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Abstract

Let G be a connected graph and let ¢ : V(G) — {1,2,...,k} be a proper coloring
of the vertices of G for some positive integer k. The color code of a vertex v
of G (with respect to c) is the ordered (k + 1)-tuple code(v) = (ag,a1,...,ax)
where aqg is the color assigned to v and for 1 < ¢ < k, a; is the number of
vertices adjacent to v that are colored :. The coloring c is irregular if distinct
vertices have distinct color codes and the irregular chromatic number x;,(G) of
G is the minimum positive integer k£ for which G has an irregular k-coloring.
Characterizations of connected graphs of order n having irregular chromatic
numbers 2 or n are established. For a pair k,n of integers with 2 < k < n, it is
shown that there exists a connected graph of order n having irregular chromatic
number k if and only if (k,n) # (2,7n) for some odd integer n. Irregular chromatic
numbers of cycles are investigated.
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1 Introduction

A problem in graph theory that has received increased attention during the past 35 years
concerns studying methods to distinguish the vertices of a connected graph. One of the
earlier methods is due to Sumner [15] and Entringer and Gassman [9]. They studied graphs
G for which the equality of the open neighborhoods of every two vertices of G implies that
the vertices are the same. In this case, the vertices of G are uniquely determined by their

open neighborhoods.

Erwin and Harary [10] introduced the idea of selecting a subset S of the vertex set of
a graph G such that the subgroup of Aut(G) that fixes every vertex of S is the identity
group. Albertson and Collins [3] and Harary [11] introduced the notion of coloring the
vertices of G in such a way that the subgroup of color-preserving automorphisms of Aut(G)
is the identity group. In these ways, the vertices of a graph G can be distinguished from

one another with the aid of certain automorphisms of G.

Another way to distinguish the vertices of a connected graph G from one another was
introduced by Harary and Melter [12] and Slater [14]. In this method, an ordered set W of



vertices of G, say W={w1, wa, ..., w}, is found and each vertex v is assigned the ordered
k-tuple cw (v)= (a1, ag, ..., ai), where a; = d(v, w;) is the distance between v and w; for
1 <4 < k. The ordered k-tuple cyy (v) is sometimes called the distance code of v. If distinct

vertices of G have distinct distance codes, then the vertices of G are distinguishable.

Harary and Plantholt [13] introduced yet another way to distinguish the vertices of a
graph G by assigning colors to the edges of G in such a way that for every two vertices of
G, one of the vertices is incident with an edge assigned one of these colors that the other
vertex is not. They referred to the minimum number of colors needed to accomplish this as

the point-distinguishing chromatic index of G.

There is still another manner in which differences among the vertices of a connected
graph G can be detected. Let G be a connected graph of order n > 3 and let ¢: E(G) —
{1,2,...,k} be a coloring of the edges of G for some positive integer k& (where adjacent
edges may be colored the same). The color code of a vertex v of G with respect to a k-
coloring c of the edges of G is the ordered k-tuple (a1, ag,...,ax) where a; is the number of
edges incident with v that are colored 7 for 1 < ¢ < k. The edge-coloring c is detectable if
distinct vertices have distinct color codes. The minimum positive integer k for which G has
a detectable k-coloring is the detection number of G. The concept of detectable colorings
was studied in [1, 2, 4, 5, 6].

In [7] a method was introduced to recognize the vertices of a graph. Let G be a graph
and let c: V(G) — {1,2,...,k} be a coloring of the vertices of G for some positive integer k
(where adjacent vertices may be colored the same). The color code of a vertex v of G (with
respect to c) is the ordered (k + 1)-tuple code.(v) = (ao,a1,...,ax) where ag is the color
assigned to v and for 1 <7 < k, a; is the number of vertices adjacent to v that are colored
i. The coloring c is called recognizable if distinct vertices have distinct color codes and the
recognition number of G is the minimum positive integer k£ for which G has a recognizable

k-coloring.

In this work, we introduce a method that combines a number of the features of the meth-
ods mentioned above. We refer to the book [8] for graph theory notation and terminology

not described in this paper.

2 Basic Definitions and Preliminary Results

A (proper) coloring of a graph G is a function ¢ : V(G) — N having the property that
c(u) # c(v) for every pair u,v of adjacent vertices of G. A k-coloring of G uses k colors.
The chromatic number x(G) of G is the minimum integer k for which G admits a k-coloring.

Let G be a graph and let ¢: V(G) — {1,2,...,k} be a proper coloring of the vertices of

G for some positive integer k. The color code of a vertex v of G (with respect to ¢) is the



ordered (k + 1)-tuple
code(v) = (ap,a1,-..,ax) (or simply, code(v) = agaias---ay),

where ay is the color assigned to v (that is, ap = ¢(v)) and for 1 < i < k, a; is the number of
vertices adjacent to v that are colored i. Therefore, if ag = %, then a; =0 for 1 <7 < k and
Ele a; = deggv. The coloring c is called irregular if distinct vertices have distinct color
codes and the irregular chromatic number x;(G) of G is the minimum positive integer k for
which G has an irregular k-coloring. An irregular k-coloring with x;,(G) = k is a minimum
irreqular coloring. Since every irregular coloring of a graph G is a coloring of G, it follows
that

X(G) < xir(G). 1)

To illustrate this concept, consider the Petersen graph P of Figure 1. Since x(P) = 3, it
follows by (1) that x;(P) > 3. A 4-coloring of the Petersen graph is given in Figure 1
along with the corresponding color codes of its vertices. Since distinct vertices have distinct
codes, this coloring is irregular and so x;.(P) < 4. Therefore, x;(P) = 3 or x;(P) = 4.
We show that yx;.(P) = 4. Assume, to the contrary, that ;- (P) = 3. Let ¢ be an irregular
3-coloring of P. Let u and v be two vertices of P with c(u) = ¢(v). We may assume that
¢(u) = ¢(v) = 1. Since the diameter of P is 2 and u and v are nonadjacent, there is a path
u, w,v in P. This implies that at most one of u and v is adjacent to three vertices having
the same color. That is, no two vertices colored 1 can have the two color codes 1030 and
1003. Thus at most three vertices of P can be colored 1 and, in general, at most three

vertices of P can be assigned the same color, contradicting our assumption that x;.(P) = 3.

10120

Figure 1: An irregular 4-coloring of the Petersen graph P

There are some observations that will be useful to us.

Observation 2.1  Let ¢ be a coloring of the vertices of a graph G. If u and v are two
vertices of G with c(u) # c(v), then code(u) # code(v).



Observation 2.2  Let ¢ be a coloring of the vertices of a graph G. If u and v are two
vertices of G with deggu # degg v, then code(u) # code(v).

By Observations 2.1 and 2.2, to show that a coloring of a graph G is irregular, it is
necessary and sufficient to show that every two vertices of same degree and same color have

distinct codes.

The neighborhood of a vertex w in a graph G is N(u) = {v € V(GQ) : wv € E(G)}.

Observation 2.3  Let ¢ be an irreqular coloring of a graph G. If u and v are distinct
vertices of G with N(u) = N(v), then c(u) # c(v).

The following result, dealing with combinations with repetition, is well-known in discrete

mathematics.

Theorem A Let A be a set containing £ different kinds of elements, where there are at

least v elements of each kind. The number of different selections of r elements from A is
(r+£—1).

T

We have seen that if ¢ is an irregular k-coloring of a graph G and v € V(G) such that
code(v) = (4,a1,...,ax) for some i with 1 <4 < k, then a; = 0 and the sum of the remaining
k — 1 coordinates a1, -+ ,a; 1,011, ak, is the degree of v. Therefore, by Theorem A, we

have the following.

Theorem 2.4  Let ¢ be an irreqular k-coloring of the vertices of a graph G. The number

of different possible color codes of the vertices of degree v in G is

k(r—l—(k;l)—l) :k<r+l:—2>.

The following result is a consequence of Theorem 2.4.

Corollary 2.5 If ¢ is an irreqular k-coloring of a nontrivial connected graph G, then G

r+k—2

. ) vertices of degree .

contains at most k(

As a consequence of Corollary 2.5, if ¢ is an irregular 2-coloring of a graph G, then G
has at most two vertices of the same degree. Thus if G contains three vertices of the same

degree, then y;,(G) > 3. This observation yields the following.

Corollary 2.6 If G is an r-regular graph for r > 2, then x;r(G) > 3.
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Thus if ¢ is an irregular 3-coloring of a graph G, then G contains at most 3(r+1) vertices
of each degree r. In particular, G contains at most 9 vertices of degree 2 and so the largest
possible order of a cycle with irregular chromatic number 3 is 9. Since Cy has an irregular

3-coloring (see Figure 2), it follows that y;(Co) = 3.

2200
1011 1020
3200 2101
1002 3020
3110 2002

Figure 2: A minimum irregular coloring of Cy

Furthermore, if ¢ is an irregular 3-coloring of a cubic graph G (a 3-regular graph),
then G contains at most 12 vertices, that is, the largest possible order of a cubic graph

with irregular chromatic number 3 is 12. The cubic graph G of Figure 3 has order 12 and
Xz'r(G) = 3.

Figure 3: An irregular 3-coloring of a cubic graph of order 12

3 Irregular Colorings of Cycles

We have seen that x;,(Py) = 3. We now determine the irregular chromatic number of other

cycles. The following are consequences of Corollary 2.5.

Corollary 3.1 If x;+(Cp) =k, where n. > 3, then n < k(g) = @



Corollary 3.2 Let k > 3 be an integer. Then xir(Cyr) > k for all integers n such that

k-1k-2+2 _ _KE-1)
2 =T =T

Each of the colorings in Figure 4 is a minimum irregular coloring. Thus for 3 <n < 9
Xir(Crn) = 4 if n is even and x;(C,) = 3 if n is odd.

1 2

1 2
3

3 2 4 3

Figure 4: Minimum irregular colorings of Cj, for 3 <n <9

The largest possible value of n for which x;,.(Cy,) = 4 is 24. In fact, x;(C24) = 4 as the
irregular 4-coloring of Cs4 shows in Figure 5.

Figure 5: An irregular 4-coloring of Coy

The largest possible value of n for which x;,(C,) = 5 is 50. In fact, x;r(Cs0) = 5 as the

irregular 5-coloring of Csy shows in Figure 6.



Figure 6: An irregular 5-coloring of Cjg

We describe how the irregular 4-coloring of Co4 in Figure 5 was constructed. (The
irregular 5-coloring of C5p shown in Figure 6 was constructed by a similar approach.) Let

S =1{1,2,3,4}. With the aid of a so-called deBruijn digraph, a cyclic sequence
§: a1,0a2,...-,064,065 = Q1,066 = A2

of length 64 can be constructed whose terms are the elements of S and having the property
that the 3-term subsequences a;,a;+1,a;12 (1 < 7 < 64) are all 64 3-permutations (with
repetition) of the elements of S. This deBruijn digraph D has order 16 and V(D) consists
of the 2-permutations (with repetition) of the elements of S. An arc e of D joins two vertices
ab and cd, where a,b,c,d € S, and is directed from ab to cd if and only if b = ¢, and e is
labeled abd. For example, 12 is joined to 23 (resulting in an arc labeled 123), but 23 is not
joined to 12; while 12 is joined to 21 (resulting in an arc labeled 121) and 21 is joined to
12 (resulting in an arc labeled 212). Also, 11 is joined to 11 by a directed loop labeled 111.
The resulting digraph D is connected and every vertex of D has outdegree 4 and indegree
4. This implies that D is Eulerian and so contains an Eulerian circuit whose 64 arcs can
therefore be listed cyclically as ey, es, .., egs, €g5 = €1 so that the labels of these arcs are
the 3-permutations of the elements of S and such that if abc is the label of e; (1 < i < 64),
then bed is the label of e; 1 for some d € S.



In this case, we are interested in a particular subdigraph of the deBruijn digraph D.
Let U = {ii : 1 <1i < 4}. First let D* be the subdigraph induced by V(D) — U, that is,
D* = (V(D) — U). Then the order of D* is 12 and V(D*) consists of the 2-permutations

tj of distinct elements of S. We are seeking a cyclic sequence
SI : bl, b2, P ,b23,b24 == b]_,b25 - b2

of length 24 whose terms are the elements of S and having the property that the 3-term
subsequences b;, b 11,012 (1 < i < 24) are all 24 3-permutations abc of the elements of
S such that (1) b # a,c and (2) exactly one of a,b, ¢ and ¢, b, a occurs among the 3-term
subsequences of s’. In order to construct such a sequence s', we seek a spanning Eulerian
subdigraph D’ of D* such that for each 3-permutation abc of the elements of S for which
b # a,c, exactly one arc of D' is labeled abc or cba. For example, D' must contain (i) both
of the arcs labeled 121 and 212 and (ii) exactly one of the arcs labeled 123 and 321. The
irregular 4-coloring of Cyy in Figure 5 was constructed by finding an Eulerian subdigraph
D’ of D* and an Eulerian circuit C’ of D'.

Even though x;(C24) = 4 and x;(Cs0) = 5, it turns out that x;(Coes) > 4 and
Xir(C19) > 5. In general, we have the following.

Theorem 3.3 Letk>3. Ifn= w, then xir(Cn-1) > k+ 1.

Proof. Assume, to the contrary, that x;-(C,_1) < k. Then there exists an irregular k-
coloring ¢ of Cj,_1. Since K1) s the largest possible value of n for which ;- (Cy,) = k,

2
2
any irregular k-coloring of C,,, should it exist, must result in exactly n = @ distinct
vertices of C,, are

2(k—1) _ k(k—1)
2% T 2

color codes for the n vertices of Cj, and so exactly k

colored ¢ for each ¢ with 1 < ¢ < k. In the irregular k-coloring ¢ of C,,_1, there must be

2 — . . . . . .
exactly n —1 = w — 1 distinct color codes, implying that exactly one of the n distinct
color codes for C), is not used. Therefore, ¢ assigns one of the k colors to exactly @ -1

(k=1)

vertices of Cp,_; and assigns each of the remaining & — 1 colors to exactly k >
Ch—1- We may assume, without loss of generality, that c assigns color 1 to exactly @ -1
vertices of Cp,_1. Let S = {v € V(Cp—1) : ¢(v) =1}. Then |S| = @ — 1. Let

N(S) = UUESN(U).

Thus 2 < ¢(z) < k for each z € N(S). Since all possible color codes must be used for

vertices colored 7 for each 7 with 2 < i < k, there exists exactly one vertex v; colored ¢ that

vertices of

has two neighbors u; and w; colored 1. However then v; € N(u;) N N(w;). This says that
IN(S)| =28 —(k—1)=k(k—1) —2—(k—1) = (k—1)* - 2. (2)

Since each vertex in N(S) is assigned one of the colors 2,3,...,k, the color code of each
vertex in N(S) has the form (i,a1,a9,---,ax), where i € {2,3,...,k}, a1 € {1,2}, and



a; = 0. For each i with 2 <7 < k, exactly one such color code has a; = 2 and exactly k — 2
color codes have a; = 1, for a total of £k — 1 distinct color codes for each ¢. Thus there are
exactly (k — 1)? distinct color codes for the vertices of N(S). Since all of these color codes
are used for the vertices of N(S), it follows that |N(S)| = (k — 1)?, which contradicts (2). m

2()_
Corollary 3.4 Letk >3 and n = k (g Y If xir(Cn) = k, then xir(Cn—1) =k + 1.

Proof. Let ¢ be an irregular k-coloring of C,,. Since w is the largest possible value

of n for which x;.(Cy,) = k, it follows that c results in exactly L(gfl)
for the n vertices of C,,. Thus there exist four consecutive vertices s, u,v,t on C,, such that
c(s) = c(v) =1, c(u) =2, and ¢(t) = k > 3. The cycle C,_1 can be constructed from C,

by identifying the vertices u and v, resulting in a vertex w. Then the (k + 1)-coloring ¢

distinct color codes

of Cy, 1 defined by (z) = k+ 1 if z = w and d(z) = ¢(z) if z # w is irregular and so
Xir (Cn—1) < k + 1. By Theorem 3.3, xir(Cr—1) =k + 1. [

Next, we determine the irregular chromatic number of cycles of order n for 10 < n < 50.
For an irregular coloring ¢ of the cycle C), : vi,vo,...,v,,v1 of order n, define the color
sequence of C,, with respect to ¢ as the cyclic sequence

Sn : c(vl)a C(UQ)’ T ,C(’Un), c(vl)'
For example, for the irregular 4-coloring of Cs; of Figure 7, the color sequence is
$21 ° ]-7 27 ]-7 27 35 27 35 47 3’ 45 ]-a 45 17 35 ]-a 35 4a 27 45 27 3’ 1 (3)

Therefore, an irregular coloring of a cycle can be represented by its color sequence.

Figure 7: An irregular 4-coloring of Cy

Proposition 3.5 For 10 <n <24, x;(Cr) =4 if n # 23 and x4 (Cas) = 5.



Proof. The color sequence of Cy4 with respect to the irregular 4-coloring shown in Figure 5
is
$00:1,2,1,2,3,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4,1,4,3,2,4, 1. (4)
We first consider ;. (Cy,) for each even integer n with 10 < n < 22. In the color sequence of
Cy4 shown in (4) there are 6 subsequences of the form i, 7,4, j (or more simply 7jij), where
1 <14 # j <4, namely
1212, 2323, 3131, 2424, 4343, 1414. (5)

Successively replacing these subsequences ijij in sg4 by 4j in the order described in (5), we

obtain color sequences for C},, where 12 < n < 22 and n is even. These color sequences are

sop:  1,2,3,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4,1,4,3,2,4, 1

890 : 1,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4,1,4,3,2,4,1

sig:  1,2,3,1,3,2,4,2,4,3,4,3,1,4,1,4,3,2,4,1

S16 : 1,2,3,1,3,2,4,3,4,3,1,4,1,4,3,2,4,1

S14 ¢ 1,2,3,1,3,2,4,3,1,4,1,4,3,2,4,1

819 : 1,2,3,1,3,2,4,3,1,4,3,2,4,1.
An irregular 4-coloring of C1g can be obtained from an irregular 3-coloring of Cy by assigning
color 4 to the vertex v19. Therefore, x;(Cy) = 4 for 10 < n < 22 and n is even.

Next, we consider y;,(C,) for each odd integer n with 11 < n < 23. By Corollary 3.4,
Xir (C23) = b and x4 (Ca1) = 4 by the irregular 4-coloring of C; in Figure 7. Deleting the
subsequence 43241 from the color sequence of Cy4 in (4), we obtain a color sequence for Cig
as follows:

s19:1,2,1,2,3,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4, 1. (6)

There are 4 subsequences of the form 7545 in the color sequence of Cig in (6), namely

2323, 3131, 2424, 4343. (7)

Successively replacing these subsequences 353 by ij in the order described in (7), we obtain

color sequences for Cy7,Ci5,Ci3 and Ci3, namely

si7: 2,1,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4,1,2
si5: 2,1,2,3,1,3,2,4,2,4,3,4,3,1,4,1,2
s13:  2,1,2,3,1,3,2,4,3,4,3,1,4,1,2

si: 2,1,2,3,1,3,2,4,3,1,4,1,2.

Therefore, xir(Cp) =4 for 11 <n <21 and n is odd. m
Proposition 3.6  For 25 <n <50, x;r(Cpn) =5 if n # 49 and x;r(Cag) = 6.
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Proof. The color sequence of Csy with respect to the irregular 5-coloring in Figure 6 is

850 : ]‘72’ ]‘72’ 37 2’ 37 ]"3’ ]‘1 37 27 4’ 2’ 47 1747 ]‘747 2’ 5’21 5747 5’ 4’ 57
1,5,1,5,4,3,4,3,5,4,2,3,5,3,5,1,3,5,2,3,4,1,3,4, 2,5, 1. (8)

We first consider x;.(Cy) for each even integer n with 26 < n < 48. In the color sequence
of Csp shown in (8) there are 10 subsequences of the form or ijij, where 1 < i # j < 5,
namely

1212, 2323, 3131, 2424, 4343, 1414, 2525, 5454, 1515, 4343, 3535. (9)

Successively replacing these subsequences 353 by ij in the order described in (9), we obtain
color sequences for C),, where 30 < n < 48 and 7 is even. Furthermore, a color sequence

for each of Cy and Csg is shown as follows.

sog:  1,5,2,1,2,5,3,2,3,1,3,1,3,2,4,2,4,3,4,3,1,4,1,4,3,2,4,1
sog:  1,5,2,1,2,5,3,2,3,5,1,3,1,3,5,2,4,2,4,3,4,3,1,4,1,4,3,2,4,1

Therefore, x;r(Cp) =5 for 26 < n < 48 and n is even.

Next, we consider y;,(C,) for each odd integer n with 25 < n < 49. By Corollary 3.4,
Xir (Ca9) = 6. Deleting the subsequence 134 from the color sequence of Csq in (8), we obtain

a color sequence for Cy7 as follows:

347 : ]" 27 ]" 27 3’ 27 3’ ]‘7 37 ]‘7 37 27 47 2’ 47 17 47 ]‘7 4’ 27 57 2’ 574’ 57 4’ 57
1,5,1,5,4,3,4,3,5,4,2,3,5,3,5,1,3,5,2,3,4, 2,5, 1. (10)

There are 10 subsequences of the form 4jij in the color sequence of Cy7 in (9). Succes-
sively replacing these subsequences 7jij by 4j in the order described in (9), we obtain color
sequences for Cj,, where 27 < n < 45 and n is odd. An irregular 5-coloring of Cy5 can be ob-
tained from an irregular 4-coloring of Cy4 by assigning color 5 to the vertex vys. Therefore,
Xir(Cr) = 5 for 25 < n < 47 and n is odd. n

We have seen for 3 < n <9 that x;(Cp) = 4 if n is even and x;,(Cp,) = 3 if n is odd.
If n > 10, then x;(C,,) > 4. We have the following conjecture.

Conjecture 3.7 Letk > 4. If (k—1)(*,") +1 <n < k(£), then

k ifn# k(%) -1
Xir(Cn):{ nt (2)

E+1  ifn=k(%) -1

By Propositions 3.5 and 3.6, Conjecture 3.7 is true for 10 < n < 50. Furthermore, by
Corollary 3.2, if kK and n are integers satisfying the conditions in Conjecture 3.7, then
Xi’r(Cn) > k.
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4 Graphs with Prescribed Order and Irregular Chromatic
Number

We have seen that if G is a nontrivial connected graph of order n, then 2 < ;. (G) < n.
Of course, a nontrivial connected graph G has chromatic number 2 if and only if G is a
bipartite graph. We now present a characterization of connected graphs having irregular

chromatic number 2. In order to do this, we first establish a lemma.

Lemma 4.1 Let G be a nontrivial connected graph. Then x;r(G) = 2 if and only if G is

bipartite and no two vertices in the same partite set have the same degree.

Proof. First, assume that x;(G) = 2. Then x(G) = 2 by (1) and so G is bipartite. Let ¢ be
any irregular 2-coloring of G. It remains to show that no two vertices in the same partite set
have the same degree. Assume, to the contrary, that G contains two vertices u and v such
that u and v belong to the same partite set of G and degu = degv = k for some positive
integer k. Necessarily c(u) = ¢(v), say c¢(u) = ¢(v) = 1. Thus code(u) = (1,0, k) = code(v)
and so c¢ is not irregular. This is a contradiction.

For the converse, assume that G is bipartite and no two vertices in the same partite
set have the same degree. Define a coloring of G by assigning color 1 to every vertex in
one partite set of G and assigning color 2 to every vertex in the other partite set. By

Observation 2.2, this coloring is an irregular 2-coloring of G and so x;(G) = 2. ]

For each even integer n = 2k, where k is a positive integer, let F,, be the bipartite graph
with partite sets X = {z1,z2,---,zx} and Y = {y1,y2, ..., yx} such that degz; = degy; =1
for 1 <4 < k. Observe then that zj is adjacent to all vertices in Y and z;_1 is adjacent to
all vertices in Y — {y1}. In general, for each integer j with 1 < j <k,

N(z;)={yi: k—j+1<i<k}

By Lemma 4.1, x;-(F,) = 2 for every positive even integer n. Figure 8 shows the graph Fg
of order 8 together with an irregular 2-coloring of Fy.

Y1 Y2 Y3 Ya

Figure 8: The graph Fy

We are now prepared to present a characterization of connected graphs with irregular

chromatic number 2.
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Theorem 4.2 Let G be a connected graph of order n > 2. Then x;(G) = 2 if and only if

n is even and G = F,.

Proof. We have seen that if G 2 F,,, then x;,(G) = 2 by Lemma 4.1. For the converse, let
G be a connected graph of order n with x;,(G) = 2. It then follows by Lemma 4.1 that G
is a bipartite graph such that no two vertices in the same partite set have the same degree.
Let U and V be the partite sets of G. We first show that |U| = |V'|, which implies that n is
even. Assume, to the contrary, that |U| # |V, say |U| < |V|. Since G is connected and all
vertices of V' have distinct degrees in G, it follows that degv > 1 for all v € V and there is
at least one vertex v’ € V such that degv' > |V|. On the other hand, since N(v) C U and
|U| < |V, it follows that degv’ < |U| < |V|, which is a contradiction. Therefore, |U| = |V|

and so n is even.

Next, we show that G = F,. Since |U| = |V| and G is connected, it follows that
1 <degz < k for all z € V(G). Furthermore,

{degu: ue U} ={degv: veV}={1,2,...,k}.

Assume, without loss of generality, that U = {ui,ug,...,ux} and V = {v1,ve,..., v},
where deg u; = degv; =1 for 1 < i < k. Therefore, uy is adjacent to all vertices in V. Also,
ug—1 is adjacent to all vertices in V' — {v;} and so on. In general, for each j with 1 < j <k,

the vertex u; is adjacent each vertex v; for k — j +1 <4 < k. Therefore, G = F),. [

It is known that the complete graph K,, of order n is the only connected graph of order

n with chromatic number n. This is not the case for irregular chromatic number.
Proposition 4.3 If G is a complete multipartite graph of order n, then xir(G) = n.

Proof. Let ¢ is an irregular coloring of G and let z and y be two distinct vertices of G.
If z and y belong to the same partite set of G, then N(z) = N(y) and so c(z) # c(y)
by Observation 2.3. If z and y belong to the different partite sets of G, then x and y are
adjacent and so c(z) # c¢(y). Therefore, ¢ must use n distinct colors and so x;(G) =n. =

We just observed that if G is a complete multipartite graph of order n, then N(u) = N(v)
for every pair u, v of nonadjacent vertices of G and x;r(G) = n by Proposition 4.3. In fact,
this result can be generalized to produce a characterization of connected graphs of order n

with irregular chromatic number n. In order to do this, we first present a lemma.

Lemma 4.4 Let G be a connected graph of order n > 2. Then x;r(G) = n if and only if
N(u) = N(v) for every pair u,v of nonadjacent vertices of G.
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Proof. First, suppose that G is a connected graph of order n > 2 such that N(u) = N(v)
for every pair u,v of nonadjacent vertices of G. We show that y;(G) = n. Assume, to
the contrary, that x;(G) < n — 1. Then there exists an irregular coloring ¢ using n — 1 or
fewer colors and so there exist two vertices v and v of G such that ¢(u) = ¢(v). Since c is
a coloring of G, it follows that u and v are nonadjacent vertices of G. By Observation 2.3,
N(u) # N(v), which is a contradiction.

For the converse, suppose that x;.(G) = n, and assume, to the contrary, that there exist
two nonadjacent vertices u and v of G such that N(u) # N(v). Define a coloring ¢ of G
by assigning color 1 to u and v and assigning the n — 2 colors in {2,3,---,n — 1} to the
remaining n — 2 vertices of G. Since N(u) # N(v), it follows that code(u) # code(v) and

so ¢ is an irregular (n — 1)-coloring of G. Thus x;;(G) < n — 1. This is a contradiction. m

We now present a characterization of connected graphs of order n with irregular chro-

matic number n, which is a consequence of Proposition 4.3 and Lemma 4.4 .

Theorem 4.5 Let G be a connected graph of order n > 2. Then x;r(G) = n if and only if

G is a complete multipartite graph.

Proof. We have seen in Proposition 4.3 that every complete multipartite graph of order
n has irregular chromatic number n. Thus it remains to only verify the converse. Let G
be a connected graph of order n > 2 with x;(G) = n. By Lemma 4.4 N(u) = N(v) for
every pair u,v of nonadjacent vertices of G. Suppose that x(G) = k, where 2 < k < n.
Let ¢ be a k-coloring of GG. Then the vertex set of G is partitioned into k£ color classes
Vi,Va, -+, V. We show that G is a complete multipartite graph with partite sets V; for
1 < i < k. Assume, to the contrary, that this is not the case. Then there exist two sets V;
and Vj, 1 <14 < j <k, such that some vertex « in V; is not adjacent to some vertex v in Vj.
There must be adjacent vertices z € V; and y € V}, for otherwise all the vertices in V; UV}
can be colored the same, contradicting our assumption that x(G) = k. Suppose that either
z =wu or y = v, say the former. Then y € N(u) and y ¢ N(v) and so N(u) # N(v), which
is a contradiction since u and v are not adjacent. Thus z # u and y # v. If z is adjacent to
v, then N(u) # N(z), which is impossible since u,z € V;. Thus v and = are not adjacent.
However then, N(v) # N(z), which again is impossible. ]

By Theorem 4.2, there is no connected graph of odd order having irregular chromatic
number 2. On the other hand, every pair k, n of integers with 3 < k < n is realizable as the

irregular chromatic number and the order of some connected graph, as we show next.

Theorem 4.6  For every pair k,n of integers with 3 < k < n, there exists a connected

graph of order m having irregular chromatic number k.
Proof. We consider two cases, according to whether k > y/n or k < y/n.
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Case 1. k > y/n. Then n—k < k? —k. We construct a graph G from the complete graph
K by adding n — k new vertices to K in such a way that every new vertex is adjacent to
exactly one vertex of K; and each vertex of K is adjacent to at most k — 1 new vertices.
Thus the order of G is n. We show that x;.(G) = k. Since no two vertices in V(K}) can be
colored the same, x;(G) > k. To show that x;(G) < k, we define an irregular k-coloring
of G. Let V(Ky) = {v1,v2,...,vx} and let U = V(G) — V(Kj) be the set of new vertices of
G. For each i with 1 <4 <k, let U; = N(v;)NU. Thus |U;| < k—1foralli with1 <i < k.
We now assign color i to the vertex v; (1 <4 < k) and assign |U;| distinct colors from the
set {1,2,...,k} — {7} to the vertices in U; for 1 < i < k. Observe that if u,v € V(G) such
that c(u) = ¢(v), then either (1) u and v are end-vertices of G and u and v are adjacent
to two distinct vertices in V(K}) or (2) u € V(K) and v is an end-vertex of G. In (1), u
and v are adjacent to vertices having a different color; while in (2), u and v have different
degree. In either case, code(u) # code(v). Since distinct vertices have distinct color codes,
this coloring is an irregular k-coloring of G and so x;(G) < k. Therefore, x;(G) = k.

Case 2. k < y/n. We consider two subcases, according to whether k£ and n are of the

same parity or of opposite parity.

Subcase 2.1. k and n are of the same parity. Then n—k+2iseven and son—k+2 = 2a
for some positive integer a. Let F' be the bipartite graph of order n — k + 2 with irregular
chromatic number 2 described in Theorem 4.2. Suppose that X = {z1,z2,---,z,} and
Y = {y1,y2, -, ya} are the partite sets of F' with degpz; = degpy; =i for 1 < i < a.
Define the graph G by adding k — 2 new vertices 21, 29,...,2,_2 to F and joining each
vertex z; (1 < i < k — 2) to the vertex x4 of F. Then the order of G is n. We show
that x;-(G) = k. Since z, is adjacent to k — 1 end-vertices, namely v, 21, 22, ..., 22, it
follows that y;(G) > k. Next, we define a k-coloring ¢ of G by ¢(x;) = 2 and c(y;) = 1
for 1 <i<a,andc(z) =j+2for1 <j<k—2. Observe that if u,v € V(G) such that
c(u) = ¢(v), then u and v belong to the same partite set of F and so deg,u # degq v,
implying that code(u) # code(v). Since distinct vertices have distinct color codes, c is an
irregular k-coloring of G and so x;,(G) < k. Therefore, x;(G) = k.

Subcase 2.2. k and n are of opposite parity. Thenn—k+1iseven andson—k+1=2b
for some positive integer b. Let H be the bipartite graph of order n — k + 1 with irregular
chromatic number 2 described in Theorem 4.2. Suppose that X = {z1,z2,---,zp} and
Y = {y1,y2, -+, ys} are the partite sets of H with degy z; = degyy; =i for 1 < i < b.
Define the graph G by adding k— 1 new vertices z1, 2o, . .., 2x_1 to H and joining each vertex
zi (1 <i < k—1) to the vertex 2. Then the order of G is n. We show that x;-(G) = k.
Since 7 is adjacent to k — 1 end-vertices, it follows that x;»(G) > k. Next we define a
k-coloring ¢ of G by ¢(z;) =1 and c(y;) =2 for 2 <i<a, ¢(z;) =j for 1 <j <k—1, and
c(r1) = c(y1) = k. Let u,v € V(QG) such that c¢(u) = ¢(v), then either (1) u and v belong
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to the same partite set of H, (2) {u,v} = {z1,y1}, or (3) one of v and v belongs to H and
the other is an end-vertex of G. In any case, deg;u # degg v and so code(u) # code(v).
Since distinct vertices have distinct color codes, ¢ is an irregular k-coloring of G and so
Xir(G) < k. Therefore, x;(G) = k. n

Combining Theorems 4.2 and 4.6, we have the following.

Corollary 4.7 Let k and n be integers with 2 < k < mn. Then there exists a connected
graph of order n having irregular chromatic number k if and only if (k,n) # (2,n), where

n is an odd integer.

We have seen that if G is a nontrivial connected graph with x(G) = a and x;,(G) = b,
then 2 < g < b. Next we show that every pair a,b of integers with 2 < a < b is realizable

as the chromatic number and irregular chromatic number of some connected graph.

Proposition 4.8 For every pair a,b of integers with 2 < a < b, there is a connected graph
G with x(G) = a and xir(G) = b.

Proof. If a = b, then for G = K, we have x(G) = x;(G) = a by Proposition 4.3. If
2 =a < b, then for G = K1 we have x(G) = 2 and x;(G) = b by Proposition 4.3 as
well. Thus, we may assume that 3 < a < b. Let G be the graph obtained from the complete
graph K, with V(K,) = {u1,u2,...,us} by adding b — 1 new vertices vy, v, -, vp—1 to K,
and joining each vertex v; (1 < ¢ < b— 1) to the vertex u; of K,. Then x(G) = a. To
show that x;(G) = b, observe that if c is an irregular coloring of G, then (1) c(u1) # c(vp)
for 1 < p < b—1 since uiv, € E(G) and (2) c(vp) # c(vq) for 1 < p # g < b — 1 since
N(vp) = N(vg). Thus x;(G) > b. On the other hand, the coloring ¢’ of G defined by
d(uj) =i forl1 <i<aandd(vy) =i+1forl<i<b—1isan irregular b-coloring of P.
Thus x;r(G) < b and so x;(G) = b. n
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