Theorem 1.11 (Markov’s Inequality). Let X be a nonnegative, real-valued random

variable. Then

P(X > a) ≤ E [X]

a
.

Markov’s Inequality can be viewed as a concentration inequality by taking

a = cE [X], so that we obtain P(X > cE [X]) ≤ 1
c
. As a corollary to Markov’s

Inequality, one can obtain Chebyshev’s Inequality:

Theorem 1.12 (Chebyshev’s Inequality). Let X be a random variable with |E [X] | <
∞. Then

P(|X − E [X] | ≥ a) ≤ Var (X)

a2
.

In particular, we shall often be concerned with random variables that are

sums of independent random indicator functions. A random indicator function that

takes the value 1 with probability p and 0 otherwise is referred to as a Bernoulli

random variable with parameter p. In this instance, we can obtain further concen-

tration by way of Chernoff bounds. The first and simplest such bound was proven

by Chernoff in 1952 [16].

Theorem 1.13 (Chernoff bounds, version 1). Let X1, X2, . . . , Xm be i.i.d. random

variables with P(Xi = 1) = P(Xi = −1) = 1
2
. Let X = X1 +X2 + · · ·+Xm. Then

for any a > 0,

P(X > a) < e−
a2

2n .

There are many different versions of Chernoff bounds, several of which can

be found in the Appendix of [5]. We provide here those versions that are useful

for the present purposes.

Theorem 1.14 (Chernoff bounds, version 2). Let X = X1 +X2 + · · ·+Xm, where

the Xi are i.i.d. random variables that take the value 1 with probability p and 0

otherwise. Then

P(|X − pm| > εpm) < 2e−cεpm, (1.6)
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where cε = min{− log(εε(1 + ε)−(1+ε)), ε2/2}.

Theorem 1.15 (Chernoff bounds, version 3). Let X = X1 +X2 + · · ·+Xm, where

each Xi takes the value 1 with probability pi and 0 otherwise. Let p =
∑m

i=1 pi, so

that E [X] = pm. Then

P(X − E [X] < −a) < e−
a2

2pm (1.7)

Another useful concentration inequality is Bernstein’s inequality, originally

proven by Bernstein in 1924 [10]. We state here a version somewhat simpler than

Bernstein’s original result (see, for example, [21]). In Chapter 2, we will generalize

this result to random matrices.

Theorem 1.16 (Bernstein’s Inequality). Let X = X1 +X2 + · · ·+Xm, where the

Xi are independent random variables with |Xi| ≤M for each i. Then

P(|X − E [X] | > a) ≤ exp

(
−a2

2 Var (X) + 2Ma/3

)
. (1.8)

In addition to concentration inequalities, we shall take advantage of other

results in probability theory. One such useful result is Jensen’s Inequality (see, for

example, [28]).

Theorem 1.17 (Jensen’s Inequality). If f is a convex function and X is any

random variable, then f(E [X]) ≤ E [f(X)].

If {Xn}n∈N are a family of random variables, we say that Xn has property

A asymptotically almost surely if

lim
n→∞

P(Xn has property A) = 1.

As we shall often concern ourselves with asymptotic results of this nature, we will

abbreviate “asymptotically almost surely” to “a.a.s.”.

As we will examine the spectra of random graphs, we will require an un-

derstanding of random matrices for several of our main results. A random matrix

M is a matrix in which each entry is a random variable. We will consider expec-

tation to be taken coordinatewise, so E [M ]ij = E [Mij]. For square matrices, we
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will take variance in an analogous way to one-dimensional random variables, so

Var (M) = E [(M − E [M ])2].

We note that Jensen’s Inequality can be generalized to random matrices

(see, for example, [62]).

Theorem 1.18 (Operator Jensen’s Inequality). If f is convex with respect to the

semidefinite order and X is a random Hermitian matrix, then f(E [X]) ≤ E [f(X)].

1.4 Random Graphs

A random graph is a graph in which each edge occurs randomly, often inde-

pendent from the other edges. One of the first such graphs studied is Gn,p, known

as the Erdős-Rényi graph [30], although in fact the model appears in an earlier

paper of Gilbert’s [36]. In Gn,p, every edge occurs independently and at random

with probability p. Thus, the adjacency matrix of Gn,p is a random Hermitian

matrix in which every entry above the diagonal is a Bernoulli random variable

with probability parameter p, and every diagonal entry is 0.

In general, a random graph has a random Hermitian adjacency matrix,

where each entry above the diagonal is a Bernoulli random variable. In the case

that we allow self-loops, every diagonal entry is also a Bernoulli random variable.

We will write the expectation of A as Ā. Similarly, D will be a diagonal matrix

whose diagonal entries are sums of Bernoulli random variables, and we write the

expectation of D as D̄.

We can view Ā and D̄ as the adjacency matrix and degree matrix for the

expectation of G, that is, the weighted complete graph Ḡ in which every edge is

weighted by its expectation in G. We thus will make use of L̄ = I− D̄−1/2ĀD̄−1/2,

the Laplacian matrix for Ḡ, instead of the expectation of L. We note that L̄ has

many computational advantages over E [L], as D and A are not independent and

thus E [L] = E
[
I −D−1/2AD−1/2

]
cannot be factored into products of D̄ and Ā.

Returning to Gn,p, we see that Ā = p(J − I), D̄ = (n − 1)pI, and L̄ =

I − 1
n−1

(J − I).

In general, if G is a random graph, we will use µ̄1 ≥ µ̄2 ≥ · · · ≥ µ̄n to refer
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to the spectrum of Ā and 0 = λ̄0 ≤ λ̄1 ≤ . . . λ̄n−1 to refer to the spectrum of L̄. We

will write d̄max and d̄min to refer the the maximum and minimum expected degrees

of G, respectively. As with A, D, and L, we will subscript the expected matrices

as ĀG, D̄G, and L̄G to clarify as needed.

One common class of random graphs that we will refer to in Chapter 4 are

percolated random graphs. For any deterministic graph G, we can define Gp to be

the random graph where two vertices are adjacent with probability p if they are

adjacent in G, and otherwise are not adjacent. That is to say, we choose each edge

from G independently and with probability p. This type of percolation is often

referred to as bond percolation. Although we will use this notion only in passing,

these types of graphs have been widely studied [39], [13], [34], [4], [45].

We will focus here on random graphs defined via attribute affinity. Let

Γ1,Γ2, . . . ,Γt be finite alphabets, and for each i ∈ [t], let Θ(i) be a symmetric matrix

indexed by Γi. These matrices are referred to as affinity matrices, or sometimes

generating matrices for the graph. A random graph G is defined via attribute

affinity on the set {Θ(i)} if there exists a function a : V (G) → Γ1 × Γ2 × . . .Γt,
called the attribute function, and a function f , called the probability function,

taking values in [0, 1], such that for all u, v ∈ V (G) with a(u) = (γ1, γ2, . . . , γt) and

a(v) = (δ1, δ2, . . . , δt), we have

P(u ∼ v) = f(Θ
(1)
γ1,δ1

,Θ
(2)
γ2,δ2

, . . . ,Θ
(t)
γt,δt

).

We call a(v) the attribute vector for v.

We can think of the function a as assigning a list of attributes to the vertices,

and each pair of attributes has some affinity to one another. Thus, the probability

that two vertices are adjacent is a function of their list of affinities. We will

typically restrict to the case that f is t-fold multiplication, and the Θ(i) are [0, 1]-

valued matrices.

1.4.1 Random graph models

Often, one produces and studies random graph models as a means of un-

derstanding the structure of large, realistic graphs. Large graphs often display
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predictable properties, and the goal of modeling is to generate random graphs

that also obey these properties. Specifically, we shall focus on three of the most

well-studied properties in large graphs.

First, many large graphs follow a power law degree distribution. Let Nk be

the proportion of vertices in a graph that are degree k. The power law property

states that there is a constant β such that Nk ∝ k−β for all k a.a.s.. In other words,

a graph is power law if logNk is linear in log k, with slope −β. Such graphs are

often called scale-free. Citation graphs have been observed to be scale-free [26], as

has the Internet and web-graph [9], [6], [32], [46], [14], collaboration graphs [59],

and large social networks [15]. We note that this is a significant deviation from

the structure seen in Gn,p, in which the expected degree of every vertex is uniform

at (n− 1)p.

The second property we shall discuss is the small-world phenomenon. A

graph has the small-world property if the diameter of the graph is asymptotically

constant. That is to say, even as the number of nodes increases, the diameter of the

graph does not. The small-world phenomenon has been observed in the Internet

and web-graph, as well as large social networks [2], [56].

Finally, we expect realistic graphs to be relatively sparse. In particular,

|E| �
(
n
2

)
. This has been observed, for example, in the Internet graph [32], the

web graph [48], and large social networks [27].

The main focus of this dissertation is to determine the spectra and find

conditions for the emergence of the giant component in random graphs defined via

attribute affinity. In particular, we focus on two graph models, the stochastic Kro-

necker graph model (SKG) and the multiplicative attribute graph model (MAG).

As seen in Section 1.2, the spectrum of a graph has close ties to its diameter and

related connectivity properties. In this way, we seek to study these graphs as large

network models via their spectral properties. We will discuss the giant component

and its applications more fully in Section 4.1. We begin by defining these two

models, as well as some of their basic properties.
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1.4.2 Stochastic Kronecker Graphs

We first define a stochastic Kronecker graph. This model was proposed by

Leskovec et al. [49] as a means of generating graphs with self-similar structure.

Let Γ be a finite set with |Γ| = k. Let Θ be a k×k symmetric matrix indexed

by Γ whose entries are in [0, 1]. The stochastic Kronecker graph G = SKG(Θ, t)

is a random graph defined via attribute affinity, such that V (G) = Γt, and the

probability function is t-fold multiplication. That is, given a = (a1, a2, . . . , at), b =

(b1, b2, . . . , bt) ∈ V (G), we have

P(a ∼ b) = Θa1,b1Θa2,b2 . . .Θat,bt .

Clearly the only necessary parameters to define G are Θ and t, as Θ will

imply k, and the underlying set Γ is irrelevant to the resulting random graph. The

graph G will have n = kt vertices. Notice that the SKG is defined precisely so that

Ā = Θ⊗t. We will define D̃ to be the diagonal matrix of column sums of Θ.

Proposition 1.19 (see, for example, [55], [49]). Let G = SKG(Θ, t) over the

alphabet Γ. Then D̄ = D̃⊗t.

Proof. Let σ = (σ1, σ2, . . . , σt) ∈ V (G). It suffices to prove that d̄σ =
∏t

i=1 D̃σi .

Now,

d̄σ =
∑
τ∈Γt

P(σ ∼ τ)

=
∑
τ∈Γt

t∏
i=1

Θσi,τi

=
t∏
i=1

∑
γ∈Γ

Θσi,γ

=
t∏
i=1

dσi .

Therefore, D̄ = D̃⊗t as desired.

By Theorem 1.2, we thus have that for SKG(Θ, t), Ā = Θ⊗t and

L̄ = I − (D̃⊗t)−1/2Θ⊗t(D̃⊗t)−1/2 = I − (D̃−1/2ΘD̃−1/2)⊗t. (1.9)
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In Chapter 4, we will restrict our attention to the case where Γ = {0, 1},
and n = 2t, so that the SKG is generated by a 2× 2 affinity matrix

Θ =

(
α β

β γ

)
.

In this case, the graph is generated by the parameters α, β, γ and t. We shall

denote the SKG with 2× 2 affinity matrix by K(t, α, β, γ). Moreover, we typically

assume without loss of generality that α > γ. In this case, the attribute vector of

each vertex is a length t binary vector. Let ω(v) denote the number of 1s in the

attribute vector for v, otherwise known as the weight of v. In this case, Proposition

1.19 yields the following.

Corollary 1.20. Let G = K(t, α, β, γ). For v ∈ V (G), we have

E [deg(v)] = (α + β)ω(v)(β + γ)t−ω(v).

This property gives the expected degree distribution for an SKG with 2× 2

generating matrix. We notice here that this distribution is not power law, so the

SKG is not a scale-free network. However, as the following theorem shows, these

graphs do obey the small-world phenomenon whenever they are connected.

Theorem 1.21. [55] Let G = K(t, α, β, γ), where wolog α > γ. Then G is

connected a.a.s. if and only if β+γ > 1. Moreover, if β+γ > 1, then the diameter

of G is constant a.a.s..

In fact, in Chapter 3, we are able to provide asymptotic bounds on the

diameter of the graph based on the parameters α, β, and γ.

Finally, we have that the expected number of edges in G = K(t, α, β, γ) is

∑
v∈V

E [deg(v)] =
t∑
i=1

(
t

i

)
(α + β)i(β + γ)t−i = (α + 2β + γ)t.

As
(
t
2

)
∼ t2, this graph is relatively dense, rather than sparse. Furthermore, the

degree distribution is binomial, rather than power law.

Despite these drawbacks, the SKG has been studied as a model for realis-

tic graphs [50], [51]. In [50], Leskovec et. al. show that the SKG with a 2 × 2
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initiator matrix captures some relevant properties of realistic graphs. Specifically,

the authors give an algorithm to choose the parameters α, β, γ to model a real

network. Using this algorithm, SKGs are produced to model several real networks

that roughly capture the eigenvalue distribution for the adjacency matrix, diam-

eter, degree distribution, and hop-plot. The hop-plot is a plot of the number of

pairs of vertices connected by paths of length at most k against k, and can be

viewed as a way to measure expansion in the graph.

1.4.3 Multiplicative Attribute Graphs

Although the stochastic Kronecker graph model has been proposed as a

model for a variety of different complex networks, it has the significant drawback

that with a k×k affinity matrix, it is only possible to generate a network whose size

is a power of k. Moreover, as we have seen, this network has a less than satisfactory

degree distribution and density. There are several different generalizations of the

stochastic Kronecker graph to a network of different degree distribution or arbitrary

size. One such method, proposed by Kim and Leskovec, is the multiplicative

attribute graph (MAG) [43].

In the most general setting, an MAG can be defined as follows. For 1 ≤ i ≤
t, let Γi be an alphabet of size ki. For each i, let Θ(i) be a ki × ki affinity matrix

with entries in [0, 1]. Let P be a probability distribution over Γ1 × Γ2 × · · · × Γt.

For n > 0, we define G = MAG(n, {Γi}, {Θ(i)}, P ) to be a random graph with

attribute affinity, with |V (G)| = n, and a(v) ∈ Γ1 × Γ2 × · · · × Γt, is chosen from

the probability distribution P independently for each v. We take the probability

function to be t-fold multiplication, so that for two vertices u, v with attribute

vectors a(u) = (σ1, σ2, . . . , σt) and a(v) = (τ1, τ2, . . . , τt), we have

P(u ∼ v) = Θ(1)
σ1,τ1

Θ(2)
σ2,τ2

. . .Θ(t)
σt,τt .

If each alphabet above is {0, 1}, we have Θ(i) =

(
αi βi

βi γi

)
. We may take

Q to be a product distribution, where the attribute γi in a(v) is equal to 1 with

probability µi and 0 with probability 1 − µi, and each attribute is independent
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of each other attribute. In this setting, Leskovec and Kim [43] show that under

certain conditions, the MAG can be forced to take a power law degree distribution:

Theorem 1.22. [43] If Θ(i), µi are as above, and for each i,

µi
1− µi

=

(
µiαi + (1− µi)βi
µiβi + (1− µi)γi

)−δ
for some δ > 0, then the degree distribution of G satisfies a power law with coeffi-

cient −δ − 1
2
.

We will focus on a less general version of the MAG. In particular, we will

take Γ1 = Γ2 = · · · = Γt = Γ, so that every attribute comes from the same

alphabet, and k = |Γ|. Moreover, if Q is a probability distribution over Γ, we will

take P to be the product distribution of Q over Γt. If we think of Q as a k × k
diagonal matrix with Qσ,σ = Q(σ), we then have that a vertex v takes attribute

vector a(v) = σ with probability Q⊗tσ,σ. Without loss of generality, we may assume

that for all γ ∈ Γ, Qγ,γ > 0 as otherwise we may consider the smaller alphabet

Γ′ = Γ − {γ}. We denote this version of the MAG by MAG(n, t,Θ, Q). For a

particular word σ ∈ Γt, we will use nσ to denote the number of vertices of G

with attribute vector σ. We define the signature of the graph to be the collection

{nσ}σ∈Γt .

Notice that in the multiplicative attribute graphs, edges of the graph do not

appear independently. In fact, the probability that each edge will appear depends

upon the attribute vector of the vertices incident to that edge. However, if we fix

the signature of a MAG, we do have that edges appear independently, a fact that

we will take advantage of in Chapters 3 and 4.

In Section 4.3, we will moreover focus on MAG(n, t,Θ, Q) in the case that

Γ = {0, 1}. In this case, as with the SKG, we have that the affinity matrix

Θ =

(
α β

β γ

)
,

and Q is a binary distribution with P(1) = µ and P(0) = 1−µ. In this setting, we

will use notation similar to that in the SKG, so ω(v) will denote the weight of a
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vertex v; that is, ω(v) is the number of 1s in a(v). In general, we will assume that

t ∼ ρ log n. We denote this more specialized MAG by K(n, t,Θ, µ).

In this case, we have the following expected degrees in G.

Theorem 1.23. [43] Let G = K(n, t,Θ, µ). Then for v ∈ V with weight ω(v), we

have

E [deg(v)] = n(µα + (1− µ)β)ω(v)(µβ + (1− µ)γ)t−ω(v).

Moreover, Kim and Leskovec [43] have shown the following.

Theorem 1.24. Let G = K(n, t,Θ, µ) where t ∼ ρ log n. Let

F (G) =

{
(µβ + (1− µ)γ)ρ when (1− µ)ρ ≥ 1

e

(µα + (1− µ)β)νρ(µβ + (1− µ)γ)(1−ν)ρ otherwise
,

where ν is a solution to
((

µ
ν

)ν (1−µ
1−ν

)1−ν
)ρ

= 1
e
. Then G is connected a.a.s. if

F (G) > 1
e
and disconnected a.a.s. if F (G) < 1

e
.

Moreover, G has constant diameter a.a.s..

In Chapter 3, we will also provide asymptotic bounds on the diameter of

K(n, t,Θ, µ) based on the parameters µ, α, β, and γ.

Thus we see that the multiplicative attribute graph has several benefits over

the stochastic Kronecker graph. While we are still able to define adjacencies via

commonalities between vertices, we can control the degree sequence of the graph

and maintain constant diameter, demonstrating many useful realistic properties,

such as power law and the small world phenomenon.

As with the SKG, the MAG has been studied as a model for realistic net-

works. In [44], Kim and Leskovec provide an algorithm for estimating parameters

µi, Θ(i) in the event that all attributes are from the alphabet {0, 1}. Using this

algorithm, several real networks are fitted with multiplicative attribute graph mod-

els, which accurately approximate the spectrum of the adjacency matrix, hop-plot,

degree distribution, and diameter. Moreover, the authors compare these estimates

to those of the SKG using the algorithm given in [50], and find that the MAG

provides a much more realistic approximation of the graph. This is unsurprising,
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given the degree distribution and diameter analysis of the MAG compared to the

SKG.

We instead will focus on properties of the simplified graphs MAG(n, t,Θ, Q)

and K(n, t,Θ, µ). It should be mentioned that many of our results may be gener-

alized to the MAG in full generality by taking maxima and minima of the chosen

parameter settings appropriately.

1.5 Overview

The remainder of this thesis is organized as follows. In Chapter 2, we discuss

some general techniques for concentrating the spectra of the adjacency matrix A

and Laplacian matrix L of a random graph on the spectrum of Ā and L̄. In Chapter

3, we apply these techniques to SKG(Θ, t) and MAG(n, t,Θ, Q) as described above.

This will allow us to derive some information about connectivity and diameter of

these graphs. As a side discussion, we will also show how these spectral techniques

can be applied to a random graph with vertices chosen randomly from a set of

possible vertices. In Chapter 4, we will define the giant component in a graph, and

derive necessary and sufficient conditions for the emergence of the giant component

in K(t, α, β, γ). Necessary and sufficient conditions for the emergence of the giant

component have been established for K(n, t,Θ, µ) in [43]. We will further develop

these conditions by establishing both the uniqueness and asymptotic size of the

giant components in K(t, α, β, γ) and K(n, t,Θ, µ).



Chapter 2

Concentration of Spectra of A and L

2.1 Introduction

In this chapter, we provide general results on the spectra of random graphs

which will become useful in determining structure of SKGs and MAGs. In partic-

ular, we will use techniques from random matrix theory to generalize Bernstein’s

Inequality (see Theorem 1.16) to random matrices, and then apply this concentra-

tion inequality to matrices arising from the study of random graphs. Such tech-

niques have appeared in [60] to produce slightly weaker results. In this case, we

will concentrate the spectral norm of a random matrix on that of its expectation.

To write analogues of Bernstein’s Inequality, we must consider a random

matrix associated to a graph as a sum of independent random matrices. Here,

we will assume the edges of the graph appear independently, and then write the

adjacency matrix as a sum of random matrices, each one corresponding to a single

edge in the graph. For L, we use more nuanced techniques to concentrate both

the degrees of vertices as well as the norm of the graph.

2.2 Matrix Concentration Inequalities

We begin by examining the very rich field of matrix concentration inequal-

ities. Previously, various matrix concentration inequalities have been derived by

many authors including Ahlswede-Winter [1], Cristofides-Markström [25], Oliveira

19
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[60], Gross [38], Recht [62], and Tropp [64]. Here we give a short proof for a simple

version that is particularly suitable for random graphs.

Theorem 2.1. Let X1, X2, . . . , Xm be independent random n× n Hermitian ma-

trices. Moreover, assume that ‖Xi − E [Xi] ‖ ≤ M for all i, and put v2 =

‖
∑

Var (Xi) ‖. Let X =
∑
Xi. Then for any a > 0,

P(‖X − E [X] ‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
.

For the proof, we will rely on the following results:

Lemma 2.2 (see, for example, [64]). Let f, g : R → R, and suppose there is a

subset S ⊆ R with f(a) ≤ g(a) for all a ∈ S. If A is a Hermitian matrix with all

eigenvalues contained in S, then f(A) � g(A).

Lemma 2.3 ([52]). Given a fixed Hermitian matrix A, the function

X 7→ Tr (exp(A+ logX))

is concave with respect to the semidefinite order on the set of positive definite X.

By applying Theorem 1.18 together with Lemma 2.3, we obtain the follow-

ing.

Lemma 2.4. If A is a fixed matrix and X is a random Hermitian matrix, then

E [Tr (exp(A+X))] ≤ Tr (exp[A+ log(E [expX])]) . (2.1)

Proof. By Lemma 2.3, f : eX 7→ Tr
(
exp(A+ log eX)

)
is concave on the set of

Hermitian matrices X, as eX is positive definite for all Hermitian X. Thus, by

Theorem 1.18, f(E [X]) ≥ E [f(X)]. Therefore, we have

Tr
(
exp(A+ log(eE[X]))

)
≥ E

[
Tr
(
exp(A+ log(eX))

)]
= E [Tr (exp(A+X))] .

We shall use this result to overcome the difficulties presented by working

with the semidefinite order, as opposed to real numbers. The primary problem

that must be overcome is that unlike real numbers, the semidefinite order does not

respect products. That is to say, if A � B and C � D, it is not necessarily true

that AC � BD.
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Lemma 2.5. For independent random n × n Hermitian matrices X1, X2, . . . , Xk

with E [Xk] = 0 for all k and ‖Xk‖ ≤M for all k,

E

[
Tr

(
exp

(
m∑
k=1

θXk

))]
≤ Tr

(
exp

(
m∑
k=1

1

2
g(θM)θ2E

[
X2
k

]))
, (2.2)

where g(x) = 2
x2

(ex − x− 1).

Proof. Let

g(x) =
2

x2
(ex − x− 1) = 2

∞∑
k=2

xk−2

k!
.

Notice that g is increasing. Given θ > 0, we have that ‖θXk‖ ≤ θM , and therefore

g(θXk) � g(θM)I by Lemma 2.2. Therefore, as E [Xk] = 0,

E
[
eθXk

]
= E

[
I + θXk +

1

2
θ2X2

kg(θXk)

]
(2.3)

= I +
1

2
θ2g(θXk)E

[
X2
k

]
(2.4)

� I +
1

2
g(θM)θ2E

[
X2
k

]
(2.5)

� e
1
2
g(θM)θ2E[X2

k]. (2.6)

For a given k, let Ek[·] := E [·|X1, X2, . . . , Xk]. Then by the tower property

of conditional expectation (see, for example, [28]), we have

E

[
Tr

(
exp

(
m∑
k=1

θXk

))]
= EE1E2 . . .Em−1

[
Tr

(
exp

(
m−1∑
k=1

θXk + θXm

))]
As the Xi are independent, each Xk is fixed with respect to Em−1 except Xm, and

Em−1[expXm] = E [exp(Xm)]. Applying inequality (2.1) from Lemma 2.4, we have

EE1E2 . . .Em−1

[
Tr

(
exp

(
m−1∑
k=1

θXk + θXm

))]
≤

EE1E2 . . .Em−2

[
Tr

(
exp

(
m−1∑
k=1

θXk + logE [exp(θXm)]

))]
.

Iteratively applying this process, we obtain

E

[
Tr

(
exp

(
m∑
k=1

θXk

))]
≤ Tr

(
exp

(
m∑
k=1

logE [exp θXm]

))
.
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As both log(·) and Tr (exp(·)) are monotone with respect to the semidefinite

order (these facts can be proven with basic manipulations [64]), inequality (2.6)

implies that

E

[
Tr

(
exp

(
m∑
k=1

θXk

))]
≤ Tr

(
exp

(
m∑
k=1

log e
1
2
g(θM)θ2E[X2

k]

))

≤ Tr

(
exp

(
m∑
k=1

1

2
g(θM)θ2E

[
X2
k

]))
,

as desired.

Proof of Theorem 2.1. We assume for the sake of the proof that E [Xk] = 0 for all

k. Clearly this yields the general case by simply replacing each Xk by Xk−E [Xk].

Given a > 0, for all θ > 0, by Lemma 2.5 we have

P(λmax(X) ≥ a) ≤ e−θaE [exp(θλmax(X))]

≤ e−θaE [Tr (exp(θX))]

= e−θaE
[
Tr
(

exp
(∑

θXk

))]
≤ e−θa Tr

(
exp

(∑ 1

2
g(θM)θ2E

[
X2
k

]))
≤ e−θanλmax(exp

(
1

2
g(θM)θ2

∑
E
[
X2
k

])
)

≤ n exp

(
−θa+

1

2
g(θM)θ2v2

)
,

as v2 = ‖
∑

E [X2
k ] ‖ ≥ λmax(

∑
E [X2

k ])

Notice that if x < 3, we have

g(x) = 2
∞∑
k=2

xk−2

k!
≤

∞∑
k=2

xk−2

3k−2
=

1

1− x/3
.

Take θ = a
v2+Ma/3

. Then θM = 3aM
3v2+aM

≤ 3, and thus we have

P(λmax(X) ≥ a) ≤ n exp

(
−θa+

1

2
g(θM)θ2v2

)
(2.7)

≤ n exp

(
− a2

2v2 + 2Ma/3

)
(2.8)
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By applying inequality 2.8 to −X, we obtain also that

P(λmin(X) ≤ −a) ≤ n exp

(
− a2

2v2 + 2Ma/3

)
.

Therefore, P(‖X‖ ≥ a) ≤ 2n exp
(
− a2

2v2+2Ma/3

)
as desired.

2.3 Spectrum of the Adjacency Matrix of a Ran-

dom Graph

Let G be a random graph, where P(vi ∼ vj) = pij and each edge appears

independently of each other edge. Define Aij to be the matrix with a 1 in the

ij and ji position and 0 elsewhere. Let hij be a Bernoulli random variable with

parameter pij. Then the adjacency matrix for G takes the form

A =
∑

1≤i≤j≤n

hijAij.

We can thus apply Theorem 2.1 to obtain the following result.

Theorem 2.6. Let G be a random graph, where P(vi ∼ vj) = pij, and each edge

is independent of each other edge. Let ε > 0, and suppose that for n sufficiently

large, d̄max >
4
9

log(2n/ε). Then with probability at least 1 − ε, for n sufficiently

large, the eigenvalues of A and Ā satisfy

|µi − µ̄i| ≤
√

4d̄max log(2n/ε)

for all 1 ≤ i ≤ n.

We note that the bound in this theorem holds simultaneously for all eigen-

values, so that with probability 1 − ε, we will have concentration on all of the

eigenvalues of A, rather than each eigenvalue independently concentrated.

Proof. Let Xij = hijAij, so A =
∑

1≤i≤j≤nXij. Then ‖Xij‖ ≤ 1 for all i, j. In

order to apply Theorem 2.1, we must first calculate v2 = ‖
∑

1≤i≤j≤n Var (Xij) ‖.
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Notice, if i 6= j, then

Var (Xij) = E
[
(hij − pij)2(Aij)

2
]

= Var (hij) (Aii + Ajj)

= pij(1− pij)(Aii + Ajj)

Similarly, Var (Xii) = pii(1− pii)Aii. Therefore,

v2 =
∥∥∥∑Var (Xij)

∥∥∥ =

∥∥∥∥∥
n∑
i=1

(
n∑
j=1

pij(1− pij)

)
Aii

∥∥∥∥∥
= max

i=1,...,n

n∑
j=1

pij(1− pij)

≤ max
i=1,...,n

n∑
j=1

pij = d̄max.

Take a =
√

4d̄max log(2n/ε). By the assumption on d̄max, we have a < 3d̄max,

and thus we obtain

P(‖A− Ā‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
≤ 2n exp

(
−4d̄max log(2n/ε)

4d̄max

)

)
= ε.

To complete the proof, we apply Weyl’s Theorem (see, Theorem 1.1) to

obtain that with probability at least 1− ε, for all 1 ≤ i ≤ n,

|µi − µ̄i| <
√

4d̄max log(2n/ε).

As an application, we consider Gn,p. As mentioned in Section 1.4, for Gn,p,

we have Ā = p(J − I). An application of Theorem 2.6 yields

Theorem 2.7. For Gn,p, if p > 8
9n

log (
√

2n), then with probability at least 1 −
1/n = 1− o(1), we have

|µi − µ̄i| ≤
√

8np log (
√

2n).
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As Ā = p(J−I), we have that µ̄1 = p(n−1) and µ̄i = −p for all i > 1. Thus

we have proven that µ1 = pn + O(pn) and if i > 1, |µi| = O(pn). We note that

stronger results for the spectrum of the adjacency matrix of Gn,p can be found in

[35], [33]. Specifically, in [33], it is shown that for pn ≥ c lnn, µ1 = pn+O(
√
pn),

and all other eigenvalues satisfy |µi| = O(
√
pn). However, due to the very strong

symmetries in Gn,p, it seems unlikely that the methods used to investigate this

graph in detail will extend to general random graphs.

2.4 Spectrum of the Normalized Laplacian Matrix

of a Random Graph

We now turn to concentration of the eigenvalues of L on those of L̄ for a

random graph G.

Theorem 2.8. Let G be a random graph, where P(vi ∼ vj) = pij, and each edge

is independent of each other edge. Let d̄min be the minimum expected degree of G.

Choose ε > 0. Then there exists a constant k = k(ε) such that if d̄min > k log(n),

then with probability at least 1− ε, the eigenvalues of L and L̄ satisfy

|λj − λ̄j| ≤ 3

√
3 log(4n/ε)

d̄min

for all 1 ≤ j ≤ n.

As with Theorem 2.6, this bound will hold simultaneously for all eigenvalues

with probability 1 − ε. The value of k above comes out of the proof, and in

particular, choosing k > 3(1 + log( ε
4
)) is sufficient.

Proof. We will again use Weyl’s Theorem (Theorem 1.1), as in the proof of The-

orem 2.6, so we need only bound ‖L − L̄‖. For a vertex vi, we let di denote the

degree of vi and d̄i denote the expected degree of vi. Let C = I − D̄−1/2AD̄−1/2.

Then by the triangle inequality, ‖L− L̄‖ ≤ ‖L−C‖+ ‖C − L̄‖. We consider each

term separately.
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Now, C − L̄ = D̄−1/2(A− Ā)D̄−1/2. Using notation as in Section 2.3, let

Yij = D̄−1/2((hij − pij)Aij)D̄−1/2

=
hij − pij√

d̄id̄j
Aij

Then C−L̄ =
∑

1≤i≤j≤n Yij, so we can apply Theorem 2.1 to bound ‖C−L̄‖.
Notice ‖Yij‖ ≤ (d̄id̄j)

−1/2 ≤ 1
d̄min

. Moreover,

E
[
Y 2
ij

]
=


1

d̄id̄j
(pij(1− pij)(Aii + Ajj) i 6= j

1

d̄i
2 (pii(1− pii)Aii i = j

Thus, we obtain

v2 =
∥∥∥∑E

[
Y 2
ij

]∥∥∥ =

∥∥∥∥∥
n∑
i=1

n∑
j=1

1

d̄id̄j
(pij − p2

ij)Aii

∥∥∥∥∥
= max

i=1,...,n

(
n∑
j=1

1

d̄id̄j
pij −

n∑
j=1

1

d̄id̄j
p2
ij

)

≤ max
i=1,...,n

(
1

d̄min

n∑
j=1

pij
d̄i

)
=

1

d̄min

Take a =
√

3 log(4n/ε)

d̄min
. Take k to be large enough so that d̄min > k log n

implies a < 1. Note that k > 3(1 + log( ε
4
)) is sufficient. Applying Theorem 2.1,

we have

P(‖C − L̄‖ > a) ≤ 2n exp

(
−3 log(4n/ε)

d̄min

2
d̄min

+ 2a
3d̄min

)

≤ 2n exp

(
−3 log(4n/ε)

3

)
≤ ε/2

For the second term, note that by the Chernoff bound (see Theorem 1.14),

for each i,

P(|di − d̄i| > bd̄i) ≤
ε

2n
if b ≥

√
2 log(4n/ε)

d̄i

Take b =
√

log(4n/ε)

d̄min
, so that for all i, we have P(|di − d̄i| > bd̄i) ≤ ε

2n
. Then

we obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣∣∣∣∣
√
di
d̄i
− 1

∣∣∣∣∣ .
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Note that for 0 < x < 1, we have |
√
x− 1| ≤ |x− 1|. Thus for x = di

d̄i
> 0, we have

that with probability at least 1− ε
2
,∣∣∣∣did̄i − 1

∣∣∣∣ = d̄i
∣∣di − d̄i∣∣ ≤ b =

√
log(4n/ε)

d̄min

=
1√
3
a < 1.

Thus we obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣∣∣∣∣
√
di
d̄i
− 1

∣∣∣∣∣ ≤
√

log(4n/ε)

d̄min

with probability at least 1− ε
2
.

We note that as the Laplacian spectrum is contained in [0, 2], we have

‖I − L‖ ≤ 1. Therefore, with probability at least 1− ε
2
, we have

‖L − C‖ = ‖I −D−1/2AD−1/2 − I + D̄−1/2AD̄−1/2‖

= ‖D−1/2AD−1/2 − D̄−1/2D1/2D−1/2AD−1/2D1/2D̄−1/2‖

= ‖(I − L)− (D̄−1/2D1/2)(I − L)(D1/2D̄−1/2)‖

= ‖(D̄−1/2D1/2 − I)(I − L)D1/2D̄−1/2 + (I − L)(I −D1/2D̄−1/2)‖

≤ ‖D̄−1/2D1/2 − I‖‖D1/2D̄−1/2‖+ ‖I −D1/2D̄−1/2‖

≤ b(b+ 1) + b = b2 + 2b

Finally, as b = 1√
3
a and a < 1, we have that with probability at least 1− ε,

‖L − L̄‖ ≤ ‖C − L̄‖+ ‖L − C‖

≤ a+
1

3
a2 +

2a√
3
≤ 3a,

completing the proof.

As a simple application, we again consider Gn,p. We have that for Gn,p,

L̄ = I − 1
n−1

(J − I). Applying Theorem 2.8, we obtain the following.

Theorem 2.9. If pn� log n, then with probability at least 1− 1/n = 1− o(1), we

have

|λk − λ̄k| ≤ 3

√
6 log(2n)

pn
= o(1)

for all 1 ≤ k ≤ n.
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The spectrum of L̄ = I − 1
n−1

(J − I) is
{

1
n−1

, 1 + 1
n−1

}
, where 1 + 1

n−1
has

multiplicity n− 1. Thus, we see that if pn � log n, then with high probability L
has all eigenvalues other than λ0 close to 1. This result is not new (see [22], [24]),

and [24] also considers the case where pn ≤ log n.

Acknowledgement: This chapter is based on the paper “On the spectra of

general random graphs”, written jointly with Fan Chung [23]. This paper appeared

in Electronic Journal of Combinatorics, 18(1), P215, 2011.



Chapter 3

Spectra of Stochastic Kronecker

Graphs and Multiplicative Attribute

Graphs

3.1 Introduction

In this chapter, we apply Theorems 2.6 and 2.8 to the stochastic Kronecker

graph and the multiplicative attribute graph. We shall give asymptotic spectral

concentration for both these models with arbitrarily sized initiator matrices, sub-

ject only to the degree requirements stated in the above two theorems. Moreover,

we comment on the implications of these results for other desired graph properties,

such as expansion, diameter and connectivity.

In addition, in Section 3.4, we consider the spectra of random graphs with

two or more vertices that have the same behavior. We include this analysis here,

as the proof is similar to the proof of concentration of spectra for MAGs.

3.2 Spectra of SKGs

We begin by examining the spectrum of the adjacency matrix of an SKG.We

note that this is a straightforward application of Theorems 2.6 and 2.8, although

29
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we include the details as a prelude to the analysis for the MAG.

Theorem 3.1. Let G = SKG(Θ, t) with alphabet Γ. Let δ and ∆ be the minimum

and maximum diagonal entries of D̃, respectively. Let ε > 0. If ∆ > 1 and

t ≥
log(4

9
log(2kt

ε
))

log(∆)
,

then with probability at least 1− ε, for all i ∈ [kt] we have

|µi − µ̄i| ≤

√
4∆t log

(
2kt

ε

)
.

We note that if ε ∼ n−c = k−ct, we may rewrite the condition on t above so

that the bound depends only upon ε. That is to say, the condition t ≥ log( 4
9

log( 2kt

ε
))

log(∆)

can be written as t ≥ log( 4
9

log( 2
ε
))+log(1+ 1

2c
)

log ∆
.

Proof. By Proposition 1.19, we have that the maximum expected degree is ∆t.

Moreover, as ∆ > 1, if t ≥ log( 4
9

log( 2kt

ε
))

log(∆)
, we have

∆t = exp(t log ∆) ≥ exp

log ∆

 log
(

4
9

log
(

2kt

ε

))
log (∆)


=

4

9
log

(
2kt

ε

)
=

4

9
log

(
2n

ε

)
.

We thus meet the hypothesis of Theorem 2.6, so we obtain that with probability

at least 1− ε, for all i ∈ [kt]

|µi − µ̄i| ≤
√

4∆t log(2kt/ε)

as desired.

Theorem 3.2. Let G,Γ, δ, and ∆ be as in Theorem 3.1. If δ > 1 and t ≥
log((3+log( ε4)) log(kt))

log δ
, then with probability at least 1− ε, for all i ∈ [kt] we have

|λj − λ̄j| ≤ 3

√
3 log(4kt/ε)

δt
.
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Proof. As in Theorem 3.1 above, since δ > 1 and t ≥ log((3+log( ε4)) log(kt))
log δ

, we have

d̄min = δt = exp(t log δ)

≥ exp
(

log
((

3 + log
( ε

4

))
log(kt)

))
≥

(
3 + log

( ε
4

))
log(kt) =

(
3 + log

( ε
4

))
log(n).

Thus, we satisfy the hypothesis of Theorem 2.8, so we obtain that with

probability at least 1− ε, for all i ∈ [kt]

|λj − λ̄j| ≤ 3

√
3 log(4kt/ε)

δt
.

By way of example, we consider here the application of Theorems 3.1 and

3.2 to G = K(t, α, β, γ), the stochastic Kronecker graph with a 2 × 2 affinity

matrix. Note that here, if we assume without loss of generality that α ≥ γ, we

have ∆ = α + β and δ = β + γ. As we have seen in Theorem 1.21, if β + γ < 1,

then G is disconnected a.a.s., so for the sake of studying the spectrum we suppose

β+γ > 1. This will imply that δ > 1 and ∆ > 1, so both Theorems 3.1 and 3.2 are

applicable for sufficiently large t. Note that the eigenvalues of Θ are x± y, where
x = α+γ

2
and y =

√
(α−γ)2+4β2

2
. Thus, by Theorems 1.2 and 3.1, with probability

at least 1− 2−t, for each i with 0 ≤ i ≤ t the adjacency matrix has
(
t
i

)
eigenvalues

of the form

(x+ y)i(x− y)t−i +O(
√
t(α + β)t).

Moreover, we have that

D̃−1/2ΘD̃−1/2 =

 α
α+β

β√
(α+β)(β+γ)

β√
(α+β)(β+γ)

γ
β+γ

 ,
which has eigenvalues 1 and λ = αγ−β2

(α+β)(β+γ)
. Thus, as we have shown in equation

(1.9) that L̄ = I − (D̃−1/2ΘD̃−1/2)⊗t, by Theorems 1.2 and 3.2, with probability

at least 1− 2−t, for each i with 0 ≤ i ≤ t, the normalized Laplacian L(G) has
(
t
i

)
eigenvalues of the form

1− λi + c−t
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for some c > 1. In particular, the spectral gap is |λ| + o(1). Moreover, λ1 =

1− λ+ o(1) if αγ > β2 and λ1 = 1− λ2 + o(1) if αγ < β2.

Although it has been shown by Mahdian and Xu [55] that the diameter of

K(t, α, β, γ) is asymptotically constant, no bound has been given on the diameter

of the graph. Using the bounds on the spectrum of the graph, we can use Theorem

1.8 to obtain precise bounds on the diameter of the graph. Specifically, we obtain

the following.

Theorem 3.3. Let G = K(t, α, β, γ), and suppose β + γ > 1. Let λ̂ = 1− λ1, so

λ̂ = λ+ o(1) if λ > 0 and λ2 + o(1) if λ < 0. Then the diameter of G satisfies

(1 + o(1))
1

(1− λ̂)(α + 2β + γ)t
≤ diam(G) ≤ (1 + o(1))

2

λ̂
(3.1)

a.a.s..

Proof. For the lower bound, we note that by Theorem 1.8, diam(G) ≥ 1
λ1 vol(G)

.

As degrees in G are binomial random variables, the degrees are concentrated by

Chernoff bounds (Theorem 1.14), so we obtain

diam(G) ≥ 1

λ1 vol (G)

≥ 1

(1− λ̂+ o(1))
∑t

k=0

(
t
k

)
(α + β)k(β + γ)k(1 + o(1))

≥ (1 + o(1))
1

(1− λ̂)(α + 2β + γ)t
.

For the upper bound, we note that Theorem 1.8 gives

diam(G) ≤ 4
√
dmax − 1 + 2dmax

dmax(λ1 − 1) + 2
√
dmax − 1

.

As with the lower bound, concentration in the degrees of vertices gives that dmax =

(1 + o(1))(α + β)t. Thus we obtain

diam(G) ≤ 4
√
dmax − 1 + 2dmax

dmax(λ1 − 1) + 2
√
dmax − 1

≤ (1 + o(1))
4(α + β)t/2 + 2(α + β)t

(α + β)tλ̂+ 2(α + β)t/2

= (1 + o(1))
4 + 2(α + β)t/2

(α + β)t/2λ̂+ 2

= (1 + o(1))
2

λ̂
.
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Remark 3.4. As mentioned above, the spectral gap of K(t, α, β, γ) is |αγ−β2|
(α+β)(β+γ)

+

o(1). As seen in Theorem 1.7, the smaller the spectral gap, the better expansion

we experience. Thus in order for the Kronecker graph to be a reasonable expander,

we would desire that the spectral gap be close to 0. However, this can only be

attained for very specific parameter settings, namely, for β very close to √αγ,
which may not be the desired settings to produce realistic graphs [50]. Thus we

see that in general, the Kronecker graph can not be assumed to be a very good

expander.

3.3 Spectra of MAGs

We now turn to considering the spectrum of L for an MAG of the form

G = MAG(n, t,Θ, Q). In the following theorem we show that the qualitative

behavior of the spectral properties of G are essentially that of an appropriate

SKG, plus some nearly trivial eigenvalues (that is, eigenvalues very close to 1). In

particular, if the distribution Q on Γ is uniform then (up to trivial eigenvalues) the

spectrum of a tth-order MAG is the essentially the same as that of the tth-order

SKG with the same affiliation matrix.

Theorem 3.5. Let G = MAG(n, t,Θ, Q). Let D̂ be the diagonal matrix of column

sums of QΘ, and let δ be the minimum diagonal entry of D̂. Let qmin be the

minimum diagonal entry of Q. Fix ε > 0. If

t ≤ min

 log(n)− log
(
6 log

(
8n
ε

))
log
(

1
δ

) ,
log(n)− log

(
12 log

(
2n
ε

))
log
(

1
qmin

)
 , (3.2)

then with probability at least 1− ε there is a set A ⊂ [n], where A = {a1, . . . , akt},
such that for i ∈ [kt],∣∣∣∣λai(L(G))−

(
1− λkt+1−i

((
D̂−1/2Q1/2ΘQ1/2D̂−1/2

)⊗t))∣∣∣∣
≤ 3

√
6 log

(
8n
ε

)
δtn

+ 4

√
3 log

(
2n
ε

)
qtminn
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≤

√
108 log

(
8n
ε

)
nmin {qtmin, δ

t}
.

Furthermore, for all j /∈ A, |λj(L(G))− 1| ≤ 3

√
6 log( 8n

ε )
δtn

.

Proof. In order to analyze the spectrum of G we consider the random assignment

of vertices to words in Γt separately from the random generation of edges.

Fix the signature {nσ}σ∈Γt of the graph G, and define for each σ ∈ Γt,

dσ =
∑

τ∈Γt nτΘ
⊗t
σ,τ . We note that for any vertex v, E [deg(v)] = da(v) and thus the

minimum expected degree is d̄min = minσ∈Γt dσ for graphs with a fixed signature.

Now using Theorem 2.8, if d̄min ≥ 3 log
(

8n
ε

)
, then with probability at least 1− ε

2
,

|λi(L(G))− (1− λn−i+1(M))| ≤ 3

√
3 log

(
8n
ε

)
d̄min

for all i, where

Mu,v =
Θ⊗ta(u),a(v)√
da(u)da(v)

.

In order to understand the spectrum ofM , we consider the case where every

element of the signature is at least 1, that is, nσ ≥ 1 for all σ ∈ Γt. Thus for every

σ ∈ Γt, there exists a vertex v ∈ V such that a(v) = σ. We will abuse notation

and refer to any such vertex as a−1(σ). Thus we may define the kt × kt matrix by

M̃σ,τ =
√
nσnτMa−1(σ),a−1(τ). We claim that M̃ captures the non-trivial portion of

the spectrum of M .

Observe that for any two vertices u and v with a(u) = a(v), the correspond-

ing rows of M are identical, and thus for each σ ∈ Γt, M has an eigenvalue of 0 of

multiplicity nσ − 1. Hence, the multiplicity of 0 as an eigenvalue of M is at least

n − kt. In order to show that the remaining eigenvalues of M are the spectrum

of M̃ , let ϕ be an eigenvector for M with corresponding eigenvalue λ 6= 0. Define

ψ ∈ Rkt by

ψ(σ) =
1

nσ

∑
a(v)=σ

ϕ(v).

Now for any v ∈ V (G) with a(v) = σ,

λϕ(v) = Mϕ(v) =
∑
u∈V

Mv,uϕ(u) =
∑
τ∈Γt

M̃σ,τnτψ(τ).
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As this quantity is independent of the choice of v (up to choice of representative)

this implies that the eigenvector ϕ has ϕ(u) = ϕ(v) as long as a(u) = a(v). Thus

we define ϕ̃ ∈ Rkt by

ϕ̃(σ) =
√
nσψ(σ)

and we have for a(v) = σ

M̃ϕ̃(σ) =
∑
τ∈Γt

M̃σ,τ ϕ̃(τ)

=
∑
τ∈Γt

Ma−1(σ),a−1(τ)

√
nσnτ

√
nτψ(τ)

=
√
nσ
∑
τ∈Γt

Ma−1(σ),a−1(τ)nτψ(τ)

=
√
nσMϕ(v)

=
√
nσλψ(σ)

= λϕ̃(σ).

Therefore, the nonzero eigenvalues of M are the same as the nonzero eigenvalues

of M̃ , and hence it suffices to consider the spectrum of M̃ .

For each σ ∈ Γt define qσ = Q⊗tσ,σ, that is, qσ is the probability that an

arbitrary vertex v has a(v) = σ. Now the expected value of nσ is qσn ≥ qtminn, and

thus by Chernoff bounds (see Theorem 1.14), (1− ε∗) qσn ≤ nσ ≤ (1 + ε∗)qσn with

probability at least 1− ε
2
, where

ε∗ =

√
3 log

(
2kt

ε

)
qtminn

≤

√
3 log

(
2n
ε

)
qtminn

≤ 1

2
.

We note that δ = minj∈[k]

(∑k
i=1 qipij

)
≤
∑k

i=1 qi = 1. Moreover, equality holds

only in the case that Θ is the all ones matrix, in which case the graph is complete

and the theorem is trivial. Thus, we may assume δ < 1, and we obtain

d̄min ≥
1

2
δtn ≥ 1

2
nδ

log(6 log( 8n
ε ))−log(n)

log(δ) = 3 log

(
8n

ε

)
,

and thus with probability at least 1− ε, the spectrum of L(G) is controlled by the
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spectrum of M̃ with a signature near the expected signature. Thus we define

Mσ,τ =
√
qσnqτn

Θ⊗tσ,τ√∑
η∈Γt nqηΘ

⊗t
σ,η

∑
ν∈Γt nqνΘ

⊗t
τ,ν

=
√
qσqτ

Θ⊗tσ,τ√∑
η∈Γt qηΘ

⊗t
σ,η

∑
ν∈Γt qνΘ

⊗t
τ,ν

=
√
Q⊗tσ,σQ

⊗t
τ,τ

Θ⊗tσ,τ√∑
η∈Γt Q

⊗t
η,ηΘ

⊗t
σ,η

∑
ν∈Γt Q

⊗t
ν,νΘ

⊗t
τ,ν

=
√
Q⊗tσ,σQ

⊗t
τ,τ

Θ⊗tσ,τ√
D̂⊗tσ,σD̂

⊗t
τ,τ

=
(
D̂−1/2Q1/2ΘQ1/2D̂−1/2

)⊗t
σ,τ
,

where the last two equalities come from the fact that both Q and D̂ are diagonal

matrices.

We make the standard observation that for any matrix A and invertible

matrix S, the spectrum of S−1AS−1 is the same as the spectrum of S−2A, as the

eigenpairs (λ, v) for S−1AS−1 correspond to the eigenpairs (λ, S−1v) for S−2A. In

particular

‖M‖ =
∥∥∥D̂−1/2Q1/2ΘQ1/2D̂−1/2

∥∥∥ =
∥∥∥D̂−1QΘ

∥∥∥ = 1,

as D̂ is formed from the column sums of QΘ. We thus obtain∥∥∥M̃ −M∥∥∥ = max
‖f‖=1

∣∣∣fT (M̃ −M) f ∣∣∣
= max
‖f‖=1

∣∣∣∣∣∑
σ∈Γt

∑
τ∈Γt

fσ

(
M̃ −M

)
σ,τ
fτ

∣∣∣∣∣
≤ max
‖f‖=1

∑
σ∈Γt

∑
τ∈Γt

|fσ|
∣∣∣M̃ −M∣∣∣

σ,τ
|fτ |

≤ max
‖f‖=1

∑
σ∈Γt

∑
τ∈Γt

|fσ|
2ε∗

1− ε∗
|Mσ,τ | |fτ |

=
2ε∗

1− ε∗
max
‖f‖=1

∑
σ∈Γt

∑
τ∈Γt

|fσ|Mσ,τ |fτ |

≤ 2ε∗

1− ε∗
‖M‖

=
2ε∗

1− ε∗
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Thus, by Weyl’s theorem (Theorem 1.1), for any i,
∣∣∣λi(M̃)− λi(M)

∣∣∣ ≤ 2ε∗

1−ε∗ ≤ 4ε∗.

Therefore, for kt eigenvalues λ of L, we obtain

|λ− λi(M)| ≤
∣∣∣λ− λi(M̃)

∣∣∣+
∣∣∣λi(M̃)− λi(M)

∣∣∣
≤ 3

√
3 log

(
8n
ε

)
d̄min

+ 4ε∗

≤ 3

√
3 log

(
8n
ε

)
d̄min

+ 4

√
3 log

(
2kt

ε

)
qtminn

as desired. Moreover, by the observation above about the remaining eigenvalues,

we have that all other eigenvalues satisfy

|λ− 1| ≤ 3

√
3 log

(
8n
ε

)
d̄min

.

We now consider the results of this theorem applied to the special case

K(n, t,Θ, µ), where Γ = {0, 1}, Θ =

(
α β

β γ

)
, and Q =

(
µ 0

0 1− µ

)
. We will

assume that t ∼ ρ log n. In this case, we have

D̂ =

(
µα + (1− µ)β 0

0 µβ + (1− µ)γ

)
,

so δ = min{µα+(1−µ)β, µβ+(1−µ)γ}. We shall make the standard assumption

that µα+ (1−µ)β > µβ + (1−µ)γ; this is without loss of generality as the graph

is symmetric in 0s and 1s. Thus, δ = µβ + (1− µ)γ.

Let c1 = µα + (1− µ)β and c2 = µβ + (1− µ)γ. We thus obtain that

D̂−1/2Q1/2ΘQ1/2D̂−1/2 =

 µα
c1

β
√

µ(1−µ)
c1c2

β
√

µ(1−µ)
c1c2

(1−µ)γ
c2

 ,

which has eigenvalues 1 and λ = µ(1−µ)(αγ−β2)
(µα+(1−µ)β)(µβ+(1−µ)γ)

. Therefore, we have that if

t satisfies condition (3.2), then with probability at least 1 − 1
n
, G has

(
t
i

)
eigen-

values of the form 1 − λi + o(1), and all remaining eigenvalues are of the form
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1 + o(1). Note that since ρ > 0, it suffices to satisfy the bound (3.2) that

ρ ≤ min{ 1
log(1/c2)

, 1
log(1/µ)

, 1
log(1/(1−µ))

}.
We thus have that the spectral gap is |λ|+ o(1). Moreover, if αγ > β2, we

have λ1 = 1 − λ and if αγ < β2, then λ1 = 1 − λ2. We note that if G satisfies

the bound (3.2), we must have that ρ ≤ 1
log( 1

c2
)
. This is precisely the condition

required for G to be connected, as noted in Theorem 1.24.

As with the stochastic Kronecker graph, this concentration of eigenvalues

allows us to obtain precise bounds on the diameter of G. That the diameter is

constant was established in [43], but no precise bounds were provided.

Theorem 3.6. For G = K(n, t,Θ, µ) as above, satisfying (3.2), put λ̂ = 1 − λ1,

so λ̂ = λ+ o(1) if λ > 0 and λ2 + o(1) if λ < 0. Then we have

(1 + o(1))
1

(1 + λ̂)n1+c log(µα+β+(1−µ)γ)
≤ diam(G) ≤ (1 + o(1))

2

λ̂
.

Proof. The proof is similar to that of Theorem 3.3. For the lower bound, we use

Theorem 1.8 and concentration on both the number of vertices of a particular

weight and degree of vertices to obtain

diam(G) ≥ 1

λ1 vol (G)

≥ 1

(1 + o(1))(1− λ̂)
∑t

k=0

(
t
k

)
nck1c

t−k
2 (1 + o(1))

≥ (1 + o(1))
1

(1− λ̂)n(c1 + c2)ρ logn

= (1 + o(1))
1

(1− λ̂)n1+ρ log(c1+c2)
,

the desired result.

For the upper bound, we note that the expected maximum degree is (1 +

o(1))nct1 by concentration of degrees, and the assumption that c1 > c2. Using
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Theorem 1.8, we thus obtain

diam(G) ≤ 4
√
dmax − 1 + 2dmax

dmax(1− λ1) + 2
√
dmax − 1

≤ (1 + o(1))
4n1/2c

t/2
1 + 2nct1

nct1λ̂+ 2n1/2c
t/2
1

≤ (1 + o(1))
4 + 2

√
nc

t/2
1

λ̂
√
nc

t/2
1 + 2

≤ (1 + o(1))
4 + 2n

1
2

+ ρ
2

log(c1)

λ̂n
1
2

+ ρ
2

log(c1) + 2

We note that as cρ1 ≥ cρ2 >
1
e
, we must have ρ log(c1) > −1, and thus 1

2
+ ρ

2
log(c1) >

0. Thus, we obtain

diam(G) ≤ (1 + o(1))
2

λ̂
,

as desired.

Remark 3.7. As noted above, the spectral gap in K(n, t,Θ, µ) is

µ(1− µ) |αγ − β2|
c1c2

+ o(1) =

∣∣∣∣1− µ2αβ + (1− µ)2βγ

(µα + (1− µ)β)(µβ + (1− µ)γ)

∣∣∣∣+ o(1).

It is unclear what settings of parameters will make this relatively small, to ensure

good expansion. Certainly, as noted with K(t, α, β, γ) in Remark 3.4, it would be

sufficient to require β to be close to √αγ, however this choice of parameters does

not seem to necessarily generate realistic graphs [44].

3.4 Spectra of Graphs with Repeated Vertices

In this section we consider random graphs with repeated vertices. By “re-

peated vertices,” we mean a collection of vertices v1, v2, . . . , vk such that for all

u ∈ V (G), we have P(vi ∼ u) = P(vj ∼ u) for all 1 ≤ i, j ≤ k. Similar problems

were considered for deterministic graphs in [7], [8] and [11]. Here we consider the

problem of determining eigenvalues of a random graph with repeated vertices, and

in fact we find that if a graph has a large enough minimum expected degree, we

may choose vertices to repeat uniformly at random essentially without changing

the eigenvalues of the graph.
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Let Σ = {σ1, σ2, . . . , σk}, where for each pair (σi, σj) we associate a proba-

bility pij, and let P be the k×k matrix indexed by Σ with Pσi,σj = pij. Let Q be a

probability distribution on Σ, which we shall represent as a diagonal k× k matrix

with Qii = Q(σi) = qi = qσi . Define a graph G as follows. Let n be the number of

vertices of G. To each vertex in G we associate an element of Σ, called the type of

v and denoted by t(v). We choose t(v) independently for each v according to the

distribution Q. For two vertices u and v of type t(u) = σi and t(v) = σj, we define

P(u ∼ v) = pij. We denote this graph by G(n,Σ, P,Q). For each i, let nσi denote

the number of vertices of type σi. We call the collection {nσ}σ∈Σ the signature of

the graph G.

This is in fact a generalization of MAG(n, t,Θ, Q), where Σ = Γt, the distri-

butionQ inG(n,Σ, P,Q) is given by the product distributionQ⊗t in MAG(n, t,Θ, Q),

and P is defined via attribute affinity in Θ.

Essentially, we can think of Σ as a random graph in which the probability

that σi ∼ σj is pij. We then produce a new graph G by repeating vertices in Σ. In

this way we obtain clusters of vertices that behave identically with respect to the

rest of the graph, and the graph induced on each cluster is Gni,pi .

In the MAG(n, t,Θ, Q), the underlying graph is in fact an SKG, namely

SKG(Θ, t). Each word in Γt forms a cluster of vertices as described, which we saw

in Theorem 3.5 essentially have no effect on the spectrum of L for the graph. In

fact, this is generally true for these graphs G(n,Σ, P,Q).

Theorem 3.8. Let G = G(n,Σ, P,Q). Let D̂ be the diagonal matrix of column

sums of QP . Let δ be the minimum diagonal entry of D̂. Then if δ > C logn
n

for C

sufficiently large, there exists a set A = {a1, a2, . . . , ak} ⊂ [n] such that for i ∈ [k],

∣∣∣λai − (1− λi(D̂−1/2Q1/2PQ1/2D−1/2)
)∣∣∣ ≤

√
118 log

(
4n
ε

)
min{d̄min, nqmin}

.

Moreover, for i /∈ A, we have

|λi − 1| ≤ 3

√
3 log

(
4n
ε

)
d̄min

.

The precise value of C will come out of the proof.
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Proof. We first fix the signature {nσ}σ∈Σ. For each i, define dσi = di =
∑

1≤j≤k nσjpij,

so that for any vertex v, E [deg(v)] = dt(v). Moreover, the minimum expected de-

gree is d̄min = minσ∈Σ dσ. Define M to be the n× n matrix with

Mu,v =
Pt(v),t(u)√
dt(v)dt(u)

.

Note that if d̄min ≥ k(ε) log (n), then by Theorem 2.8, with probability at

least 1− ε
2
, we have

|λi(L)− (1− λn−i+1(M))| ≤ 3

√
3 log

(
4n
ε

)
d̄min

for all i.

Suppose nσ ≥ 1 for all σ ∈ Σ. Then for every σ ∈ Σ, there exists a vertex

v ∈ V such that t(v) = σ. We shall abuse notation and refer to any such vertex as

t−1(σ). We thus define the k × k matrix M̃ by M̃σ,τ =
√
nσnτMt−1(σ),t−1(τ).

Note that for any two vertices u, v with t(u) = t(v), the corresponding

rows of M are identical, and thus for each σ ∈ Σ, M has an eigenvalue of 0 of

multiplicity nσ − 1. Thus, the multiplicity of 0 as an eigenvalue of M is at least∑
σ∈Σ(nσ − 1) = n− k.

Moreover, if ϕ is an eigenvector for M with eigenvalue λ 6= 0, notice that

for any v ∈ t−1(σ), we have

λϕ(v) = Mϕ(v) =
∑
u∈V

Mv,uϕ(u)

=
∑
τ∈Σ

M̃σ,τ

 ∑
v∈t−1(τ)

ϕ(v)

 .

Note that this is independent of the choice of representative v, so we must

have that each v ∈ t−1(σ) has the same value for ϕ. Put ϕ̃ ∈ Rk to be the vector
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with ϕ̃(σ) =
√
nσϕ(t−1(σ)). Then we obtain

M̃ϕ̃(σ) =
∑
τ∈Σ

M̃σ,τ ϕ̃(τ)

=
∑
τ∈Σ

Mt−1(σ),t−1(τ)

√
nσnτ

√
nτϕ(t−1(σ))

=
√
nσ
∑
τ∈Σ

nτMt−1(σ),t−1(τ)ϕ(t−1(σ))

=
√
nσMϕ(t−1(σ))

= λ
√
nσϕ(t−1(σ)) = λϕ̃(σ).

Therefore, the nonzero eigenvalues of M are the same as the nonzero eigen-

values of M̃ . Hence, it suffices to consider the spectrum of M̃ .

Note that for each σ ∈ Σ, the expected value of nσ is qσn ≥ qminn, where

qmin = minσ∈Σ qσ. Therefore, by Chernoff bounds (Theorem 1.14), we have that

(1− ε∗)qσn ≤ nσ ≤ (1 + ε∗)qσn for all σ with probability at least 1− ε
2
, where

ε∗ =

√
2 log

(
4k
ε

)
qminn

≤

√
2 log

(
4n
ε

)
qminn

≤ 1

2
.

Therefore, we have that with probability at least 1 − ε
2
the minimum ex-

pected degree in G satisfies

dmin = min
1≤i≤k

k∑
j=1

njpij

≥ min
1≤i≤k

n∑
j=1

(1− ε∗)nqjpij

= (1− ε∗)nδ ≥ (1− ε∗)C log n

We choose C so that (1− ε∗)C > k(ε) as in Theorem 2.8. Thus, we obtain

that with probability at least 1− ε, we have concentration of the Laplacian eigen-

values of G on the eigenvalues of I −M , and G has a signature within a factor

of ε∗ of the expected signature. It remains only to consider the eigenvalues of M̃ .

Define
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Mσ,τ =
√
qσnqτn

Pσ,τ√∑
η∈Σ nqηPσ,η

∑
ν∈Σ nqνPτ,ν

=
√
qσqτ

Pσ,τ√∑
η∈Σ qηPσ,η

∑
ν∈Σ qνPτ,ν

=
√
Qσ,σQτ,τ

Pσ,τ√∑
η∈Σ Qη,ηPσ,η

∑
ν∈ΣQν,νPτ,ν

=
√
Qσ,σQτ,τ

Pσ,τ√
D̂σ,σD̂τ,τ

=
(
D̂−1/2Q1/2PQ1/2D−1/2

)
σ,τ
,

as both Q and D̂ are diagonal matrices.

As in the proof of Theorem 3.5, we note that for any matrix A and invertible

matrix S, the spectrum of S−1AS−1 is the same as that of S−2A. Therefore,

‖M‖ = ‖D̂−1/2Q1/2PQ1/2D−1/2‖ = ‖D̂−1QP‖ = 1,

as D̂ is precisely the column sums of QP . Moreover,

‖M̃ −M‖ = max
‖f‖=1

∣∣∣fT (M̃ −M)f
∣∣∣

= max
‖f‖=1

∣∣∣∣∣∑
σ∈Σ

∑
τ∈Σ

fσ(M̃ −M)σ,τfτ

∣∣∣∣∣
≤ max

‖f‖=1
|fσ|

∣∣∣M̃ −Mσ,τ

∣∣∣ |fτ |
≤ max

‖f‖=1
|fσ|

(
2ε∗

1− ε∗

)
Mσ,τ |fτ |

=
2ε∗

1− ε∗
‖M‖ =

2ε∗

1− ε∗
.

Therefore, by Wey’s Theorem (Theorem 1.1),∣∣∣λi(M̃)− λi(M)
∣∣∣ ≤ 2ε∗

1− ε∗
≤ 4ε∗.
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We thus obtain that G has k eigenvalues λ with

∣∣∣λ− (1− λi(D̂−1/2Q1/2PQ1/2D−1/2)
)∣∣∣ ≤ 3

√
3 log

(
4n
ε

)
d̄min

+ 4

√
2 log

(
4n
ε

)
qminn

≤

√
118 log

(
4n
ε

)
min{d̄min, nqmin}

.

Moreover, all remaining eigenvalues satisfy

|λ− 1| ≤ 3

√
3 log

(
4n
ε

)
d̄min

.

Corollary 3.9. Let H be a random graph with h vertices and minimum expected

degree d̄min > r log h. Let ε > 0, and let G be obtained from H by choosing n ≤ hr/C

vertices uniformly at random from the vertex set of H, where C is the constant

defined in Theorem 3.8, and joining vertices with the same probability as in H.

Then with probability at least 1− ε, the graph G has h eigenvalues λ that satisfy

|λ− λi(H)| ≤

√
118 log

(
4n
ε

)
min{d̄min,

n
h
}
,

and all remaining eignvalues of G satisfy

|λ− 1| ≤ 3

√
3 log

(
4n
ε

)
d̄min

.

Proof. Let P = ĀH . As we have chosen the vertices of G uniformly at random

from H, we have Q = 1
h
I, so QP = 1

h
P and D̂ = 1

h
D̄H . Thus, we have

δ =
1

h
r log h ≥ 1

n
C log hr/C = C

log n

n
,

and we may apply Theorem 3.8. To complete the result, notice that

D̂−1/2Q1/2PQ1/2D−1/2 = (
1

h
D̄)−1/2(

1

h
I)1/2P (

1

h
I)1/2(

1

h
D̄)−1/2

=
√
hD̄
−1/2
H

1√
h
ĀH

1√
h

√
hD̄
−1/2
H

= I − L̄(H).
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Chapter 4

Giant components in Stochastic

Kronecker and Multiplicative

Attribute Graphs

4.1 Introduction

A giant component in a graph G on n vertices is a connected component of

size Θ(n). In [31], Erdős and Rényi analyzed the random graph Gn,p as p changes

from 0 to 1. Parametrizing p as p = c
n
, they observed a sharp change in behavior,

occurring at c = 1. In particular, if c < 1, the graph is composed of components

with size at most O(log n), but if c > 1, the graph contains one giant component

of size Θ(n), and all other components of size O(log n). The value c = 1 is called

the threshold for the emergence of the giant component in Gn,p.

As the study of random graphs has grown, this type of behavior has been

observed in many different random graph models [58], [57], [20], [39], [13], [34], [37].

That is to say, in many different random graph models, one can find a threshold

for the parameters that define the model so that if one chooses parameters below

the threshold, all components are of size o(n), but if one chooses parameters above

the threshold, there exists a giant component of size Θ(n).

The study of giant components fundamentally consists of three aspects.

46
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First, and most importantly, is the determination of the giant component threshold.

Once such a threshold has been established, two questions naturally arise: is the

giant component unique in the graph, and what is its asymptotic size? As the

giant component has size Cn for some constant C, it is natural to ask if we can

bound C, and if it is possible to have two components with size Θ(n).

Finally, it is of interest to study what happens at the point of transition.

This has been widely studied for various graphs [12], [19], [29], [42], [54]. In Gn,p,

it is known that if p = 1
n

+ λ
n2/3 , the value of λ (which may itself be a function of

n) determines the component structure of Gn,p.

In this chapter, we consider the questions of emergence, uniqueness, and

size of the giant component for K(t, α, β, γ) and K(n, t,Θ, µ). For both of these

random graphs, we provide a necessary and sufficient condition on parameters for

the emergence of the giant component, as well as establish its uniqueness and

asymptotic size.

Throughout this chapter, as we will be studying random graphs with at-

tribute affinity where the attribute vectors are binary, we will make extensive use

of bounds on binomial coefficients. The following theorem, known as the entropy

bounds, will be particularly useful.

Theorem 4.1 (Entropy Bounds). [63] For any n and 0 < p < 1,(
n

pn

)
>
p−pn(1− p)−(1−p)n

e
√

2πnp(1− p)
(4.1)

and (
n

pn

)
<

enH(p)√
2πnp(1− p)

. (4.2)

Moreover, in this chapter we will often talk about binomial coefficients of

the form
(
n
pn

)
. We will typically treat pn as an integer for the purpose of bounding

the coefficients. Of course, it may not be the case that pn is in fact integral; in

that case we should be taking bpnc in its place. However, the computations we

shall use (such as Theorem 4.1) will differ by at most a 1 + o(1) factor from the

true computations using bpnc, and as such we will omit the floors.
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4.2 Giant Components in SKGs

In this section we examine conditions for the emergence of the giant com-

ponent in a stochastic Kronecker graph with a 2 × 2 affinity matrix and n = 2t

vertices. We note that Mahdian and Xu proved a necessary and sufficient con-

dition for the emergence of the giant component in K(t, α, β, γ) in the case that

α > β > γ in [55]. Here, we generalize that result to any K(t, α, β, γ) via a sub-

stantially different proof. Moreover, we establish the asymptotic size of the giant

component in the SKG with 2× 2 affinity matrix.

4.2.1 Emergence of the Giant Component

We will first prove the following theorem.

Theorem 4.2. Let G = K(t, α, β, γ). A necessary and sufficient condition for G

to have a giant component of size Θ(n) a.a.s. is that (α + β)(β + γ) > 1.

We shall assume throughout, without loss of generality, that α > γ. As we

have seen in Remark 3.4, G does not necessarily have good expansion properties.

The approach to establishing Theorem 4.2 will be to find a section of G with good

expansion, and show that this is contained in a giant component. In so doing, we

gain structural information about the giant component itself, which will allow us

to establish the asymptotic size of the giant component in Theorem 4.9, as well as

establish the uniqueness of such a component.

Given s ∈ [t], let Vs denote the set of vertices with weight s and Gs the

subgraph of G induced on Vs. For a vertex v with weight k, we say a neighbor u

of v is of type (a, b) if u shares k − a 1s with v and (t− k)− b 0s with v. That is
to say, we may think of u being obtained from v by changing a 1s to 0s and b 0s

to 1s.

Let

k =
α + β

α + γ + 2β
t, ` =

β

α + 2β + γ
t =

β

α + β
k, (4.3)

and let H denote the subgraph of G with V (H) = Vk and E(H) = {uv ∈ G :

u · v = k − `}. That is, H is the subgraph of vertices with weight k and edges of

type (`, `).
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Notice that if ω(v) = k, then the expected number of neighbors of v of type

(a, b) is (
k

a

)(
t− k
b

)
βaαk−aβbγt−k−b.

To select the above parameters k and `, we first find a and b that maximize this

expression in terms of k, and then find k so that a = b, resulting in the above

parameters.

Lemma 4.3. For a vertex v ∈ Vk, we have E [degH(v)] is(
k

`

)(
t− k
`

)
β2`αk−`γt−k−` > (1 + o(1))ct.

for some c > 1.

Proof. Now, `
k

= β
α+β

and `
t−k = β

β+γ
, so the entropy bound (4.1) gives us(

k

`

)(
t− k
`

)
β`αk−`β`γt−k−`

>
(α + β)(β + γ)

(
α+β
β

)` (
α+β
α

)k−` (β+γ
β

)` (
β+γ
γ

)t−k−`
2e2πkβ

√
αγ

β2`αk−`γt−k−`

=
(α + β)(β + γ)

2e2πkβ
√
αγ

(α + β)k(β + γ)t−k

=
1

2e2πkβ
√
αγ

((α + β)(β + γ))t−k+1(α + β)2k−t. (4.4)

Notice that α > γ and (α + β)(β + γ) > 1 implies that α + β > 1 and also that

k > t
2
. Thus (4.4) is exponential in t as desired. Note that, while for our purposes

it will not be required, the c we obtain is

c = ((α + β)(β + α))
α+β

α+γ+2β (α + β)
α−γ

α+γ+2β > 1.

Let G(t, k, `) denote the graph with vertex set V (G(t, k, `)) = {S ⊂ [t] :

|S| = k}, where two vertices S and T are adjacent if |S∩T | = k− `. Note that our
graph H is a percolated version of this graph where each edge is taken indepen-

dently with probability β2`αk−`γt−k−`. In order to show that H is a.a.s. connected,

we will first derive some information on G(t, k, `), and then take advantage of the



50

fact that the expected degree of each vertex in H is exponential in t, as shown

above in Lemma 4.3.

Lemma 4.4. Suppose t ≥ k + ` and ` < k. For any two distinct vertices U and

V in G(t, k, `), let s = |U ∩ V |. Then

dist(U, V ) ≤



1 s = k − `
2 s > k − ` and s ≥ 2`+ k − t
2
⌈

2`+k−t−s
t−2`

⌉
+ 2 s > k − ` and s < 2`+ k − t⌈

k−`−s
`

⌉
+ 2 s < k − ` and s > 2`+ k − t⌈

k−`−s
`

⌉
+ 2

⌈
3`−t
t−2`

⌉
+ 2 s < k − ` and s < 2`+ k − t

Proof. Let ζ = t − k − `, so 2` + k − t = ` − ζ. For ease of notation we let

M = U4V and Z = [t]− (U ∪V ). Note that |M | = |U ∩M |+ |V ∩M | = 2(k− s),
and |Z| = t − s − 2(k − s) = t − 2k + s = s − k + ` + ζ. Thus we have that

s ≥ k − ` − ζ. Now if s = k − `, then U ∼ V and dist(U, V ) = 1, hence we may

assume that k − `− ζ ≤ s < k − ` or k − ` < s < k. We consider several cases.

Case 1: s > k − ` and s ≥ `.

As s > `, there is a set A ⊆ U∩V where |A| = s−`, and as |Z| = s−k+`+ζ,

there is a set B ⊆ Z where |B| = s − k + `. Define W = A ∪ M ∪ B. Now

|W | = |A|+ |M |+ |B| = (s− `) + (2k − 2s) + (s− k + `) = k so W is a vertex in

G(t, k, `). Furthermore, |U∩W | = |A|+ |U∩M | = (s−`)+(k−s) = k−` and thus

U ∼ W . Similarly, V ∼ W . Hence, if s > k − ` and s ≥ `, then dist(U, V ) = 2.

Case 2: s > k − ` and ` > s ≥ `− ζ.
Then |M ∩U | = |M∩V | = k−s > k−`, and thus there are sets A ⊆M ∩U

and B ⊆M ∩ V such that |A| = k − ` = |B|. Now, as

|Z| = s− k + `+ ζ ≥ (`− ζ − k) + `+ ζ = 2`− k

and 2`−k = `+(`−k) > `−s > 0, there is a set C ⊆ Z such that |C| = 2`−k. Let
W = A∪B∪C. Then |W | = 2(k−`)+2`−k = k, and |W ∩U | = |W ∩V | = k−`.
Thus W is a vertex in G(t, k, `) and U ∼ W ∼ V and dist(U, V ) = 2.

At this point, in order to construct a path between U and V , it suffices to exhibit
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a vertex W such that dist(U,W ) < ∞ and |W ∩ V | > |U ∩ V |, as then repeated

applications will terminate in some vertexW ′ where |W ′∩V | > k−` and |W ′∩V | ≥
`− ζ .

Case 3: s < k − ` and s ≥ `− ζ.
As k− `− s > 0, there exists a set B ⊂M ∩ V with |B| = ` and a set A ⊂

M∩U with |A| = k−`−s. LetW = (U∩V )∪A∪B, so |W | = s+k−`+s+` = k,

and U ∼ W . Moreover, |W ∩ B| = s + `. Thus, after m =
⌈
k−`−s
`

⌉
applications,

we obtain a vetex W ′ with |W ′ ∩B| = s+m` ≥ s+ k− `− s = k− `, and we may

apply Case 2 to obtain

dist(U, V ) ≤
⌈
k − `− s

`

⌉
+ 2.

Case 4: s > k − ` and s < `− ζ. As `− s− ζ > 0 we may partition U ∩M into

disjoint sets M `
U ,M

ζ
U ,MU , where |M `

U | = k − `, |M ζ
U | = ζ and |MU | = ` − s − ζ.

Define M `
V , M

ζ
V and MV analogously. Let W1 = M `

U ∪M `
V ∪MV ∪ Z and define

W2 = MU ∪ (U ∩ V ) ∪M `
V ∪M

ζ
V . Then we have

|W1| = 2(k − `) + (`− s− ζ) + (s− k + `+ ζ) = k

|W2| = (`− s− ζ) + s+ (k − `) + ζ = k

|U ∩W1| = |M `
U | = k − `

|W1 ∩W2| = |M `
V | = k − `

|W2 ∩ V | = s+ k − `+ ζ > s

Therefore, U ∼ W1 ∼ W2, and |W2∩V | = s+(k−`)+ζ > s. Thus, after
⌈

2`+k−t−s
t−2`

⌉
steps, we have vertices W ′

1 and W ′
2 such that |W ′

2 ∩ V | = s + m(k − ` + ζ) =

s+m(t− 2`) ≥ s+ 2`+ k − t− s = `− ζ. Thus we may apply Case 2 or Case 3

to obtain

dist(U, V ) ≤ 2

⌈
2`+ k − t− s

t− 2`

⌉
+ 2.

Case 5: s < k − ` and s < `− ζ.
As |M ∩U | = |M ∩V | = k− s, and s < k− `, there exists A ⊆M ∩U with

|A| = k− `− s. As k− s > k− (k− `) = `, there exists B ⊆M ∩ V with |B| = `.

Let W = (U ∩ V ) ∪ A ∪ B. Then we have |W | = s + (k − ` − s) + ` = k and

|W ∩U | = |U ∩V |+ |A| = s+ (k− `− s) = k− `. Thus W is a vertex in G(t, k, `)
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and U ∼ W . Furthermore, |V ∩W | = |U ∩ V | + |B| = s + `. Thus after at most

m =
⌈
k−`−s
`

⌉
steps, we have a vertexW ′ with |W ′∩V | = s+m` ≥ s+k−`−s = k−`.

We may then apply Case 4 to obtain

dist(U, V ) ≤
⌈
k − `− s

`

⌉
+ 2

⌈
2`+ k − t− (s+ `

⌈
k−`−s
`

⌉
)

t− 2`

⌉
+ 2

≤
⌈
k − `− s

`

⌉
+ 2

⌈
2`+ k − t− (k − `)

t− 2`

⌉
+ 2

≤
⌈
k − `− s

`

⌉
+ 2

⌈
3`− t
t− 2`

⌉
+ 2.

In the case of k and ` as defined in equation (4.3), we have

k + ` =
α + β

α + γ + 2β
t+

β

α + 2β + γ
t =

α + 2β

α + 2β + γ
t ≤ t

and

` =
β

α + β
k < k.

Therefore, applying Lemma 4.4, we have

diam(G(t, k, `)) ≤ max

{
2, 2

⌈
2`+ k − t− (k − `)

t− 2`

⌉
+ 2,⌈

k − `− (2`+ k − t)
`

⌉
+ 2,

⌈
k − `
`

⌉
+ 2

⌈
3`− t
t− 2`

⌉
+ 2

}
≤ max

{
2,

2β

α + γ
+ 2,

α + γ

β
+ 2,

α

β
+

2β

α + γ
+ 3

}
= Θ(1)

As any permutation of [t] is an automorphism of G(t, k, `) and we can easily

construct a permutation that maps any edge to any other, we have that G(t, k, `)

is edge transitive. Thus, we may apply Theorem 1.10 together with the fact that

G(t, k, `) has constant diameter to obtain the following.

Lemma 4.5. For K = G(t, k, `) as above, hK ≥ C for some constant C. In

particular, for any set S ⊆ V (K) with |S| = s ≤ |V (K)|/2, we have

e(S, S̄) ≥ C vol (S) = Cs

(
k

`

)(
t− k
`

)
.
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As observed above, the graph H is a percolated version of G(t, k, `) where

each edge is chosen independently with probability β2`αk−`γt−k−`. We are now

prepared to prove that H is connected with high probability.

Theorem 4.6. Let H be as described above. Then H is connected a.a.s..

Proof. Let S ⊆ V (H), with |S| = s ≤ |V (H)|/2. By Lemma 4.5, in G(t, k, `),

we have e(S, S̄) ≥ Cs
(
k
`

)(
t−k
`

)
. Thus, in H, we have at least Cs

(
k
`

)(
t−k
`

)
potential

edges from S to S̄. Therefore,

E
[
e(S, S̄)

]
≥ Cs

(
k

`

)(
t− k
`

)
β2`αk−`γt−k−`

≥ sΘ(ct)

by Lemma 4.3. Moreover, e(S, S̄) is binomially distributed, so by Chernoff bounds

(see Theorem 1.15), we have

P
(
e(S, S̄) ≤ 1

2
E
[
e(S, S̄)

])
= P

(
e(S, S̄)− E

[
e(S, S̄)

]
≤ −1

2
E
[
e(S, S̄)

])
≤ e−

1
8
E[e(S,S̄)]

≤ e−sΘ(ct).

Let A denote the event that there exists a set S ⊆ V (H) with e(S, S̄) = 0.

Then A is precisely the event that H is disconnected. By the union bound

P(A) ≤
|V (H)|/2∑
s=1

∑
|S|=s

P(e(S, S̄) = 0)

≤
|V (H)|/2∑
s=1

((t
k

)
s

)
exp(−s ·Θ(ct))

≤
|V (H)|/2∑
s=1

((
t

k

)
exp(−Θ(ct))

)s

≤
|V (H)|/2∑
s=1

(o(1))s = o(1).
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Note that we used the fact that
(
t
k

)
exp(−Θ(ct)) = o(1). This is easily ver-

ified by taking logs: log
(
t
k

)
= o(t log t) while log(exp(Θ(ct))) = Θ(ct). Therefore,

P(A) = o(1) and thus H is connected a.a.s..

We are now ready to complete the proof of Theorem 4.2, and to establish

the upper bound in Theorem 4.9.

We first establish the necessity of the condition in Theorem 4.2 with the

following theorem. We note that a similar technique is used in [55], although we

include a proof here for the sake of completeness.

Theorem 4.7. Suppose G = K(t, α, β, γ), and (α + β)(β + γ) < 1. Then G

contains n− o(n) isolated vertices a.a.s..

Proof. Let ε = 1−(α+β)(β+γ) > 0. Let v ∈ V have weight ω(v) = w ≤ t/2+t2/3.

Then the expected degree of v is

(α + β)w(β + γ)t−w ≤ (α + β)t/2+t2/3(β + γ)t/2−t
2/3

≤ ((α + β)(β + γ))t/2
(
α + β

β + γ

)t2/3
≤ (1− ε)

1
2

logn

(
α + β

β + γ

)(logn)2/3

= o(1)

Thus, v is isolated a.a.s.. Moreover, the proportion of vertices with weight at most

t/2 + t2/3 is at least 1− e−(t2/3)2/2t = 1− o(1) by the Chernoff bound (see Theorem

1.13). Therefore, there are at least n− o(n) isolated vertices in G a.a.s., and thus

G has no giant component a.a.s..

We now turn our attention to establishing the sufficiency of the condition

in Theorem 4.2. For the remainder of this section, we assume K(t, α, β, γ) has

(α + β)(β + γ) > 1, and α ≥ γ. Also, we set k and ` as in equation (4.3).

Theorem 4.8. Suppose s 6= k, with

s ≥
2 log(t)− t log(β + γ)− log

(
(α+β)(β+γ)
2e2πβt

√
αγ

)
log(α+β

β+γ
)

. (4.5)

Then for every vertex v ∈ Vs, a.a.s. there exists r with |r − k| < |s− k| such that

there is a vertex u ∈ Vr with v ∼ u.
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The precise bound on s in the statement of Theorem 4.8 is quite technical,

and falls out from the proof. Note that

s ≥ − log(β + γ)

− log(β + γ) + log(α + β)
t+ Θ(log t).

As (α + β)(β + γ) > 1, we have that

m =
− log(β + γ)

− log(β + γ) + log(α + β)
<

1

2
. (4.6)

In particular, Theorem 4.8 holds for all vertices with weight at least t
2
. Thus, a.a.s.

every vertex of weight at least t
2
can be connected by a path to a vertex of weight

k. Moreover, Lemma 4.6 shows that a.a.s. Gk is connected, and thus we have a

giant component of size at least n
2
. Thus, Theorem 4.8 is sufficient to complete the

proof of Theorem 4.2.

If β + γ > 1, then note that all non-negative s satisfy equation (4.5). That

is, the graph is connected, as shown in [55] and mentioned above in Theorem 1.21.

Proof of Theorem 4.8. Suppose v ∈ Vs. The expected number of neighbors of v of

type (a, b) is (
s

a

)(
t− s
b

)
βaαs−aβbγt−s−b.

Let a = β
α+β

s and b = β
β+γ

(t− s). Then the weight of a neighbor of v of type (a, b)

is

f(s) =
α

α + β
s+

β

β + γ
(t− s).

Note that as f is linear, we obtain

k > f(s) > s when s < k.

k < f(s) < s when s > k.

f(s) = s when s = k.

Therefore, a neighbor of v of type (a, b) has weight r, with |r− k| < |s− k|. Using
the entropy bound (equation (4.1)), the expected number of neighbors of v of type
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(a, b) is(
s

a

)(
t− s
b

)
βaαs−aβbγt−s−b

>
(α + β)(γ + β)

(
α+β
β

)a (
α+β
α

)s−a (β+γ
β

)b (
β+γ
γ

)t−s−b
2e2πβ

√
s(t− s)αγ

βaαs−aβbγt−s−b

=
(α + β)(γ + β)

2e2πβ
√
s(t− s)αγ

(α + β)s(γ + β)t−s ≥ t2. (4.7)

The lower bound on s in the statement of the theorem is chosen precisely

so that inequality (4.7) holds.

The number of neighbors of v with weight r is binomially distributed, so

the Chernoff bounds (see Theorem 1.13) imply that the probability that v has no

neighbors with weight r is bounded as

P(e(v, Vr) = 0) ≤ 1

2
E [e(v, Vr)]

≤ exp

(
−1

8
E [e(v, Vr)]

)
≤ exp

(
−t

2

8

)
.

As there are 2t vertices in K(t, α, β, γ), by the union bound

P(∃v : ω(v) > s and e(v, Vr) = 0) ≤ 2t exp

(
−t

2

8

)
= o(1).

Therefore, a.a.s. no such v exists, and the Theorem is proven.

4.2.2 Size of the Giant Component

In this section we investigate the asymptotic size of the giant component

in K(t, α, β, γ). By definition, the giant component has size at least Cn for some

constant C; in Theorem 4.2, we establish that the giant component is of size at least

n−O
((

t
mt+log t

))
, where m is as defined below in Theorem 4.9. Here we show that

in fact that the number of vertices that are not in the giant component is indeed

Θ
((

t
mt

))
, so the bound determined above on the size of the giant component is in

fact accurate. Note moreover that this result will also imply the uniqueness of the
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giant component, as we will show that in fact most vertices that are not in the

giant component are isolated.

Theorem 4.9. Suppose α, β, γ ∈ (0, 1) with (α + β)(β + γ) > 1 and α ≥ γ. By

Theorem 4.2, K(t, α, β, γ) has a giant component a.a.s.. Suppose, moreover, that

β+γ < 1. Let X denote the set of vertices of K(t, α, β, γ) that are not in the giant

component. Then a.a.s.

|X| = Θ

((
t

mt

))
where

m =
− log(β + γ)

− log(β + γ) + log(α + β)
(4.8)

We note that in Theorem 4.9, the assumption that β + γ < 1 is not very

restrictive; if β + γ ≥ 1 then the graph is connected a.a.s. (see Theorem 1.21).

Furthermore, if β + γ ≥ 1 then the constant m is negative, so one could omit the

restriction by replacing m with the maximum of the stated value or 0. In order

to derive the precise result, we must examine the vertices with weight mn + o(n)

more closely.

Again, we consider the set Vs of vertices with weight s. For a vertex v ∈ Vs,
its expected degree is

E [deg(v)] =
s∑

a=0

t−s∑
b=0

(
s

a

)(
t− s
b

)
βaαs−aβbγt−s−b − αsγt−s (4.9)

= (α + β)s(β + γ)t−s − αsγt−s. (4.10)

The αsγt−s term corresponds to a ‘self loop’ at a vertex. For the purposes of this

proof, we wish to consider edges that leave the vertex, so we will omit this term.

In the proof of Theorem 4.2, we chose a = β
α+β

s and b = β
β+γ

s to approx-

imately maximize Equation (4.10). In order to establish Theorem 4.9 we need a

more precise understanding of the summation.

Lemma 4.10. Let ε > 0 be such that (1 + ε) β
α+β

< 1. Moreover, suppose that
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s = s(t), and there exists r with 0 < r < 1, and s
t
→ r. Then

s∑
a=(1+ε) β

α+β
s

(1−ε) β
β+γ

(t−s)∑
b=0

(
s

a

)(
t− s
b

)
βaαs−aβbγt−s−b = o((α + β)s(β + γ)t−s).

Proof. Let

g(a, b) =

(
s

a

)(
t− s
b

)
βaαs−aβbγt−s−b.

Then
g(a+ 1, b)

g(a, b)
=
s− a
a+ 1

β

α
.

For a ≥ (1 + ε) β
α+β

s,

g(a+ 1, b)

g(a, b)
=

s− (1 + ε) β
α+β

s

(1 + ε) β
α+β

s+ 1
· β
α

≤ α + β

α(1 + ε)
− β

α

=
α− εβ
α(1 + ε)

≤ 1

1 + ε
.

Thus
s∑

a=(1+ε) β
α+β

s

g(a, b) ≤
s∑

a=(1+ε) β
α+β

s

(1 + ε)a−(1+ε) β
α+β

sg

(
(1 + ε)

β

α + β
s, b

)

≤ Cg

(
(1 + ε)

β

α + β
s, b

)
,

where C is obtained by summing the geometric series.

A similar bound on g(a,b−1)
g(a,b)

allows us to derive that

s∑
l=(1+ε) β

α+β
s

(1−ε) β
β+γ

s∑
b=0

g(a, b) ≤ C ′g

(
(1 + ε)

β

α + β
s, (1− ε) β

β + γ
s

)
. (4.11)

Note that
(1+ε) β

β+α
s∑

(1+ε) β
α+β

s−log(s)

(1−ε) β
β+γ

(t−s)+log s∑
b=(1−ε) β

β+γ
(t−s)

g(a, b) = ω

(
g

(
(1 + ε)

β

α + β
s, (1− ε) β

β + γ

))
.
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as the sums are bounded below by a geometric series with ratio greater than one.

Together with equation (4.11), this completes the proof.

We next use the following lemma in order to establish the lower bound in

Theorem 4.9.

Lemma 4.11. Let X and m be as in Theorem 4.9. Then a.a.s.

|X| = Ω

((
t

mt

))
.

Proof. Let l = mt− 1. Then the expected degree of a vertex v with weight l is

E [deg(v)] = (α + β)mt−1(β + γ)t−mt+1

=
β + γ

α + β

(
(α + β)m(β + γ)1−m)t

=
β + γ

α + β
=: q < 1

by the definition of m. Take p = P(deg(v) = 0) ≥ 1− q > 0.

Let Y denote the set of isolated vertices with weight l. Then E [|Y |] = p
(
t
l

)
.

We write |Y | =
∑

v∈Vl zv where zv is the indicator that v is isolated. The zv are

not independent, however we have

E [zvzu] =
∏
x∈V

(1− P(x ∼ v))
∏
y∈V
y 6=v

(1− P(y ∼ u))

=
E [zv]E [zu]

1− P(u ∼ v)

= E [zv]E [zu] +
P(u ∼ v)

1− P(u ∼ v)
E [zv]E [zu]

Thus, as E [zv] = E [zu] = p and P(u ∼ v)→ 0, we obtain

Cov(zv, zu) = E [zvzu]− E [zv]E [zu]

=
P(u ∼ v)

1− P(u ∼ v)
E [zv]E [zu]

= o(p2).

Moreover,

Var (zv) = p(1− p).
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Thus we have

Var
(
|Y |2

)
=

∑
v

Var (zv) +
∑
v∈Vl

∑
u∈Vl
u6=v

Cov(zv, zu)

≤ p(1− p)
(
t

l

)
+ o

(
p2

(
t

l

)2
)

= o

((
t

l

)2
)
.

Since Var (|Y |2) = o(
(
t
l

)2
) = o(E [|Y |]2), Chebyshev’s inequality (see Theorem 1.12)

implies that for any c > 0,

P
(∣∣∣∣|Y | − p(tl

)∣∣∣∣ ≥ c

(
t

l

))
≤
o
((

t
l

)2
)

c2
(
t
l

)2 = o(1).

Therefore, a.a.s. we have that |Y | = p
(
t
l

)
+ o

((
t
l

))
, and thus |X| ≥ c

(
t
l

)
≥ c′

(
t
mt

)
a.a.s., establishing the result.

Using Lemma 4.11, we can derive from Theorem 4.8 that(
t

mt

)
� |X| �

(
t

mt+ C log(t)

)
for some absolute constant C, but these differ by a factor polynomial in t (and

hence by a poly-logarithmic factor in n.) Here, the � symbol is in the traditional

number theoretic sense, that is, f(x)� g(x) if f(x) = O(g(x)).

Proof of Theorem 4.9. By Lemma 4.11, it suffices to show that |X| = O(
(
t
mt

)
)

a.a.s. Let f be as in the proof of Theorem 4.8.

Suppose s = mt+O(log(t)). Choose ε > 0 and small enough that

α− εβ
α + β

s+
β − εγ
α + β

(t− s) > (m+ ε)t;

such exists by our observation on f(s).

Note that, by Theorem 4.8, for t sufficiently large, if s′ ≥ (m+ ε)t, then all

vertices in Vs′ are in the giant component a.a.s.. Thus, a vertex in Vs which is not

in the giant component has no edges into Vs′ for s′ ≥ (m+ ε)t.

Consider a vertex v with weight ω(v) = mt+O(log(t)). We say that an edge

from v is good if it of type (a, b), where a ≤ (1 + ε) β
α+β

s and b ≥ (1− ε) β
β+γ

(t− s).
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(Note that when we say an edge vu incident to v is good, we are assuming the

edge type is considered at the vertex v. In this way, an edge may be good when

considered from v but not from u). Let Y be the set of vertices with weight

mt + O(log(t)) that have no incident good edges. Note that if v has an incident

good edge, then it is connected to a vertex u ∈ Vs′ with s′ ≥ (m + ε)t, so every

vertex not in Y is in the giant component a.a.s., hence |Y | ≥ |X|.
Let Zv denote the number of good edges incident to v. By Lemma 4.10

E [Zv] = (1 + o(1))(α + β)s(γ + β)t−s.

For each v, put Wv to be the set of vertices u for which the edge vu is good (if

it exists). Since each edge occurs independently, Zv is the sum of independent

indicator functions, so we can write

P(Zv = 0) =
∏
u∈Wv

(1− P(v ∼ u))

≤ exp

(
−
∑
u∈Wv

P(v ∼ u)

)
= exp(−E [Zv]).

Thus, for t sufficiently large,

P(v ∈ Y ) = P(Zv = 0) ≤ exp

(
−1

2
(α + β)s(γ + β)t−s

)
.

By Theorem 4.8, there exists a C such that if s > mt + C log(t), then all

vertices in Vs are in the giant component a.a.s.. Thus

|X| ≤
mt+C log(t)∑

s=0

|Y ∩ Vs|.

Choose r to be the least integer such that

exp

(
−1

2

(
α− γ
β + γ

)(
α + β

β + γ

)r)
1−m
m

<
1

2
.

Define

g(k) = exp

(
−1

2
(α + β)mt+r+k(γ + β)t−mt−r−k

)(
t

mt+ r + k

)
.
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We have chosen r precisely so that for k ≥ 0,
g(k + 1)

g(k)
<

1

2
.

This implies that g(k) < 1
2
g(k − 1) < 1

4
g(k − 2) < · · · < 2−kg(0). We therefore

obtain

E

mt+C log(t)∑
s=mt+r

|Y ∩ Vs|

 =

mt+C log(t)∑
s=mt+r

E [|Y ∩ Vs|]

≤
mt+C log(t)∑
s=mt+r

(
t

s

)
exp

(
−1

2
(α + β)s(γ + β)t−s

)

=

C log(t)−r∑
k=0

g(k)

≤
C log(t)−r∑

k=0

2−kg(0)

≤ 2g(0).

As
∑mt+C log(t)

s=mt+r |Y ∩ Vs| can be written as the sum of independent indicator func-

tions, it is tightly concentrated by the Chernoff bounds and hence a.a.s.
mt+C log(t)∑
s=mt+r

|Y ∩ Vs| ≤ (1 + o(1))2g(0) = Θ

((
t

mt+ r

))
= O

((
t

mt

))
.

Note that
mt+r∑
s=0

|Y ∩ Vs| ≤
mt+r∑
s=0

(
t

s

)
= Θ

((
t

mt+ r

))
= Θ

((
t

mt

))
.

Thus

|X| ≤
mt+C log t∑

s=0

|Y ∩ Vs| = Θ

((
t

mt

))
+O

((
t

mt

))
= Θ

((
t

mt

))
,

a.a.s., completing the proof.

4.3 Giant Components in MAGs

We now turn to the giant component in G = K(n, t,Θ, µ). As we have from

Theorem 1.23 that the expected degree of a vertex in G is

n(µα + (1− µ)β)ω(v)(µβ + (1− µ)γ)t−ω(v), (4.12)
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the conditions for the emergence of the giant component in G will depend upon

µα+(1−µ)β and µβ+(1−µ)γ. For ease of notation, we will write c1 = µα+(1−µ)β

and c2 = µβ + (1− µ)γ. Moreover, by symmetry, we may assume that c1 ≥ c2, as

otherwise we may swap the roles of 0 and 1 and also interchange µ with 1−µ and

γ with α.

The following theorem was proven in [43] for the case that α > β > γ.

Theorem 4.12. Let G = K(n, t,Θ, µ), where t = ρ log n. Then G contains a

giant component if and only if

ρ <
1

log
(
cµ−1
2

cµ1

) (4.13)

Here, we provide an alternative proof to this theorem to that given in [43],

with a structure similar to the proof of Theorem 4.2 and using spectral concentra-

tion techniques developed in Chapters 2 and 3. This will allow us to extend this

result for arbitrary α, β, γ, and will also allow us to establish the asymptotic size

of the giant component in an analogous manner as Theorem 4.9.

4.3.1 Emergence of the Giant Component

Remark 4.13. We note that condition (4.13) is chosen precisely so that if v is a

vertex with mt = ω(v) ≥ µt (that is, v has at least the expected number of 1s in

its attribute vector), then the expected degree of v satisfies

E [deg(v)] = n(µα + (1− µ)β)ω(µβ + (1− µ)γ)t−ω

= n
1+ρ log c2+mρ log

(
c1
c2

)
= nC ,

where C is some positive constant. Thus, any vertex with weight at least as large

as the expectation has expected degree polynomial in the number of vertices of G.

As with K(t, α, β, γ), given s ∈ [t], we define Vs denote the set of vertices

with weight s and Gs the subgraph of G induced on Vs. Moreover, for s ∈ [t],

we will define Ss to be the set of words in {0, 1}t with weight s, so that Vs is a

multi-subset of Ss. Also, we let Vσ be the set of vertices with attribute vector σ,

so |Vσ| = nσ. For a vertex v with weight k, we say a neighbor u of v is of type
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(a, b) if u shares k − a 1s with v and (t− k)− b 0s with v. That is to say, we may

think of u being obtained from v by changing a 1s to 0s and b 0s to 1s.

Let

k =
µc1

µc1 + (1− µ)c2

t, ` =
µ(1− µ)β

µc1 + (1− µ)c2

t.

Notice that, as we have assumed c1 ≥ c2, we have

k =
µc1

µc1 + (1− µ)c2

t ≥ µc1

µc1 + (1− µ)c1

t = µt.

Let H denote the subgraph of G with V (H) = Vk and E(H) = {uv ∈ G : u · v =

k − `}. That is, H is the subgraph of vertices with weight k and edges of type

(`, `).

Lemma 4.14. The graph H described above is connected a.a.s..

Proof. Let LH be the normalized Laplacian for H. We make the standard obser-

vation that H is connected if and only if the second smallest eigenvalue λ of LH is

positive by Theorem 1.6.

We first consider the case where nσ = 1 for all σ ∈ Sk. Let D̄H and ĀH

denote the expected adjacency matrix and degree matrix for H.

Let G(t, k, `) be the intersection graph with vertex set
(

[t]
k

)
and u ∼ v if and

only if |u ∩ v| = k − `. By Lemma 4.4, we have

diam(G(t, k, `)) ≤ max

{
3,

⌈
k

k − `

⌉
, 2

⌈
k − `

t− 2k + 2`

⌉}
≤ max

{
3,

⌈
µα + (1− µ)β

µα + (1− µ)2β

⌉
,⌈

µ2α + µ(1− µ)2β

2µ(1− µ)β + (1− µ)2γ − µ2α

⌉}
= Θ(1).

Thus, the Cheeger constant for G(t, k, `) is h ≥ 1
2c

for some c > 0. Using

Cheeger’s Inequality (Theorem 1.9), we obtain that λ ≥ 1
16c2

.

Now suppose we have an arbitrary signature {nσ}σ∈Sk . Note that the ex-

pected degree of a vertex v ∈ V (H) is given by

E [degH(v)] =
∑
σ∈Sk

v∼G(t,k,`)a
−1(σ)

nσα
`β2`γt−k−`
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Take δ = n−b for some b. Now, given σ ∈ Sk, the probability that a

given vertex is in Vσ is µk(1 − µ)t−k = p. Thus, the expected value of nσ is pn

for all σ ∈ Sk, and thus by Chernoff bounds (see Theorem 1.14), we have that

(1− ε∗)np < nσ < (1 + ε∗)np for all σ ∈ Sk with probability at least 1− δ, where

ε∗ =

√
2 log

(
2n
δ

)
np

for n sufficiently large. Moreover, this yields that the number of vertices in Vk is

|Vk| =
∑
σ∈Sk

nσ

=
∑
σ∈Sk

(1 + o(1))np

= (1 + o(1))np

(
t

k

)
Thus we obtain

E [degH(v)] =
∑
σ∈Sk

v∼G(t,k,`)a
−1(σ)

nσα
`β2`γt−k−`

= (1 + o(1))np

(
k

`

)(
t− k
`

)
α`β2`γt−k−`

≥ (1 + o(1))np

(
t

k

)(k
`

)(
t−k
`

)
α`β2`γt−k−`(
t
k

)
= (1 + o(1))|Vk|

(
k
`

)(
t−k
`

)
α`β2`γt−k−`(
t
k

) .

We note that here, all edges occur with the same probability, so every

vertex has the same expected degree. Thus, in order to apply Theorem 2.8, we

need that the expected degree of any vertex in H is at least log(|Vk|). In fact,

we will show that (k`)(
t−k
` )α`β2`γt−k−`

(tk)
is asymptotically larger than 1

|Vk|
, so that the

expected degree of any vertex in H is at least polynomial in |Vk|.
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Now, using inequality (4.1), we obtain(
k
`

)(
t−k
`

)
α`β2`γt−k−`(
t
k

) ≥

(
c1

(1−µ)β

)` (
c1
µα

)k−` (
c2
µβ

)` (
c2

(1−µ)γ

)t−k−`
(
t
k

)
2e2π`

√
µ(1−µ)αγ

c1c2

αk−`β2`γt−k−`

=
1

O(t)

ck1c
t−k
2(

t
k

)
µk(1− µ)k

=
1

O(t)

nck1c
t−k
2

|Vk|

Note that nck1c
t−k
2 is precisely the degree of v in G, and by Remark 4.13

there exists a positive constant C such that nck1c
t−k
2 ≥ nC . Thus, the expected

degree of any vertex in H is at least polynomial in |Vk|. We first consider the case

where each nσ is precisely np.

Let L be the graph with vertex set npSk, that is, the union of np disjoint

copies of Sk, where adjacency is defined as in G(t, k, `). Notice by the above

argument that the diameter in L is asymptotically constant, as if the diameter in

G(t, k, `) is bounded by c, we have

dist(u, v) ≤

{
c a(u) 6= a(v)

2 a(u) = a(v)
.

Moreover, clearly L is edge transitive, so we obtain λ1(L) ≥ 1
16c2

by Theo-

rem 1.9 together with Theorem 1.10. Let q = αk−`β2`γt−k−`. If we let Lq be the

percolated version of L, where each edge is chosen independently and with prob-

ability q, then we may use an argument similar to the above argument on degree

in H to obtain that the expected degree of a vertex in Lq is at least polynomial in

|Lq|. Write d̄ to denote the expected degree of a vertex in Lq. Then we may apply

Theorem 2.8 to obtain that λ1(Lq) satisfies∣∣∣∣λ− 1

16c2

∣∣∣∣ ≤ 1

32c2

with probability at least 1− exp
(
− d̄

27648c4
− log 4

)
= 1− o(1).

Let Ñ , M̃ be
(
t
k

)
×
(
t
k

)
matrices, with

Ñσ,τ =


√
np · np q√

(npq(k`)(
t−k
` ))2

|σ ∩ τ | = k − `

0 otherwise
,
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and M̃σ,τ =

{ √
nσnτ

q√
dσdτ

|σ ∩ τ | = k − `
0 otherwise

.

Note that if N = D̄
−1/2
Lq

ĀLqD̄
−1/2
Lq

, and M = D̄
−1/2
H ĀHD̄

−1/2
H , then by an

argument identical to that in Theorems 3.5 and 3.8, Ñ and M̃ capture the non-

trivial eigenvalues of N and M , respectively. Moreover, as Ñ = I − L̄Lq , and

the eigenvalues of L are between 0 and 2 for any graph, we must have ‖Ñ‖ ≤ 1.

Moreover,

‖M̃ − Ñ‖ = max
‖f‖=1

∣∣∣fT (M̃ − Ñ) f ∣∣∣
= max

‖f‖=1

∣∣∣∣∣∑
σ∈Sk

∑
τ∈Sk

fσ

(
M̃ − Ñ

)
σ,τ
fτ

∣∣∣∣∣
≤ max

‖f‖=1

∑
σ∈Sk

∑
τ∈Sk

|σ∩τ |=k−`

|fσ|
∣∣∣M̃ − Ñ ∣∣∣

σ,τ
|fτ |

≤ max
‖f‖=1

∑
σ∈Sk

∑
τ∈Sk

|σ∩τ |=k−`

|fσ|
2ε∗

1− ε∗
|Ñσ,τ ||fτ |

=
2ε∗

1− ε∗
max
‖f‖=1

∑
σ∈Sk

∑
τ∈Sk

|σ∩τ |=k−`

|fσ|Ñσ,τ |fτ |

≤ 2ε∗

1− ε∗
‖Ñ‖

≤ 2ε∗

1− ε∗
≤ 4ε∗.

We therefore obtain by Weyl’s Theorem (Theorem 1.1) that |λmax(M̃) −
λmax(Ñ)| ≤ 4ε∗, and thus

λmax(M̃) ≤ 1− 1

32c2
+ 4ε∗ = 1− 1

32c2
+ 4

√
2 log

(
2n
δ

)
np

.

Recall that we chose δ = n−b. In fact, if we set b = p
217c4
− 1, we obtain

4

√
2 log

(
2n
δ

)
np

= 4

√
2(1 + b) log(2n)

np

= 4

√
2 p

217c4
log(2n)

np

=
1

26c2

√
log(2n)

n
≤ 1

64c2
,
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and thus λmax(M̃) ≤ 1− 1
64c2

. Therefore, with high probability, the second smallest

eigenvalue of L̄H satisfies λ̄1 ≥ 1
64c2

. Moreover, by the degree considerations above,

we obtain concentration on this eigenvalue by Theorem 2.8, and with probability

at least 1− ε,

|λ1 − λ̄1| ≤ 3

√
3 log(4|Vk|/ε)

d̄min

.

As d̄min = E [degH(v)] which is at least polynomial in |Vk|, we may take

ε =
1

4|Vk|
e−

E[degH (v)]
27·214c4

to obtain |λ1 − λ̄1| ≤ 1
128c2

, and thus with high probability,

λ1(H) ≥ 1

128c2
> 0.

Thererfore, H is connected a.a.s..

We now establish the necessity of the condition in Theorem 4.12.

Theorem 4.15. Let G = K(n, t,Θ, µ) where c1 < c2 and ρ > 1

log

(
c
µ−1
2
c
µ
1

) . Then G

has n− o(n) isolated vertices a.a.s..

Proof. Let v ∈ V with ω(v) = w, where |w−µt| ≤ (µt)2/3. Write ρ = 1

log

(
c
µ−1
2
c
µ
1

)+ε.

Then the expected degree of v is

E [deg(v)] = ncw1 c
t−w
2

≤ nc
µt+(µt)2/3

1 c
(1−µ)t−(µt)2/3

2

= exp

(
t

ρ
+ t log

(
cµ1
cµ−1

2

)
+ (µt)2/3 log

(
c1

c2

))
= exp

(
t

ρ
− t

ρ− ε
+ Ct2/3

)
= exp

(
− ε

ρ(ρ− ε)
t+ Ct2/3

)
.

As ρ−ε > 0, this approaches 0, and thus v is isolated a.a.s.. Moreover, by Chernoff

bounds (Theorem 1.14), the proportion of vertices with weight w as described is

at least 1 − e− 1
2

(µt)1/3 = 1 − o(1). Therefore, there are at least n − o(n) isolated

vertices in G a.a.s..
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Thus, by Theorem 4.15, if condition (4.13) is not met, G has no giant

component a.a.s..

Now, suppose G meets condition (4.13). Let

B =

− log n+ log

(
e2tπβµ(1− µ)

√
αγ

2c1c2

)
− t log c2 − log

(
1 + logn

log logn

)
log

(
c1

c2

) .

Since t ∼ ρ log n, we have

B =

(
−1
ρ
− log(c2)

log( c1
c2

)

)
t+O(log t)

By (4.13), we have B < µt+O(log t). Let Ts = {v ∈ V |ω(v) < s}. We wish

to determine TB, that is, the number of vertices with weight less than B. Write

ζ =
− 1
ρ
−log(c2)

log(
c1
c2

)
. We will consider Tζt ∼ TB.

Lemma 4.16. With Tζt as defined above, a.a.s. we have

|Tζt| ≤ Cn

(
t

ζt

)
µζt(1− µ)t−ζt.

Proof. Let s = ζt. Notice that ζ < µ by condition (4.13). Then the probability

that a vertex is in Ts is given by

p =
s∑
i=0

(
t

i

)
µi(1− µ)t−i =

(
t

s

)
µs(1− µ)t−s

s∑
i=0

(
t
i

)(
t
s

)µi−s(1− µ)s−i

=

(
t

s

)
µs(1− µ)t−s

s∑
i=0

s−i−1∏
j=0

1− µ
µ

s− j
t− s+ 1 + j

≤
(
t

s

)
µs(1− µ)t−s

s∑
i=0

s−i−1∏
j=0

1− µ
µ

s

t− s

≤
(
t

s

)
µs(1− µ)t−s

s∑
i=0

(
1− µ
µ

ζ

1− ζ

)s−i
=

(
t

s

)
µs(1− µ)t−s

s∑
i=0

(
1− µ
1− ζ

ζ

µ

)s
≤

(
t

s

)
µs(1− µ)t−s

∞∑
i=0

((
1− µ
1− ζ

)(
ζ

µ

))s
=

(
t

s

)
µs(1− µ)t−s

µ(1− ζ)

µ− ζ
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As µ, ζ are constants, take C ′ = µ(1−ζ)
µ−ζ . Then P(v ∈ Ts) ≤ C ′

(
t
s

)
µs(1− µ)t−s.

On the other hand, notice that since s < µ, by the entropy bound (4.1)

p =
s∑
i=0

(
t

i

)
µi(1− µ)t−i (4.14)

≥
(
t

s

)
µs(1− µ)t−s (4.15)

≥ 1

e
√

2πζ(1− ζ)t

(
µ

ζ

)s(
1− µ
1− ζ

)t−s
(4.16)

=
A√
log n

nρζ log(µζ )+ρ(1−ζ) log( 1−µ
1−ζ ), (4.17)

for A = 1

e
√

2πζ(1−ζ)ρ
a constant. Put b = ρζ log

(
µ
ζ

)
+ ρ(1− ζ) log

(
1−µ
1−ζ

)
.

Let Z be the random variable whose value is |Ts|. Then we may think of Z

as a sum of independent indicator functions Z =
∑n

i=1 xi, where xi takes value 1

if vi ∈ Ts and 0 otherwise. We consider two cases, according as whether b > −1 or

b ≤ −1.

If b > −1, then np > A
logn

n1+b > nr for some positive constant r. Then by

Theorem 1.14, we have that with probability at least 1− 2e−np/8 = 1− 2e−n
r/8 =

1− o(1)

|Z − pn| ≤ 1

2
pn, (4.18)

and thus 1
2
pn ≤ Z ≤ 3

2
pn, so for C = 3

2
C ′, we obtain Z ≤ Cn

(
t
ζt

)
µζt(1− µ)t−ζt as

desired.

If b ≤ −1, then we apply the entropy bound (4.2) to obtain

p =
s∑
i=0

(
t

i

)
µi(1− µ)t−i (4.19)

≤ C ′
(
t

s

)
µs(1− µ)t−s (4.20)

≤ C ′
1√

2πζ(1− ζ)t

(
µ

ζ

)s(
1− µ
1− ζ

)t−s
(4.21)

≤ C ′Ae√
log n

nb. (4.22)

Therefore, np ≤ C′Ae√
logn

n1+b ≤ n−r for some r ≥ 0. Then as the xi are

independent, we obtain Var (Z) =
∑n

i=1 Var (xi) = np(1 − p) ≤ np ≤ n−r. By
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Chebyshev’s Inequality (Theorem 1.12), we have that for any ε > 0,

P(|Z − E [Z] | ≥ n−r/2+ε) ≤ Var (Z)

n−r+2ε
≤ 1

n2ε
= o(1).

Therefore, with probability 1 − o(1), we have that for C = 2C ′ and ε sufficiently

small, Z ≤ pn+ n−r/2+ε ≤ Cn
(
t
ζt

)
µζt(1− µ)t−ζt as desired.

Theorem 4.17. Let v ∈ V (G) have weight ω(v) > B. Then v is connected by a

path to a vertex of weight k a.a.s..

Proof. Suppose v ∈ Vs. The expected number of neighbors of v of type (a, b) is

nµs−a+b(1− µ)t−s+a−b
(
s

a

)(
t− s
b

)
βa+bαs−aγt−s−b. (4.23)

Let

a =
(1− µ)β

c1

s, and b =
µβ

c2

(t− s)

Then any neighbor of v of type (a, b) has weight

f(s) =
µα

c1

s+
µβ

c2

(t− s). (4.24)

Notice that
f(s) = s when s = k

f(s) > s when s < k

f(s) < s when s > k

For v ∈ Vs, let Rv = {u ∈ V |u is a neighbor of v of type (a, b)}. Then as f

is linear, if u ∈ Rv, then u has weight f(s) with |f(s)− k| < |s− k|.
Now, |Rv| may be considered as a sum of i.i.d. random variables X1, X2, . . . ,

Xn−1, where Xi is the indicator of whether vi ∈ Rv (where here we have labeled v

as vn for convenience). Using the entropy bound from inequality (4.1), we obtain
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P(vi ∈ Rv) =

(
s

a

)(
t− s
b

)
µs−a+b(1− µ)t−s+a−bβa+bαs−aγt−s−b

=

(
s

a

)(
t− s
b

)
(µα)s−a((1− µ)β)a(µβ)b((1− µ)γ)t−s−b

>
c1c2(µα)s−a((1− µ)β)a(µβ)b((1− µ)γ)t−s−b

e22πβµ(1− µ)
√
s(t− s)αγ

·

·
(

c1

(1− µ)β

)a(
c1

µα

)s−a(
c2

µβ

)b(
c2

(1− µ)γ

)t−s−b
=

c1c2

e22πβµ(1− µ)
√
s(t− s)αγ

cs1c
t−s
2

>
2c1c2

e2tπβµ(1− µ)
√
αγ

cs1c
t−s
2 =: q.

By Chernoff bounds (Theorem 1.15), we thus obtain

P(Rv = ∅) = P(|Rv| = 0)

≤ P(|Rv| − E [|Rv|] < −E [|Rv|])

≤ e
−(nq)2

2nq

≤ e−nq/2.

The constant B was chosen precisely so that q > 2 log(n)
n

+ 2
n

log log n, and

thus e−nq/2 < 1
n logn

. Thus, v is connected to a vertex with weight f(s) with

probability at least 1− 1
n logn

.

Theorem 4.18. The giant component in G = K(n, t,Θ, µ) is of size at least

n− |TB| ≥ n− C
(
t
ζt

)
µζt(1− µ)t−ζt.

Proof. By the above result, the probability that there exists a vertex in V \TB of

weight s that is not connected to a vertex with weight f(s) is at most 1− 1
logn

by

the union bound. Thus, as the graph induced on Vk is connected by Lemma 4.14,

this will imply that we have a component of asymptotic size

n− |TB| ≥ n− C
(
t

ζt

)
µζt(1− µ)t−ζt ≥ C ′n

for appropriate choices of C and C ′, by Lemma 4.16.

Thus, we have established both the sufficiency of the condition in Theorem

4.12, and in addition, have a lower bound on the size of the giant component in G.
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4.3.2 Upper Bound on Size of the Giant Component

The goal of this section is to develop an upper bound on the size of the

giant component in K(n, t,Θ, µ). In fact, we will prove the following.

Theorem 4.19. Let X be the set of vertices that are not in the giant component

of G. Then

|X| = Θ

((
t

ζt

)
µζt(1− µ)t−ζt

)
. (4.25)

Theorem 4.19 will yield both the size of the giant component and the unique-

ness of the giant component, as with Theorem 4.9. We note that by Theorem 4.18,

we have that |X| = O
((

t
ζt

)
µζt(1− µ)t−ζt

)
, so we need only show that

|X| = Ω

((
t

ζt

)
µζt(1− µ)t−ζt

)
.

Moreover, we will show that there are at least Ω
((

t
ζt

)
µζt(1− µ)t−ζt

)
isolated ver-

tices in X, which is sufficient to establish the uniqueness of the giant component

in G.

Lemma 4.20. Let G = K(n, t,Θ, µ), and let ζ =
− 1
ρ
−log(c2)

log
(
c1
c2

) as above. If v is a

vertex with ω(v) = ζt− 1, then v is isolated with at least constant probability.

Proof. Let v ∈ V with ω(v) = ζt− 1. Note then that

E [deg v] = nc
ω(v)
1 ct−ωv2

= n
c2

c1

(
cζ1c

1−ζ
2

)t
= n

c2

c1

(
cζ1c

1−ζ
2

)ρ logn

=
c2

c1

n
1+ρζ log(

c1
c2

)+ρ log(c2)

=
c2

c1

n1+ρ(− 1
ρ
−log(c2))+ρ log(c2)

=
c2

c1

= q < 1.

Then p = P(deg(v) = 0) ≥ 1− q > 0 is at least constant.
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Proof of Theorem 4.19. Let Y be the number of isolated vertices of weight ζt− 1.

Put s = ζt. Write Y =
∑

v∈Vs−1
zv, where zv is the indicator that v is isolated.

Notice that for u, v ∈ Vs−1, we have

E [zvzu] =
∏
x∈V

(1− P(x ∼ v))
∏
y∈V
y 6=v

(1− P(y ∼ u))

= E [zv]E [zu] +
P(u ∼ v)E [zv]E [zu]

1− P(u ∼ v)

≤ E [zv]E [zu] + P(u ∼ v)E [zv]E [zu]

Moreover, E [zv] = p as shown in Lemma 4.20, and P(u ∼ v) → 0. Therefore, we

have

Cov(zv, zu) = E [zvzu]− E [zv]E [zu] = o(E [zv]E [zu]) = o(p2).

Moreover, Var (zv) = p(1− p), where p. Therefore,

Var
(
Y 2
)

=
∑

v∈Vs−1

Var (zv) +
∑

u,v∈Vs−1
u6=v

Cov(zv, zu)

≤ |Vs−1|p(1− p) + o
(
p2|Vs−1|2

)
= o

(
|Vs−1|2

)
.

Therefore, by Chebyshev’s inequality (see Theorem 1.12), we have that for

any c > 0,

P (|Y − p|Vs−1|| ≥ c|Vs−1|) ≤
o (|Vs−1|2)

c2|Vs−1|2
= o(1).

Therefore, Y = p|Vs−1|+ o(|Vs−1|).
Moreover, |Vs−1| =

∑n
i=1 Zi, where Zi is the indicator of whether ω(vi) =

s − 1. We note that this is a sum of i.i.d. indicator functions with probability

r =
(

t
s−1

)
µs−1(1− µ)t−s+1. Note then that by inequality (4.17),

r =

(
t

s− 1

)
µs−1(1− µ)t−s+1

=
s

t− s+ 1

1− µ
µ

(
t

s

)
µs(1− µ)t−s

≥ A′√
log n

nρζ log(µζ )+ρ(1−ζ) log( 1−µ
1−ζ ),

whereA′ = ζ(1−µ)

(2−ζ)µe
√

2πζ(1−ζ)ρ
is constant. We take b = ρζ log

(
µ
ζ

)
+ρ(1−ζ) log

(
1−µ
1−ζ

)
.

As with the proof of Theorem 4.16, we consider whether b > −1 or b ≤ −1.
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If b > −1, then by Chernoff bounds (Theorem 1.14) we will obtain that with

probability at least 1 − 2e−np/8 = 1 − o(1), ||Vs−1| − rn| ≤ 1
2
rn. If b ≤ −1, then

by Chebyshev’s Inequality (Theorem 1.12), we will obtain that with probability at

least 1− np
log2(n)

= 1− o(1), ||Vs−1| − rn| ≤ rn. These two arguments are identical

to those in Theorem 4.16.

Therefore, we obtain that with high probability, |Vs−1| = O(E [|Vs−1|]), and
thus Y = (1 + o(1))CE [|Vs−1|]. It remains only to bound E [|Vs−1|]. But

E [|Vs−1|] = rn =
s

t− s+ 1

1− µ
µ

n

(
t

s

)
µs(1− µ)t−s

= C ′n

(
t

ζt

)
µζt(1− µ)t−ζt,

and thus Y = (1 + o(1))Cn
(
t
ζt

)
µζt(1− µ)t−ζt.

Now, let X be the set of vertices that are not in the giant component. By

Theorem 4.18, we have that |X| ≤ C ′′n
(
t
ζt

)
µζt(1−µ)t−ζt. On the other hand, by the

above argument, since Y ⊂ X, we must have |X| ≥ (1 + o(1))Cn
(
t
ζt

)
µζt(1−µ)t−ζt.

Therefore, X = Θ
((

t
ζt

)
µζt(1− µ)t−ζt

)
as desired.
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