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Abstract

For a graph G and a proper coloring ¢ : V(G) = {1,2,...,k}
of the vertices of G for some positive integer k, the color code
of a vertex v of G (with respect to ¢) is the ordered (k + 1)-
tuple code(v) = (ag,a1,--.,ax), where ag is the color assigned
to v and, for 1 < i < k, a; is the number of the vertices of
G adjacent to v that are colored i. The coloring c is irregular
if distinct vertices have distinct color codes and the irregular
chromatic number x;-(G) of G is the minimum positive integer
k for which G has an irregular k-coloring. We study irregular
colorings of cycles and trees. The irregular chromatic numbers
of the cycle and path of order n are determined for 3 < n < 100.
For each integer n > 2, let Dr(n) and dr(n) be the maximum
and the minimum irregular chromatic numbers among all trees
of order n, respectively. It is shown that Dr(n) = n and the
values of dr(n) are determined for 3 < n < 100. We investigate
how the irregular chromatic number of a graph can be affected
by removing a vertex or an edge from the graph. Also, we survey
the results, conjectures, and problems on this topic.
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1 Introduction

A (proper) coloring of a graph G is a function ¢ : V(G) — N having
the property that c¢(u) # c¢(v) for every pair u,v of adjacent vertices of G,
where N is the set of positive integers. A k-coloring of G uses k colors. The
chromatic number x(G) of G is the minimum positive integer k for which



there is a k-coloring of G. For a positive integer k and a proper coloring
c:V(G) = {1,2,...,k} of the vertices of a graph G, the color code of a
vertex v of G (with respect to ¢) is the ordered (k + 1)-tuple

code.(v) = (ag,a1,...,ar),

where qg is the color assigned to v (that is, ag = c(v))) and, for 1 <
i < k, a; is the number of vertices adjacent to v that are colored . If
the coloring ¢ is clear, we write code.(v) as code(v) or simply, code(v) =
apa1as - - - a. Therefore, if ap = j for some j with 1 < j < k, then a; =0
and Ele a; = degg v. The coloring c is called irregular if distinct vertices
have distinct color codes and the irregular chromatic number x;-(G) of G
is the minimum positive integer k for which G has an irregular k-coloring.
An irregular k-coloring with x;(G) = k is a minimum irregular coloring.
Since every irregular coloring of a graph G is a coloring of G, it follows that
X(@) € xir(G). The following useful observation was stated in [12]. The
neighborhood of a vertex u in a graph Gis N(u) = {v € V(G) : wv € E(G)}.

Observation 1.1 Let ¢ be a (proper) coloring of the vertices of a nontriv-
ial graph G and let u and v be two distinct vertices of G.

(a) If c(u) # c(v), then code(u) # code(v).
(b) If degs u # degg v, then code(u) # code(v).
(¢) If c is irregular and N (u) = N(v), then c(u) # c(v).

Irregular colorings were introduced in [12] and studied further in [13],
inspired by the problem in graph theory that concerns finding means to
distinguish all the vertices of a connected graph. This problem has received
increased attention during the past 35 years (see [1, 2, 3, 4, 5, 6, 8, 9, 10, 15)
for example). We refer to the book [7] for graph theory notation and
terminology not described in this paper.

2 Some Known Results

In this section, we present some known results on irregular chromatic num-
bers of graphs. The following theorems 2.1-2.3 were established in [12, 13]
and will be useful to us.

Theorem 2.1 For every pair a,b of integers with 2 < a < b, there is a
connected graph G with x(G) = a and x;-(G) = b.

Theorem 2.2 If a nontrivial connected graph G has an irregular k-coloring,
then G contains at most k(r+7’f72) vertices of degree r.



Since every nontrivial graph G has at least two vertices of the same
degree, any irregular coloring of G must use at least two distinct colors.
Furthermore, the coloring of a graph G that assigns distinct colors to dis-
tinct vertices of G is irregular and so x;-(G) always exists. Therefore, if G
is a nontrivial graph of order n, then 2 < x;-(G) < n. Connected graphs
of order n > 2 having irregular chromatic number 2 or n are characterized
in [12].

Theorem 2.3 Let G be a nontrivial connected graph of order n. Then

(a) xir(G) = 2 if and only if n is even and G = F,,, where n = 2k for
some positive integer k and F,, is the bipartite graph with partite sets
X = {z1,22, -z} and Y = {y1,y2,...,yr} such that degz; =
degy; =i for 1 <i<k;

0) xir(G) =n if and only if G is a complete multipartite graph.

Furthermore, for each pair k,n of integers with 2 < k < n, there exists a
connected graph of order n having irreqular chromatic number k if and only
if (k,n) # (2,n) for any odd integer n.

A well-known result involving a graph and its complement provides
upper and lower bounds for both the sum and the product of the chromatic
numbers of a graph and its complement. In particular, for every graph G
of order n,

2y < x(G) + x(@) <n+1and n < x(G)x(@) < (2£2)7,

which are called the Nordhaus-Gaddum inequalities and are due to Nord-
haus and Gaddum [11]. Nordhaus-Gaddum inequalities for the irregular
chromatic number of a graph and its complement were established in [13],
which we state as follows.

Theorem 2.4  If G is a graph of order n, then
2vn < Xir(G) + xir(G) < 20 and n < xir (G)xir(G) < 12
Furthermore, each of these four bounds is sharp.

It is well-known that if H is a subgraph of a graph G, then x(H) < x(G).
However, this is not true for the irregular chromatic number of a graph.
For example, the wheel W5 = C5 + K; has irregular chromatic number 4,
where an irregular 4-coloring is shown in Figure 1; while the subgraph (not
induced) K, 5 of W has irregular chromatic number 6 by Theorem 2.3. A
minimum irregular coloring of K; 5 is also shown in Figure 1. In fact, more
can be said.



Figure 1: Minimum irregular colorings of W5 and K 5

Proposition 2.5  For every pair a,b of integers with 2 < a < b there
exists a graph G, containing an induced subgraph H,p such that

XiT(Ga,b) =a and XiT(Ha,b) =b.

Proof. For a =2, let G2 = F5 be the bipartite graph with partite sets
X ={z1,22,---, 2} and Y = {y1,y2,...,ys} such that degx; = degy; =i
for 1 <4 < b (as described in Theorem 2.3). Then x;r(G2,5) = 2. Observe
then that x; is adjacent to all vertices in Y and zp_; is adjacent to all
vertices in Y — {y1 }. In general, for each integer j with 1 < j <'b,

N(zj)={yi: b—j+1<i<b}.

For a > 3, let G, be the graph obtained from F, and K, by identifying
xp of Fy, with a vertex of K,. Since G, contains K, as a subgraph,
Xir(Ga,p) > a. On the other hand, we define a coloring ¢ of G, 5 by assigning
color 1 to each vertex in X, color 2 to each vertex in Y, and the a — 1
distinct colors 2,3,...,a to the remaining a — 1 vertices of K,. Since ¢
is an irregular a-coloring of G, , it follows that x;r(Gep) < a and so
Xir(Gap) = a. Figure 2 shows the graph Gs 4 together with an irregular
3-coloring of G'3 4.

Y1 Yo Ys Ya

Figure 2: The graph G 4



For each integer a > 2, the induced subgraph

H,p = {zp-1} UN(2p-1))

in G, is isomorphic to the star K; ;3 of order b and so x;r(Ha,p) = b by
Theorem 2.3. n

3 Irregular Colorings of Cycles

The irregular chromatic number of a cycle C,, of order n > 3 was studied
in [12]. For 3 <n <9, xir(Cp) =4 if nis even and x;,(Cpn) = 3 if n is odd.
If n > 10, then xi-(Crn) > 4 by Theorem 2.2. The following conjecture
appears in [12].

Conjecture 3.1 Letk >4. If (k—1) (kgl) +1<n< k(g), then

k ifn#k(%) -1

(O =
xir(Cn) { k+1  ifn=k() —1.

It was observed that if ¥ and n are integers satisfying the conditions
in Conjecture 3.1, then x;-(C,) > k. Conjecture 3.1 was verified for 10 <
n < 50. The largest possible value of n for which x;.(Cy,) =5 is 50 and an
irregular 5-coloring of Cso was found in [12], which is shown in Figure 3.

In this section, we show that Conjecture 3.1 is true for 51 < n < 100. In
order to do this, we first present a useful result (see [12]) and an additional
definition.

Theorem 3.2 Letk>3 andn = kg(’;—l).
If xir(Cn) =k, then xi(Crn_1) =k + 1.

For an irregular coloring c¢ of the cycle C), : vy, vs,...,v,,v; of order n,
define the color sequence s, of C,, with respect to c as the sequence

Sn * c(vl),c(vz), e -,C(’Un)-

For example, for the irregular 5-coloring of Cy¢ of Figure 3, the color se-
quence is
S50 ° 11 27 17 21 37 27 31 17 37 11 27 47 2147 1741 17 27 51 27 5741 57 47
1,5,1,5,4,3,4,3,5,4,2,3,5,3,5,1,3,5,2,3,4,1,3,4,2,5, (1

where the vertex vy is indicated in Figure 3. Therefore, an irregular coloring
of a cycle can be represented by its color sequence. We now show that
Conjecture 3.1 holds for 51 < n < 100.



Figure 3: An irregular 5-coloring of Clsg

Proposition 3.3  For 51 <n <100,

(Cn) = 6 if51<n<90 andn # 89
Xirlbn) =7 ifn =89 or if 91 < n < 100.

Proof. First, assume that 51 < n < 62. Since the largest possible value
of n for which x;-(C,) = 5 is 50, it follows that x;(C,) > 6 for n > 50.
On the other hand, with the aid of the 5-coloring of Cjo in (1), we are
able to obtain an irregular 6-coloring ¢, for the cycle C,, for each integer n
with 51 < n < 62. Let s48 be the color sequence of Csg obtained from the
color sequence s5o in (1) by deleting the first two terms 1, 2 in s59. The
color sequence s, of C, with respect to the irregular 6-coloring ¢,, for each
integer n with 51 < n < 62 is shown as follows:



S51 ¢
853
S55 ¢
S5T ¢
859
Se1

S52 : S48,6,1,3,6
6, $54 1 850,6,1,3,6,
,6,2,6, $s6 : $50,6,1,3,6,2,6,
,6,2,6,3,6, ss8 1 $50,6,1,3,6,2,6,3,6,
,6,2,6,3,6,4,6, se0 : $50,6,1,3,6,2,6,3,6,4,6,
,6,2,6,3,6,4,6,5,6, se2: $50,6,1,3,6,2,6,3,6,4,6,5,6

Therefore, x;-(Cr) = 6 for 51 < n < 62.

Next, assume that 63 < n < 90. The largest possible value of n for
which x;-(Cy) = 6 is 90. In fact, xi-(Coo) = 6 since there is an irregular
6-coloring of Cyg, as shown in Figure 4. This coloring is constructed with
the aid of a deBruijn digraph as described in [12].

6

5
6
5
4
3

4

3

Figure 4: An irregular 6-coloring of Cyg



Since x;r(Coo) = 6, it then follows by Theorem 3.2 that x;-(Csg) = 7.
For the irregular 6-coloring of Cyq of Figure 4, the color sequence is

890 1,2,1,2,3,2,3,4,2,6,5,2,1,4,1,4,3,5,3,5, 4,6,
1,5,1,5,6,3,2,5,3,6,3,6,4,1,3,1,3,6,2,3,5,1,3,
2,4,2,4,5,4,5,1,4,2,5,2,5,4,1,6,1,6,3,4,3,4,
5,6,5,6,1,2,4,6,4,6,5,3,1,6,2,1,5,2,6,2,6,4,3, (2)

where the vertex v; is indicated in Figure 4. In the color sequence of Cyg
in (2) there are 13 subsequences of the form ¢, j,4,j (or more simply ijij),
where 1 < i # j < 6, namely

1212, 1414, 3535, 1515, 3636, 1313, 2424, 2525, 1616, 3434, 5656, 4646, 2626. (3)

Successively replacing these subsequences ijij in sgp by 4j in the order
described in (3), we obtain color sequences for C,,, where 64 <n < 88 and
n is even. Therefore, x;-(C,) = 6 when 64 < n < 88 and n is even.

Figure 5 shows an irregular 6-coloring of Cg7; and so x;-(Cs7) = 6.
For this irregular 6-coloring of Cg7, the color sequence is

587 : 17274, 1737 1,37574, 5747 6, 1767 1,3! 47 3,4! 174, 1! 57 1,5! 47 3,5! 37 5,
6751 673761 37476147 672l 6727 1! 27 11 4! 5761 1! 5721 5! 2761 5! 2731 2! 37
6547 254527 55352745 3527 6535 17 553! 67 154! 67 55 1! 27 554! 27 65 (4)

where the vertex vy is indicated in Figure 5. In the color sequence of Cgr
in (4) there are 13 subsequences of the form ijij, where 1 < i # j < 6,
namely

1313, 5454, 6161, 3434, 1515, 3535, 6363, 4646, 6262, 2121, 5252, 2323,4242  (5)

Successively replacing these subsequences ijij in sg7 by 4j in the order
described in (5), we obtain color sequences for C),, where 63 < n < 85 and
n is odd. Therefore, x;(Cr) = 6 when 63 < n < 85 and n is odd.

Finally, assume that 91 <n < 100. Since the largest possible value of n
for which x;-(Cy) = 6 is 90, it follows that x;-(Cr) > 7 for n > 90. In fact,
Xir(Cr) = 7 for 91 < n < 100. With the aid of the 6-coloring of Cyo in
(2), we are able to obtain an irregular 7-coloring ¢, of C,, for each integer
n with 91 < n < 100. Let sgg be the color sequence of Cgg obtained from
the color sequence sgo in (2) by deleting the first two terms 1, 2 in sgg. The
color sequence s,, of C,, with respect to the irregular 7-coloring c¢,, for each
integer n with 91 < n < 100 is shown as follows:

S91 ¢ S90,7, 892 : s88,7,1,6,7,

S93 ¢ S90,7,1,7, S94 1 890,7,1,6,7,

S95 ¢ 890,7,1,7,2,7, 896 1 890,7,1,6,7,2,7,

S97 t S90,7,1,7,2,7,3,7, S98 * 890,7,1,6,7,2,7,3,7,

599 : 590;77 157527 773577477; $100 * 59077 1,6, 7257737 7;417



Figure 5: An irregular 6-coloring of Cgy

Therefore, x;-(Cr) =7 for 91 < n < 100.

In summary, the irregular chromatic numbers of cycles C), of order n,
where 3 < n < 100, are as follows:

Xir (Cﬂ)

3
4

5

~N

if 3<n <9 andnis odd

if 3<n <9 and nis even or
if10<n <24 and n # 23

if n =23 or if 25 <n <50 and n # 49
ifn=49 orif 51 <n <90 and n # 89
if n =89 orif 91 <n < 100.



4 Irregular Colorings of Trees

In this section we study the irregular chromatic number of a tree. By
Theorem 2.3, the star K ,_1 of order n > 3 has irregular chromatic number
n. A double star is a tree of diameter 3. If the two non-end-vertices of a
double star have degrees a and b, respectively, then we denote this double
star by S,,5- Next we determine the irregular chromatic number of a double
star.

Proposition 4.1 For integers a,b > 2, the irregular chromatic number of
the double star S, is max{a,b}.

Proof. Let u,v € V(S,s) such that degu = a and degv = b, where
N(u) ={v, u1, ua, ..., ug—1} and N(v) ={u, v1, va, ..., vp_1}. We may
assume, without loss of generality, that a < b and so b = max{a, b}. Since
each of the b—1 end-vertices in N (v) is adjacent to v, any irregular coloring
of S, must use at least b distinct colors for the b vertices in N(v) U {v}
and so X (Sg,p) > b. On the other hand, an irregular b-coloring ¢ of S,
can be defined by c(u) = 1, ¢(v) =2, ¢(u;) =i+ 1for 1 <i <a-—1,
c(v1) =1, ¢(vj) =j+1for 2 < j <b—1. Thus xir(Sap) < b and so
Xir(Sa,p) = b = max{a, b}. n

Next, we consider a special class of trees, namely paths P,,. It is easy to
see that xi(P2) = 2, xir(Ps) = 3, and x;(P1) = 2. Thus we may assume
that n > 5. The following result provides a lower bound for the irregular
chromatic number of a path.

Proposition 4.2 Let n > 5. If k is an integer such that n > k(;‘"’) + 2,
then xir(Py) > k+ 1.

Proof. By Theorem 2.2, if ¢ is an irregular k-coloring of the path P,
of order n, then P, contains at most k(g) vertices of degree 2 and so

n < k(%) + 2. Thus, if n > k(5) + 2, then x;(P,) > k + 1. .

For n > 5, the irregular chromatic number of a path P, is bounded
above by the irregular chromatic number of a cycle C),_2, as we show next.

Proposition 4.3 For each integer n > 5, Xir(Pn) < Xir(Cn_2).

Proof. Let C,,_2 : v1,v2,...,vp_2,v1 be a cycle of order n — 2. Then P,:
Vg, V1, V2, - - -, Un—2, Un—1 iS a path of order n. Let ¢ be a minimum irregular
coloring of C,,_2. We define a coloring ¢* of P, from ¢ by

c(vp—2) ifi=0

c*(v;)) = c(vr) ifi=n-1
e(v;) ifl1<i<n-—2

10



Observe that the color codes of the vertices P, are those of C,,_s except
vo and v,_1. Since ¢*(vg) # ¢*(vp—1), it follows by Observation 1.1(a)
that codec (vg) # codecr (v —1). Furthermore, code.: (vg) # codec- (v;) and
codecs (vp—1) # codee (v;) for 1 <4 < n—2 by Observation 1.1(b). Since ¢
is an irregular coloring of C,, 2, it follows that code« (v;) # codec~(v;) for
1<i#j<n-—2. Thus ¢* is an irregular coloring using x;(Cp—_2) colors
and 50 Xir(Ppn) < Xir(Cn—2)- =

In general, however, the irregular chromatic number of a path P, of
order n > 5 is unknown. By Proposition 4.2, for n > 5, if k is the unique
integer such that (k —1)(*,") +3 < n < k(%) +2, then x;(P,) > k. In
fact, we have the following conjecture.

Conjecture 4.4  Let n > 5. If k is the unique integer such that

(k—l)(kgl>+3§n§k(;€)+2,

Conjecture 4.4 is true for 5 < n < 100, as we show next. By Propo-
sition 4.3, xir(P11) < xir(Cy) = 3, xir(P26) < Xir(C24) = 4, Xir(Ps2) <
Xir(Cs0) = 5, Xir(Po2) < Xir(Coo) = 6, and xir(Pn) < Xir(Crn—2) = 7 for
93 < n < 100. On the other hand, by Proposition 4.2, if n > 5, then
Xir(Pn) > 3; if n > 12, then x;,.(P,) > 4; if n > 27, then x;(P,) > 5;
if n > 53, then x;.(P,) > 6; and if n > 93, then x;.(P,) > 7. Thus
Xir(P11) = 3, Xir(P26) = 4, Xir(Ps2) = 5, Xir(Py2) = 6, and x4 () = 7
for 93 < n < 100. With the aid of these observations and the proof of
Proposition 4.3, we are able to determine the irregular chromatic number
of P, for 2 < n < 100 as follows:

then xir(P,) = k.

ifn=2,4
ifn=30r5<n<11
if12<n <26

if 27 <n <52

if 53 <n <92

if 93 < n < 100.

Xz'r(P") =

N O Utk W

Therefore, Conjecture 4.4 holds for 5 < n < 100. In fact, with the aid
of Proposition 4.3, it can be shown that if Conjecture 3.1 is true, then
Conjecture 4.4 is true.

11



Next we investigate how large and how small the irregular chromatic
number of a tree of a fixed order can be. For each integer n > 2, let Dy (n)
be the maximum irregular chromatic number among all trees of order n
and let dy(n) be the minimum irregular chromatic number among all trees
of order n. That is, if 7, is the set of all trees of order n, then

Dr(n) = max {xi(T): T € Tn}
dr(n) = min {x;®(T): T € T,}.
Therefore,
2<dr(n) < Drp(n) <n
for n > 2. Since xir (K1,n—1) = n for n > 2, we have the following.
Proposition 4.5 For each integer n > 2, Dr(n) = n.

Next, we study the minimum irregular chromatic number among all
trees of order m. Obviously, dr(n) = n for n = 2,3 and dr(4) = 2 as
Xir(P1) = 2. Thus, we assume that n > 5. It is known that if T is a tree
of order n having n; vertices of degree i for 1 < ¢ < A, where A is the
maximum degree of T', then

np=24+n3+2n4+3ns +4ng + ...+ (A — 2)na. (6)
We now establish a lower bound for dr(n), where n > 5.

Proposition 4.6 Let n > 5 be an integer. If k is the unique integer

such that
k> —Tk+4 k3 +3k2 -4k —4
fﬁnﬁ 2 )

then dr(n) > k.

Proof. Assume, to the contrary, that dr(n) < k — 1. Then there exists a
tree T of order n with ’“3’2& <n< Wﬂ such that x;-(T) < k—1.
By Theorem 2.2, T contains at most (k—1)(k —2) end-vertices and at most
(k —1)(*3") vertices of degree 2. Suppose that T has n; vertices of degree
i for 1 <i < A, where A is the maximum degree of T'. It then follows by

(6) that

n = ni+ns+...+na
ny+ns+nsg+2ng+3ns+...+ (A —2)na
n1+n2+(n1—2)

IA

(k—l)(k—2)+(k—1)(k;1)+[(k—1)(k—2)—2]

kS —Tk+2 < B —Tk+4
2 2 ’

IA

12



which is a contradiction. n

In general, however, the number dr(n) is not known for n > 5. In fact,
we have the following conjecture.

Conjecture 4.7 Let n > 5 be an integer. If k is the unique integer such

that k3 k+4 K3 k2 —4k—4
AR R )

then dr(n) = k.

By Proposition 4.6, in order to establish the truth of Conjecture 4.7,
it suffices to construct a tree of order n with irregular chromatic number
k. Also, observe that if T is a tree of order n with x;-(T) = k, then, by
Theorem 2.2, T contains at most k(k — 1) end-vertices and at most k(’;)
vertices of degree 2. It then follows by (6) that

S
IA

k(k — 1) +k(’;> + Rk —1)—2]

K +3k% — 4k —4
5 .

Furthermore, if T is a nontrivial tree of order

k% +3k% -4k — 4
n= 5

with x;(T) = k > 2, then T contains exactly k(k — 1) end-vertices, exactly
k(%) vertices of degree 2, exactly k(k — 1) — 2 vertices of degree 3, and no
vertices of degree 4 or more.

We next establish Conjecture 4.7 for 5 < n < 100. First, we need an
additional definition. For an irregular coloring c of the path P,: vy, vo, ...,
v, of order n, define the color sequence s, of P, with respect to ¢ as the
sequence

Sn i c(v1),c(v2), -, e(vn).

By Proposition 4.6, the largest possible value n for which there exists a tree
of order n with irregular chromatic number 3 is 19.

Proposition 4.8 If5 <n <19, then dr(n) = 3.

Proof. By Proposition 4.6, it suffices to construct a tree T}, of order n for
each n with 5 < n < 14 such that x;(T,) = 3. It is known that x;(P,) = 3
for 5 < n < 11. Figure 6 shows the trees Tig, T19, and T13 together with
an irregular 3-coloring for each.

13



Figure 6: Irregular 3-colorings of Tig, T1g, and Ti3

Consider the path P4 in the tree T1g, whose color sequence is
1,2,1,2,3,2,3,1,3,1,2,1,3,2. (7

In the color sequence in (7) there are 3 subsequences of the form ijij, where
1 <i#j <3, namely
1212, 2323, 3131. (8)

Successively replacing these subsequences ijij in the sequence of (7) by ij
in the order described in (8), we obtain color sequences for the paths Pja,
Pyg, and Pg, respectively. We can then construct 716, 714, and T2 in the
same fashion as that of 715 as shown in Figure 6.

Similarly, consider the path Pj5 in the tree T19, whose color sequence is

1,2,1,2,3,2,3,1,3,2,3,1,3,1,2. (9)

In the color sequence in (9) there are 2 subsequences of the form 4jij, where
1 <i#j <3, namely
1212, 2323. (10)

Successively replacing these subsequences ijij in the sequence of (9) by 75 in
the order described in (10), we obtain color sequences for the paths P35 and
P, respectively. We can then construct 777 and 75 in the same fashion
as that of Tg as shown in Figure 6. The tree T3 is shown in Figure 6 with
an irregular 3-coloring and this completes the proof. [

14



By Proposition 4.6, the largest possible value n for which there exists a
tree of order n with irregular chromatic number 4 is 46.

Proposition 4.9 If 20 < n < 46, then dr(n) = 4.

Proof. By Proposition 4.6, it suffices to construct a tree T, of order n
for each n with 20 < n < 46 such that x;(T,) = 4. It is known that
Xir(Pn) = 4 for 20 < n < 26. Figure 7 shows the tree T32 together with
an irregular 4-coloring. Successively deleting the end-vertices u, v, w,z,y
from T35 produces the trees T31, T3g, - .., IT27. Thus, we may assume that
33 <n < 46.

Figure 7: An irregular 4-coloring of T3,

First, assume that 34 < n < 46 and n is even. The tree Ty is shown
in Figure 8 with an irregular 4-coloring. The largest possible value n for
which there exists a tree of order n with irregular chromatic number 4 is
46. Thus Ty contains exactly 4(4 — 1) = 12 end-vertices, exactly 4(3) = 24
vertices of degree 2, and exactly 4(4 — 1) — 2 = 10 vertices of degree 3.
Consider the u — v path Psg in Tyg. A color sequence for Pog follows:

4,1,2,1,2,3,2,3,1,3,1,2,4,2,4,3,4,3,1,4,1,4,3,2,4, 1. (11)

There are 6 subsequences of the form ¢j7j in the color sequence of Pyg in
(11), namely
1212, 2323, 3131, 2424, 4343, 1414. (12)

Successively replacing these subsequences ijij by ¢j in the order described
in (12), we obtain color sequences for T},, where 34 < n < 44 and n is even.

Next, assume that 33 < n < 45 and n is odd. The tree Ty5 is shown
in Figure 8 with an irregular 4-coloring. Consider the x — y path Py5 in
Ty5. There are 6 subsequences of the form jij in the color sequence of
Py;5 as described in (12). Successively replacing these subsequences ijij by
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Figure 8: Irregular 4-colorings of Tys and Tys

ij in the order described in (12), we obtain color sequences for T, where

33 <n <43 and n is odd.

Using an argument similar to the one in the proof of Proposition 4.9,
we are able to establish the following two results.

Proposition 4.10 If 47 < n < 88, then dr(n) = 5.
Proposition 4.11 If 89 < n < 100, then dr(n) = 6.

In summary, for 2 < n < 100,

=W N

dT (n) =

Ut

6

ifn=2,4
ifn=3o0r5<n<14
if 15<n <46

if 47 <n < 88

if 89 < n < 100.

Therefore, Conjecture 4.7 holds for 5 < n < 100. In fact, it has also been
shown that Conjecture 4.7 holds for many integers n > 100.
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5 Vertex and Edge Removal

A fundamental question in graph theory concerns how the value of a pa-
rameter is affected by making a small change in the graph. As we will see
next, the addition of an edge to a graph G results in a graph whose irregular
chromatic number differs from that of G by at most 2.

Proposition 5.1 If G is a noncomplete graph and e is an edge of the
complement G of G, then

IXir (G +€) = xir(G)] < 2.

Proof. If G = K>, then G + e = K,. Since x;r(K2) = xir(K2) = 2, the
result holds for the graph of order 2. Thus, we may assume that G has at
least three vertices. Suppose that xi(G) = k and e = uv € E(G). Let ¢ be
an irregular k-coloring of G with ¢(u) =4 and ¢(v) = j, where 1 < i,j < k.

Define a coloring ¢* of G + e from ¢ by

k+1 ifzx=u
c(z) = E+2 ifzx=v
c(x) if x#u,v.

We show that ¢* is an irregular coloring of G + e. First, we make two
observations.

(1) Since c¢*(u) # ¢*(v), it follows that codec«(u) # codec(v). If w €
V(G + e) — {u,v} = V(G) — {u,v}, then ¢*(u) # ¢*(w) and so
codec (u) # codess(w). Similarly, code. (v) # code. (w) for w €
V(G) — {u,v}.

(2) fweV(G+e)—{u,v} =V(GQ)—{u,v} and w is adjacent to neither
unor v in G (and so in G + e), then code.~ (w) = code.(w).

Let z and y be two distinct vertices of G+e. If z € {u,v} or y € {u,v},
then code,- (¢) # code- (y) by (1). Itz ¢ N(u)UN(v) and y ¢ N(uw)UN(v),
then codecx (z) # codecx(y) by (2) and the fact that ¢ is an irregular coloring
of G. Thus we may assume (i) z,y € V(G) —{u,v} and (ii) z € N(u)UN(v)
or y € N(u) UN(v). If exactly one of z and y is adjacent to u, say z is
adjacent to v and y is not adjacent to u, then the (k + 1)th coordinate
of code.«(z) is 1 and the (k + 1)th coordinate of code.:(y) is 0 and so
code.« () # codecx(y). Similarly, if exactly one of z and y is adjacent to
v, then code.~(z) # code.+(y). Thus if code~(z) = code.-(y), then either
both z and y are adjacent to u or neither z nor y is adjacent to u. Similarly,
either both = and y are adjacent to v or neither = nor y is adjacent to v.

17



Suppose that

code.(z) = (xo,z1,%2,...,%k),
codecs(x) = (20,271,253, Tf, Thy1) Thyz)
codec(y) = (Yo:¥Y1,Y2,---,Yk);
codec (¥) = (Y0-Y1:Y3>- - Yis Vi1 Yiot2)-

Since code.(x) # code.(y), it follows that x; # y; for some integer ¢ with
0<t<k Ift#iandt+#j, then z; = 2} and y; = y; and so code.(z) #
codec+(y). Thus we may assume that ¢ = i or ¢ = j, say t = 4 and
so x; # y;. If both x and y are adjacent to w, then =} = z; — 1 and
y; = y; — 1; so ¢} # y!. If neither = nor y is adjacent to u, then z} = z;
and y; = y;; so xf # y!. Hence in either case, code.-(z) # codec(y).
Therefore, ¢* is an irregular coloring of G + e using at most k + 2 colors
and so xi(G + €) < xir(G) + 2.

To show x;(G) < xir(G + €) + 2, suppose that x;-(G + ) = k' and let
¢’ be an irregular k'-coloring of G + e. We then define a coloring ¢ of G by

E+1 fz=u
c(z) = E+2 ifz=v
cd(z) ifxz#u,v.

Applying an argument similar to the one used in proving x;(G + e) <
Xir(G) + 2, we can show that ¢ is an irregular coloring of G using at most
k' + 2 colors and so xir(G) < xir(G + €) + 2. Therefore, |xir(G + €) —
Xir (G)| <2 L

By Proposition 5.1, if G is a noncomplete graph and e is an edge of G,
then

Xir (G + €) = xir(G) + i, where —2 < i < 2.

In fact, for each integer ¢ with —2 < i < 2, there exists a graph G; and
an edge e of G; such that x;-(G; + €) = xir(G;) + i, as shown in Figure 9,
where a minimum irregular coloring is also provided for each graph.

Proposition 5.2 If G is a nontrivial graph and v is a vertex of G, then
Xir(G) =1 < Xir (G — v) < xir(G) + degg v.

Proof. Suppose that x;r(G) = k and N(v) = {v1,v2,...,vp}, where then
p = deg v. Let ¢ be an irregular k-coloring of G. Define a coloring c¢* of
G —v by

kE+i ifx=v; wherel <i<p

@) = {c(m) if 2 ¢ Nv).
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Gy o—C0—0—=©0

G - oO—0O0—0—o0 Ga+e:

1 2 1 2

Figure 9: Graphs G; with x;-(G; + €) = xir(G;) +i for —2 <3 <2

Thus ¢* uses at most k + p colors. We show that ¢* is an irregular coloring
of G—v. Let z,y € V(G —v). If x € N(v) or y € N(v), then ¢*(z) # c*(y)
and so code:(z) # code.:(y). Thus we may assume that z ¢ N(v) and
y ¢ N(v). Suppose that

code.(z) = (xo,%1,%2,---,Tk),
codec(T) = (X0 TT, T35+« +sThs Thi1r- > Thip)s
codec(y) = (Yo,Y1,Y2s---,Yk);
codecs(y) = (Y0, Y1:Y2:- - Yk Yktts -+ Yktp)-

Since code.(z) # code.(y), it follows that x; # y; for some integer ¢ with
0 <t < k. For each integer 7, the vertex v; is the only vertex of G—v colored
k + i. Hence if exactly one of z and y is adjacent to v; (1 <4 < p), then
code.« () # code.(y). Thus if codec () = codec« (y), then for each ¢ with
1 <i < p, either (1) both z and y are adjacent to v; or (2) neither  nor y is
adjacent to v;. Hence N(z) N N(v) = N(y) N N(v). Let ¢ = |[N(z) NN (v)|.
Then zf = z; — ¢ and y; = y; — ¢, implying that code.: (z) # code.- (y).
Therefore, ¢* is an irregular coloring of G — v using at most k + p colors.
Thus X (G —v) < Xir(G) + degg v.
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Next we show that x;-(G)—1 < xir(G—v). Suppose that x;-(G—v) = k'
and ¢' is an irregular k'-coloring of G —v. We now add v to G — v and join

v to each of the vertices vy, vs,...,v, of G — v. Define a coloring ¢ of G
from ¢ by
oz) = E+1 ifz=v
B d(x) ifz#w.

Then ¢ uses k' + 1 colors. We now show that ¢ is an irregular coloring
of G. Let z,y € V(G). I z = v or y = v, then c¢(z) # c(y) and so
code.(x) # code.(y). Thus we may assume that z,y € V(G) — {v}. Since
¢’ is an irregular coloring of G — v, it follows that code. (z) # code (y).
If = is adjacent to v, then the first (k' + 1) coordinates of code.(z) are
same as those in codey (z) and the (k' + 2)th coordinate of code.(x) is 1.
If z is not adjacent to v, then the first (k' + 1) coordinates of code.(z) are
same as those in codey (z) and the (k' + 2)th coordinate of code.(z) is 0.
The same can be said about the coordinates of code.(y). If exactly one of
z and y is adjacent to v, then code.(x) # code.(y) since their (k' + 2)th
coordinates are different. If both z and y are adjacent to v or neither z
nor y is adjacent to v, then code.(z) # code.(y) since their first (k' + 1)
coordinates (namely, those in code. (x) and code (y)) are different. Thus ¢
is an irregular coloring of G using k'+1 colors and so x;-(G) < xir(G—v)+1.
Therefore, x;»(G —v) > xir(G) — 1. L]

Next we show that both upper and lower bounds in Proposition 5.2 are
sharp, beginning with the upper bound. In fact, for each integer p > 1,
there exists a graph G, having a vertex v of degree p such that x;,(Gp—v) =
Xir(Gp) + p, as we show next. For p =1, let G; = P and let v be an end-
vertex of Gi. Then Gy —v = P;. Since xir(Py) = 2 and x;-(P3) = 3, it
follows that xir(G1 —v) = xir(G1) + 1. For p > 2, let F,, = K322 be
the complete p-partite graph of order 3 + 2(p — 1) = 2p + 1, whose partite
sets are V1,Va,...,V,, where Vi = {v1,1,v1,2,v1,3} and V; = {v; 1,v;2} for
2 < i <p. The graph G, is then obtained from F}, by adding a new vertex
v and joining v to each vertex v;; for 1 < i < p. Thus degGP v = p. Since
Gp—v=F, = K333..2, it follows that x;.(Gp, —v) = xir(K32.2,..2) =
2p + 1. Next, we show that x;(Gp) =p+ 1. Let

SZ{’U}U{’UZ'JZ 1S2§p}

Since (S) = Kp41, it follows that G, contains a complete graph Kp1 as a
subgraph and so x;»(Gp) > p+ 1. To show that x;»(Gp) < p+ 1, we define
a (p + 1)-coloring ¢ of G}, by

o(z) = p+1 ifx=vorz=uvg3
a 1 ifzeV;forl<i<pandz#uvs.
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Next, we show that c¢ is an irregular (p + 1)-coloring of G,. If z,y € V(G))
such that c¢(z) = c(y), then either {z,y} = {v,v1,3} or {z,y} = {vi,1,vi2}
for some ¢ with 1 <4 < p. Suppose first that {z,y} = {v,v1 3}, say z = v
and y = vy 3. Then z is adjacent to a vertex colored 1 (namely vy 1) but y
is not adjacent to any vertex colored 1, implying that code.(x) # code.(y).
Next, suppose that {z,y} = {vi1,vi2}, say ¢ = v;1 and y = v; 2. i =1,
then z is adjacent to a vertex colored p+ 1 (namely v) but y is not adjacent
to any vertex colored p + 1; while if 2 < ¢ < p, then z is adjacent to
two vertices colored p + 1 but y is adjacent to exactly one vertex colored
p+ 1. In either case, code.(z) # code.(y). Thus c¢ is an irregular (p + 1)-
coloring of G}, and so x;»(Gp) < p+ 1. Hence x;r(Gp) = p + 1. Therefore,
Xir(Gp — v) = xir(Gp) + p for all p > 2. For p = 2,3, the graphs G,
and G — v are shown in Figure 10, where a minimum irregular coloring is
provided for each graph.

9 1 1 3
p=2:

Figure 10: Graphs G, and Gp — v for p = 2,3

To verify the lower bound in Proposition 5.2 is sharp, let G = K; 1
where n > 3. Then x;(G) = n. For a vertex v of G, either G —v = K; p_»

or G —v=K,_1. Since xir(K1,n—2) = Xir(Kn-1) =n — 1, it follows that
Xir(G —v) = xir (G) — 1 for every vertex v in G.
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