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Abstract. Stochastic Kronecker graphs are a model for complex networks where each edge is present

independently according the Kronecker (tensor) product of a fixed matrix P ∈ [0, 1]k×k. We develop a novel

correspondence between the adjacencies in a general stochastic Kronecker graph and the action of a fixed
Markov chain. Using this correspondence we are able to generalize the arguments of Horn and Radcliffe on

the emergence of the giant component from the case where k = 2 to arbitrary k. We are also able to use
this correspondence to completely analyze the connectivity of a general stochastic Kronecker graph.

1. Introduction

In many ways the study of random graphs traces its history back to the seminal work of Erdős and Rényi
showing that there exists a rapid transition between the regimes of a random graph consisting of many small
components, a random graph having one “giant” component, and a random graph being connected [10].
Because of their central role in the history of random graphs these phase transitions have been extensively
studied, see for instance [1, 2, 3, 4, 9, 12, 16], among numerous others. We contribute to this ongoing
discussion by providing a sharp transition for the emergence of both the giant component and connectivity
for the stochastic Kronecker graph, a generalization of the standard Erdős-Rényi binomial random graph
model, G(n, p).

More formally, recall that the Kronecker or tensor product of two matrices A ∈ Rm×n and B ∈ Rp×q is a
matrix A⊗B = C ∈ Rmp×nq. For i ∈ [m], j ∈ [n], s ∈ [p], and t ∈ [q] the entry C(i−1)m+s,(j−1)n+t is AijBst,
that is

A⊗B = C =


A1,1B A1,2B · · · A1,nB
A2,1B A2,2B · · · A2,nB

. . . . . .
. . . . . .

Am,1B Am,2B · · · Am,nB

 .
Letting P ∈ [0, 1]k×k be a symmetric matrix, the tth-order stochastic Kronecker graph generated by P

is formed by taking t-fold Kronecker product of P , denoted P⊗t, and using this as the probability matrix
for a graph with independent edges. That is, each edge {i, j} is present independently with probability
P⊗tij = P⊗tji .

The stochastic Kronecker graph was originally proposed as model for the network structure of the internet
with the property that it could be easily fit to real world data, especially in the case where the generating

matrix was

[
α β
β γ

]
where 0 < γ ≤ β ≤ α < 1 [14]. As such, there have been several papers analyzing

structural properties of the stochastic Kronecker graph when the generating matrix is a 2 × 2 matrix [14,
15, 17, 19]. Most relevant to this current work are the results of Mahdian and Xu [17] who anaylzed the
connectivity, diameter, and the emergence of the giant component with 0 < γ ≤ β ≤ α < 1, and the work
of the first author and Horn who analyzed the emergence and size of the giant component for arbitrary
α, β, γ ∈ (0, 1) [19]. In this work we consider the case of an arbitrarily sized generating matrix, and develop
necessary and sufficient conditions for the emergence of the giant component and connectivity. The key tool
to analyzing these graphs is to tie the structure of the graph to a fixed Markov chain on the underlying
generating matrix. Using this underlying structure, one can analyze the graph structure more completely
than with traditional tools.

Given a tth-order stochastic Kronecker graph with generating matrix P , we define W (P ) to be the weighted
graph on [k], where weights are as given in P . We will occasionally refer to W as the underlying graph of
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G. We also define the backbone graph of the matrix P , B(P ), as the subgraph of W (P ) consisting of the
edges assigned weight 1. That is, B(P ) is a graph on the vertices [k] where {i, j} is an edge if and only if
Pij = Pji = 1. When the matrix P is clear, we will neglect the dependence on P and write simply W and
B.

Our primary results can be summarized as follows.

Theorem 1. Let G be tth-order stochastic Kronecker graph generated by a symmetric matrix P ∈ [0, 1]k×k

which has column sums c1 ≤ c2 ≤ · · · ≤ ck. Let n = kt be the number of vertices of G.

(1) If W is disconnected or bipartite, then the largest component of G has size O((k − 1)t) ∈ o(n) .
(2) If W is connected and non-bipartite and

∏
i ci < 1, then there is some 0 < α < 1 such that with

probability at least 1− e−Θ(nα) there are at least n−O(nα) isolated vertices in G.
(3) If W is connected, non-bipartite,

∏
i ci = 1, and the ci’s are not identically one, then there is a

positive constant α such that with probability at least 1 − e−Θ(nα), the largest component of G has
size Θ(n), that is, G has a giant component.

(4) If W is connected, non-bipartite, and
∏
i ci > 1, then there is a positive constant α such that with

probability at least 1− e−Θ(nα) the largest component of G has size Θ(n).
(5) If W is connected, non-bipartite, and c1 < 1, then there is a positive constant α such that G has at

least ln(n)(1−o(1)) ln ln(n) isolated vertices with probability at least 1−O(n−α).
(6) If W is connected, non-bipartite, c1 = 1, and B has a vertex of degree zero, then there is some

positive constant α such that G has at least ln(n)(1−o(1)) ln ln ln(n) isolated vertices with probability at
least 1−O(n−α).

(7) If W is connected and non-bipartite, c1 = 1, and B has no vertices of degree zero, then there is a
constant α > 0 such that G is connected with probability at least 1− e−(1−o(1))nα .

(8) If W is connected and non-bipartite and c1 > 1, then there is a constant α > 0 such that G is
connected with probability at least 1− e−(1−o(1))nα .

We note that item (8) above is typical for the emergence of connectivity; that is, the graph is connected
asymptotically almost surely precisely when asymptotically almost surely the minimum degree is at least
1. In fact, taking (5), (6), (7), and (8) together we can see that a stochastic Kronecker graph is connected
precisely when the minimum degree is at least 1 with high probability. From this viewpoint, the slightly
unnatural seeming condition on the backbone graph B is simply the condition needed to assure that G has
no isolated vertices.

The folklore in the study of random graphs asserts that, in general, the giant component should emerge
when the average expected degree is 1, see for instance [2, 7, 10, 11]. As the average expected degree in

a tth-order stochastic Kronecker graph is k−t (c1 + · · ·+ ck)
t
, this suggests that the transition occurs when

1
k (c1 + · · ·+ ck) > 1. However, as parts (2) and (4) of Theorem 1 show, the transition actually occurs

when (
∏
i ci)

1
k > 1. Noting that the expected degrees in stochastic Kronecker graphs follow a multinomial

distribution (see Section 2), this condition can be seen as equivalent (asymptotically) to the condition that
median expected degree is at least one. Thus our results may suggest that the average expected degree is
not as deeply connected to giant component as previously thought, because in many of the standard random
graph models, such as the Erdős-Rényi random graph, the average and the median expected degree agree.
That is, it may be that the median is truly the determining factor for such structures. It is also worth noting
that Spencer has conjectured based in part on [5, 6], that the correct intuition is that the emergence of the
giant component is tied to the second order average degree [23].

To prove Theorem 1, we will develop several general results on G, and then apply these results to the
specific situations above. In particular, we are able to tie the adjacency structure of G to a finite state
Markov chain on W . Using this association, we can take advantage of the finite structure of W to build
theory a regarding the asymptotically growing structure G.

2. Definitions and Tools

Let G be a stochastic Kronecker graph with generating matrix P as described above. We note that there
are multiple means of describing the entries the probability matrix P⊗t to take advantage of the Kronecker
product structure. One point of view that is particularly helpful is to define a bijection w : V (G) → [k]t,
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so that each vertex of G is represented by a word of length t in [k]. We will often identify the vertex to
its corresponding word, and write v = (v1, v2, . . . , vt). Given an appropriate choice of bijection, for any two
vertices u and v, the probability that u and v are adjacent is

puv =

t∏
i=1

Puivi .

That is to say, we take the product of entries of the generating matrix P , where entries correspond to the
pairs of components in the words representing u and v.

Let c1 ≤ c2 ≤ · · · ≤ ck be the column sums of P (note that we can assume these are nondecreasing
without loss of generality), and let C be the diagonal matrix of column sums in P . Suppose w(v) has a1

coordinates equal to 1, a2 coordinates equal to 2, and so on. It is straightforward to calculate that

E[deg(v)] = ca1
1 ca2

2 . . . cakk .

Thus it will frequently be of interest to know the number of coordinates in w(v) equal to each symbol in [k].
To that end, we define the signature of v to be σ(v) = (σ1, σ2, · · · , σk), where σi is the proportion of symbols
in w(v) equal to i. For example, if k = 5 and w(v) = 121251, we would have σ(v) = ( 1

2 ,
1
3 , 0, 0,

1
6 ). We will

denote by S = {(σ1, . . . , σk) | σi ≥ 0,
∑
i σi = 1} the space of possible signatures. Often we will establish an

underlying signature for a vertex and then take t to infinity; this will generally result in noninteger values
for the number of letters of a particular value in w(v). This can be overlooked, however, as rounding to
the next integer appropriately will not change the asymptotic features of the vertices, and so we will often
assume that a vertex can take any signature.

Let L = (ln(c1), ln(c2), · · · , ln(ck)). We will make frequent use of the simple observation that

ln (E[deg(v)]) = t 〈σ(v), L〉 ,

where 〈·, ·〉 represents the standard dot product.

2.1. Markov chains in G and W . Let W⊗t be the weighted complete graph on V (G), with the weight
of edge uv equal to P⊗tu,v. Let v be a vertex in W⊗t with signature σ = (σ1, σ2, . . . , σk). Define Z(v) to be

a random variable that takes values in S, where Z(v) is the signature of a randomly chosen neighbor of v
according to the probability distribution defined by the weights of the edges. That is,

P(Z(v) = τ) =
∑

σ(u)=τ

P⊗tu,v
degW⊗t(v)

.

That is to say, Z(v) is the signature of the vertex obtained after taking one step in the uniform random walk
on W⊗t.

For each i ∈ [k], let X(i) be the random variable that takes values in [k], with P(X(i) = j) =
Pij
ci

. Note

that for v = (v1, v2, . . . , vt) fixed, we have

P(X(v1) ×X(v2) × · · · ×X(vt) = (u1, u2, . . . , ut)) =

t∏
i=1

Pviui
ci

=
P⊗tu,v

degW⊗t(v)
.

Thus we can consider Z(v) as giving the signature of a randomly chosen neighbor of v, chosen according to
the product distribution X(v1)×X(v2)×· · ·×X(vt). As the signature is independent of order, for the purposes
of analyzing Z(v), we may write this distribution as (X(1))σ1t × (X(2))σ2t × · · · × (X(k))σkt. Therefore, for

all i ∈ [k], letting Z
(v)
i be the ith component of the signature Z(v), we have

E
[
Z

(v)
i

]
=

1

t

∑
j

(σjt)P(X(j) = i) =
∑
j

σj
Pij
cj
.

On the other hand, let M = C−1P , the transition probability matrix for the uniform random walk on W
and notice that the matrix product σM has ith coordinate

((σ1, σ2, . . . , σk)M)i =

k∑
j=1

σjMij =

k∑
j=1

σj
Pij
ci

= E
[
Z

(v)
i

]
3



Thus, σM = E
[
Z(v)

]
.

Therefore, we can think of the distribution of a random walk on W as the expected signature of a vertex
in a random walk on W⊗t. Let π = (π1, π2, . . . , πk) be the stationary distribution of the random walk on W ,
so πM = π. It is a simple exercise to verify that πi = ci∑

j cj
. We will show in Section 3 that the collection of

signatures close to π will in fact, asymptotically almost surely, form a connected subgraph in G, and further,
by leveraging theconvergence of the Markov chain on W , we can assure a giant component.

2.2. Tools and Notation. Given a stochastic Kronecker graph G generated by P , let A be the adjacency
matrix of G and D the diagonal matrix of degrees in G. The stochastic Kronecker graph is defined precisely so
that the expected adjacency matrix Ā = P⊗t, and the expected degree matrix D̄ = C⊗t. We will sometimes
use the notation P⊗tu,v to refer to the w(u), w(v) position in P⊗t, where we index the matrix by the ordered

words obtained via the Kronecker product. At times we will wish to emphasize the graph structure of P⊗t

and thus will refer to it as W⊗t.
Among our key tools will the the following theorem from Chung and the first author [18] that gives

spectral concentration in the normalized Laplacian of a general random graph.

Theorem 2 ([18]). Let G be a random graph with independent edges generated according to the matrix P
and let A be the associated adjacency matrix. Let D be the diagonal matrix of expected degrees and let δ
denote the minimum expected degree.If δ ≥ 3 ln

(
4n
ε

)
, then with probability at least 1− ε we have that, for all

i ∣∣∣λi (L (G))− λi
(
I −D−1/2PD−1/2

)∣∣∣ ≤ 3

√
3 ln

(
4n
ε

)
δ

.

We also make use of standard tools in spectral graph theory, chief among them the Cheeger inequality.
For two sets S, T of vertices in a graph G, define eG(S, T ) to be the number of edges (or, in a weighted graph,
the total weight of edges) for which one endpoint is in S and the other in T . Define VolG(S) =

∑
v∈S deg(v).

When the underlying graph is clear, we drop the subscript G in the notation.
The Cheeger constant of a set S with Vol(S) ≤ 1

2 Vol(G) is defined to be h(S) = e(S,V \S)/Vol(S) and
Cheeger constant of G is

hG = min
S⊂V

Vol(S)≤ 1
2 Vol(G)

h(S).

The spectrum of a graph is related to the Cheeger constant via the Cheeger Ineqaulity [21, 22].

Cheeger Inequality. For G any graph, let λ1 be the smallest nonzero eigenvalue of L(G). Then

1

2
h2
G ≤ λ1 ≤ 2hG.

As we will frequently be discussing Markov chains, we will pass regularly between considering row vectors
and column vectors. We will always treat the signature of a vertex v as a row vector, as well as the vector
L. The all-ones vector, 1, will be considered a row vector as well. However, eigenvectors of a matrix are
typically assumed to be right eigenvectors, and are thus column vectors. Any other usages should be made
clear by context.

In order to understand the rate of convergence of a Markov chain we will use the relative pointwise distance.
If π is the limiting distribution of the Markov chain, the relative pointwise distance of a distribution σ from
π is

∆RP (σ) = max
i

|σi − πi|
πi

.

As we are interested in an overall rate of convergence we define

∆(s) = sup
σ∈S

∆RP (σMs) .

It is well know that the rate of decay of the relative pointwise distance can be controlled by the spectral
information of the Markov chain as given in the following theorem, see for instance [8].
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Theorem 3. Let 1 = λ0 ≥ λ1 ≥ · · · ≥ λn−1 by the eigenvalues of the transition probability matrix of a
uniform random walk on a connected, non-bipartite (weighted) graph G. Set λ = max {|1− λ1| , |λn−1 − 1|}.
For any

s >
1

λ
ln

(
Vol(G)

εδG

)
,

we have ∆(s) < ε, where δG denotes the minimum degree in G.

The phrase asymptotically almost surely in this paper will always refer to asymptotics with respect to t,
unless otherwise noted. The norm ‖v‖ will refer to the `∞-norm unless otherwise noted.

3. Key Results

To prove the thresholds for connectivity and emergence of the giant component in a stochastic Kronecker
graph G (Theorem 1, items (4) and (8)), we will use the following structure. First, we show that G contains
a small set of vertices that is connected asymptotically almost surely, in particular, those vertices that are
close to stationarity under the Markov chain described in Section 2.1. We shall refer to this set as the
“connected core” of the graph. Although this will not be enough vertices to form a giant component, we
can then show that under certain conditions, a positive fraction of the vertices in G can be connected by
a path to the connected core. The thresholds given are precisely those conditions needed to ensure that a
positive fraction of the vertices exhibit this behavior. In retrospect, the arguments used by Horn and the
first author in [19] to show the emergence of the giant component in the case where the generating matrix
is 2 × 2 can be viewed as a special case of our technique. Specifically, as the underlying Markov chain has
only two states, the degree of each vertex is controlled by a single parameter, which significantly simplifies
the argument. As a consequence, the authors in [19] were able to analyze the giant component directly via
counting techniques, without appealing to the underlying Markov chain.

In this section, we develop much of the underlying structure in G via the random walk on W . We begin
with some elementary observations on the vertex degrees in G and W⊗t.

Lemma 4. Let v be a vertex with signature σ in a tth-order stochastic Kronecker graph G, such that
〈σ, L〉 > 0. Let d = e〈σ,L〉. For any δ > 0, we have

(1) v has at least dt(1− 2ke−2δ2t) neighbors in W⊗t with signature τ such that
∥∥τ − E

[
Z(v)

]∥∥ ≤ δ.
(2) with probability at least 1− exp(−d

t

8 (1− 2ke−2δ2t)), v has at least 1
2d
t(1− 2ke−2δ2t) neighbors in G

with signature τ such that
∥∥τ − E

[
Z(v)

]∥∥ ≤ δ.
Proof. By the Hoeffding inequality, we have that for any i,

P
(
t
∣∣∣Zvi − E

[
Z

(v)
i

]∣∣∣ > δt
)
≤ 2e−2δ2t

for any δ > 0. Therefore, by the union bound, we have

P
(
∃i ∈ [k] such that t

∣∣∣Z(v)
i − E

[
Z

(v)
i

]∣∣∣ > δt
)
≤ 2ke−2δ2t.

This verifies item (1).
For item (2), note that by (1), we have that expected number of neighbors of v with signature τ in

the desired range desired is at least dt(1 − 2ke−2δ2t). By Chernoff bounds, then, with probability at least

1− exp(−d
t

8 (1− 2ke−2δ2t)), we have at least 1
2d
t(1− 2ke−2δ2t) neighbors with such a signature τ . �

As an immediate corollary of this result we have the following.

Corollary 5. Let v be a vertex with σ in a tth-order stochastic Kronecker graph G, such that 〈σ, L〉 > 0. Let

d = e〈σ,L〉 > 1. With probability at least 1−e− d
t

12 , v has at least dt

3 neighbors u with ‖σ(u)− σM‖ ≤
√

ln(6k)
2t .

Recall from Section 2.1 that π = (π1, π2, . . . , πk) is the stationary distribution of the random walk on W ,
with πi = ci

Vol(W ) for all i. Given ε > 0, define Sε = {v ∈ G | ∀i ∈ [k], σi(v) > (1− ε)πi}. We will show that

under appropriate conditions, this set of vertices Sε is connected asymptotically almost surely, forming the
small connected core described above. To do this, we will show that vertices in Sε have exponentially large
degree in t, and then use Theorem 2 to show the first eigenvalue in Sε is bounded away from zero. We first
must address the degree of vertices in Sε. To that end, we have the following Lemma:
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Lemma 6. Let G be a tth-order stochastic Kronecker graph generated by P and let ε > 0 be fixed. For
sufficiently large t there is a constant c, depending only on P and ε, such that for all v ∈ Sε, P

(
Z(v) ∈ Sε

)
≥ c.

To prove this Lemma, we make use of the following standard observation about binomial random variables.

Observation 7. Let α1 > α2 be fixed constants and let p ∈ (0, 1). There exists constants c and n0, depending
on α1, α2, and p such that if n > n0, then

P(Bin (n, p) ∈ [np− α1
√
np, n− α2

√
np]) > c.

Proof of Lemma 6. Let v be an arbitrary vertex in Sε. Consider a collection of independent, identically
distributed random variables, X1, . . . , Xt, taking on values in {1, . . . , k} each with probability pi, where
pi ≥ p > 0 for all i. Let Zi be the count of the number of i’s in these variables, that is, Zi =

∑
j 1Xj=i. Let

Ei be the event that pit− 2c
√
t ≤ Zi ≤ pit− c

√
t. We then have that, for all j 6= i,

E[Zj | Ei] ≥
(
t−
(
pit− c

√
t
)) pj

1− pi
=
(

(1− pi)t+ c
√
t
) pj

1− pi
= pjt+

cpj
1− pi

√
t

≥ pjt+ cp
√
t.

To apply this observation to the context of Z(v) we first consider the unweighted graph W ′ on [k] where
i ∼ j if and only if there is an unweighted walk of length 2 between i and j in W . Since W is non-bipartite,
W ′ is connected and thus there exists a breadth-first traversal of W ′. We note that by the definition of Sε,
for every i we have (σM)i ≥ (1− ε)πi. Further, by the pigeonhole principle, there is some index i such that
(σM)i ≥ πi(1− ε) + ε

k . Let s1 be one such index and let s1, . . . , sk be a breadth-first traversal of W ′ starting
at s1.

Recall that we may analyze Z(v) from the point of view of the product distribution
(
X(1)

)σ1t × · · · ×(
X(k)

)σkt
where each X(i) is an independent random variable that takes values in the set of neighbors of i in

W . Let the random variables Zij be the number of times that X(i) takes on the value j. We note that we can

ignore the indices that X(i) can not take on, and so define pi = minj,pij 6=0
pij
ci

. We recursively define the events

E1, . . . , Ek as follows. The event E1 is the event that for all u ∼W s1, E[Zus1 ]−2α1

√
t ≤ Zus1 ≤ E[Zus1 ]−α1

√
t.

For all 1 < i ≤ k the event Ei is the event that for all u ∼W si,

E
[
Zusi | ∩i−1

j=1Ej
]
− 2αi

√
t ≤ Zusi ≤ E

[
Zusi | ∩i−1

j=1Ej
]
− αi
√
t,

where the αi’s are fixed constant to be chosen later. We note that by Observation 7 that each of these events
occurs with positive probability, thus it suffices to show that ∩ki=1Ei is contained in the event Z(v) ∈ Sε.

For sufficiently large t the event E1 assures that
(
Z(v)

)
s1
≥ (1− ε)πs1 by the choice of s1, specifically that

E
[
Z

(v)
s1

]
≥ πs1 + ε

k .

Since the sequence si is a breadth-first search of W ′, we have that for all i > 1, there exists index j < i
such that si ∼W ′ sj . Thus there is some vertex u that is a neighbor to both si and sj in W . Now consider the
effect of the conditioning on the event Ej on Zusi . By the above calculation and the definition of Ej we have

that implies that E
[
Zusi | ∩i−1

j=1Ej
]
≥ E[Zusi ] + αi−1pu

√
t ≥ E[Zusi ] + αi−1pmin

√
t where pmin = mini∈[k] pi.

Furthermore, this gives that tE
[
Z

(v)
si | ∩i−1

j=1Ej
]
≥ (1 − ε)πsit + αi−1pmin

√
t. Thus choosing αi =

(
2k
pmin

)k−i
suffices to assure that the event ∩ki=1Ei is contained in Sε, as desired. �

Theorem 8. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that
W is connected and non-bipartite. Further supposed that

∑
i ci ln(ci) > 0 and fix

0 < ε <

∑
ci ln(ci)∑

ci ln(ci)−Vol(W ) ln(c1)
.

Let H be the subgraph of G induced by Sε. For t sufficiently large, there is a constant d > 1, depending on

P and ε, such that H is connected with diameter O(log |Sε|) with probability at least 1− eΘ(dt).
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Notice that the bound on ε is always positive (or infinite), since c1 ≤ ci for all i, so Vol(W ) ln c1 =∑
ci ln(c1) ≤

∑
ci ln(ci).

Proof. We will proceed by showing that the graph H has an asymptotically constant spectral gap and thus
by standard results in spectral graph theory, Sε is connected with diameter O(ln(|Sε|)).

Recall that the expected degree of a vertex with signature σ is (cσ1
1 · · · c

σk
k )

t
and thus any vertex v ∈ Sε

has expected degree at least

cεt1 (cπ1
1 · · · c

πk
k )

(1−ε)t
=
(
cε1 (cc11 · · · c

ck
k )

1−ε
Vol(W )

)t
= dt,

where

d = cε1 (cc11 · · · c
ck
k )

1−ε
Vol(W ) .

We note that by the restriction on ε,

ln(d) = ε ln(c1) +
1− ε

Vol(W )

∑
i

ci ln(ci)

=
1

Vol(W )

∑
i

ci ln(ci) + ε

(
ln(c1)− 1

Vol(W )

∑
i

ci ln(ci)

)
> 0,

and thus d > 1. This implies that every vertex in Sε has expected degree exponentially increasing with t.
Let H be the subgraph of W⊗t induced by Sε, so the weight of each edge in H is the expectation of that

edge appearing in H. Now, by Lemma 6, there is some constant c such that for every vertex v in H we have
degH(v) ≥ cdt. Now for any positive constant δ, there exists some small positive constant c′ such that

27 ln
(

4|Sε|
e−c′dt

)
cdt

≤
27 ln

(
4kt

e−c′dt

)
cdt

=
27 (t ln(k) + ln(4)− c′dt)

cdt
= o(1) +

27c′

c
≤ δ2,

and thus, by Theorem 2, in order to complete the proof it suffices to show that H has constant spectral gap.
To determine the spectral gap in H, we use Cheeger’s inequality. Let X ⊂ Sε with VolH(X) < 1

2 VolH(Sε).
Note that

hH(X) =
eH(X,Sε\X)

VolH(X)
≥ eW⊗t(X,V \X)

1
c VolW⊗t(X)

= c hW⊗t(X),

where the constant c is the constant provided by Lemma 6. Thus, we have

hH = min
X⊂Sε

Vol(X)< 1
2 Vol(Sε)

hH(X)

≥ c min
X⊂Sε

Vol(X)< 1
2 Vol(Sε)

hW⊗t(X)

≥ c hW⊗t .

Now, let M1 = C−1/2PC−1/2 and let 1 = µ0 ≥ µ1 ≥ · · · ≥ µk−1 be the eigenvalues of M1. Note that
I−M1 is the Laplacian matrix for W , and as W is connected and non-bipartite, −1 < µk−1 ≤ µ1 < 1. Now,
L(W⊗t) = I −M⊗t, and thus has eigenvalues 1− µa1

µa2
· · ·µat , where a1, a2, . . . , at ∈ [k− 1]∪ {0}. Hence,

the smallest nonzero eigenvalue of L (W⊗t) is 1 − µ1, which occurs with multiplicity t. Thus by Cheeger’s
inequality, hW⊗t ≥ 1−µ1

2 .
Therefore, combining these results we have

λ1

(
H
)
≥ 1

2
h2
H
≥ c

2
h2
W⊗t ≥

c2

8
(1− µ1)2.

Hence λ1

(
H
)

is bounded below by a constant and H has constant spectral gap, as desired. �

This establishes that the graph G contains a small connected core asymptotically almost surely provided∑
ci ln ci > 0. We now turn our attention to the second half of our fundamental structure. Here we

wish to determine which vertices will be connected by a path to the connected core. To that end, define
7



Σν = {v ∈ V (G) | 〈σ(v)Ms, L〉 ≥ ν for all s ≥ 0}. We wish to show that any vertex in Σν may be connected
by a path to Sε asymptotically almost surely.

Theorem 9. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that

W is connected and non-bipartite. Fix 0 < ε, ν. Let λ be the spectral gap of W and let s =
⌈

1
λ ln

(
2 Vol(W )
c1ε

)⌉
.

For t sufficiently large, any vertex v ∈ Σν is connected to Sε by a path of length at most s with probability at

least 1− se−eνt−Θ(
√
t)

.

Proof. Let v ∈ Σν . Define v0 = v and for each 1 ≤ i ≤ s, let vi be a neighbor of vi−1 such that

‖σ(vi)− σ(vi−1)M‖ ≤
√

ln(6k)
2t (if such a neighbor exists). For 1 ≤ i ≤ s define ηi = σ(vi) − σ(vi−1M).

Now, we note that if such as sequence exists, then∥∥σ(vj)− σ(v)M j
∥∥ ≤ ∥∥∥∥∥

j∑
i=1

ηiM
j−i

∥∥∥∥∥ ≤
j∑
i=1

∥∥ηiM j−i∥∥ ≤ j∑
i=1

‖ηi‖1 ≤
j∑
i=1

k

√
ln(6k)

2t
= jk

√
ln(6k)

2t
,

and further

〈vj , L〉 ≥ 〈v0, L〉 − jk
√

ln(6k)

2t
‖L‖1 ≥ ν − jk

√
ln(6k)

2t
‖L‖1 .

Thus, since s is a fixed constant, we have that by Corollary 5 for sufficiently large t such a sequence fails to
exist with probability at most

se−

eν−sk
√

ln(6k)
2t
‖L‖1

t
12 = se−

e
νt−Θ(

√
t)

12 = se−e
νt−Θ(

√
t)

It now suffices to show that vs ∈ Sε.
By the choice of s and Theorem 3, we know that∣∣∣∣ (σ(v)Ms)i − πi

πi

∣∣∣∣ ≤ ε

2
,

and thus (σ(v)Ms)i ≥ (1− ε
2 )πi. But then as |(vs)i − (σ(v)Ms)i| ≤ sk

√
ln(6k)

2t we have that for sufficiently

large t, vs ∈ Sε. �

4. Small Components

We now turn to the case that the stochastic Kronecker graph has only small components, that is, the
largest component is of size at most o(n) = o(kt). These correspond to items (1) and (2) in Theorem 1.
The first of these result follows from standard results on the component sizes of (non-stochastic) Kronecker
graphs which we include in the following lemma for completeness.

Lemma 10. If H is a disconnected or bipartite graph on k vertices, then the largest component of H⊗t has
size O((k − 1)t).

Proof. First, suppose H is not connected. Let v = (v1, v2, . . . , vt) be a vertex in H⊗t. Now for any neighbor
u = (u1, u2, . . . , ut) of v each coordinate ui must be adjacent to vi in H and hence in the same component
as vi. Thus, the size of the component containing v is at most the product of the sizes of the components
in H of the vertices vi. Since H is disconnected the largest component in H has size at most k− 1 and thus
the largest component in H⊗t has size at most (k − 1)t.

Now, suppose H is a connected bipartite graph with bipartition (A,B) and again consider a vertex
v = (v1, v2, . . . , vt) and a neighbor u of v, with u = (u1, u2, . . . , un). Now since vi and ui are adjacent in
H, they are on different sides of the bipartition (A,B). Thus the component v and u are in is bipartite
with u and v on different sides of the bipartition. Furthermore, the side of the bipartition containing v is

|A|{i:vi∈A} |B|{j:vj∈B}. Thus for all 0 ≤ i ≤ t there are
(
t
i

)
components of H⊗t of size |A|i |B|t−i+ |A|t−i |B|i.

It is worth noting that this size is symmetric and so that components counted for a given i are also counted

for t− i. Now maximizing |A|i |B|t−i+ |A|t−i |B|i over the choice of i, we have the largest component occurs
where either i = 0 or i = t. As |B| = k − |A|, we maximize with respect to |A| to obtain that the largest of
component of H⊗t has size at most (k − 1)t + 1 for k > 1. �
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This lemma resolves item (1) in Theorem 1 as it implies that the underlying graph for P⊗t is disconnected
with small component sizes.

Theorem 11. Let G be a tth-order stochastic Kronecker graph generated by P ∈ [0, 1]k×k with column sums
c1 ≤ · · · ≤ ck. If W is connected, non-bipartite, and

∏
i ci < 1, then there some 0 < δ < 1 such that with

probability at least 1− e−n
δ

3 there are at least n−O
(
nδ
)

isolated vertices in G.

Proof. As
∏
i ci < 1 we have that

∑
i ln(ci) = −εk < 0. Let α be a solution to

α =
2(ε− α)2

(ln(ck)− ln(c1))
2

in the interval [0, ε]. Such an α exists as α and 2(ε−α)2

(ln(ck)−ln(c1))2 are continuous functions, 0 < 2ε2

(ln(ck)−ln(c1))2 ,

and ε > 0. Let δ = 1 − α
ln(k) . Let X = X1 + · · · + Xt where each Xi takes values independently uniformly

from {ln(c1), . . . , ln(ck)}. Note that X can be thought of as the natural logarithm of the expected degree of
a vertex of G chosen uniformly at random. Now by Hoeffding bounds we have that

P(X ≥ −αt) = P(X + εt ≥ (ε− α)t) ≤ e
− 2(ε−α)2

(ln(ck)−ln(c1))2 t
= e−αt.

Thus there are at most kte−αt = nδ vertices of G with expected degree smaller than e−αt. The sum of the
expected degrees of vertices with expected degree larger than e−αt is at most kte−αt = nδ. Thus by Chernoff

bounds with probability at least 1 − e−n
δ

3 there are at most 2nδ edges incident to vertices with expected
degree at most e−αt. Combining this with the vertices with expected degree at least e−αt we have that there
are at most 3nδ non-isolated vertices in G. �

The preceding theorem resolves item (2) in Theorem 1.

5. Giant Components

We now turn our attention to proving item (4) in Theorem 1. To prove this result, we will use the structure
outlined in Section 3, and in particular, Theorems 8 and 9 regarding the existence of a connected core of
vertices and the vertices that can be connected by a path to Sε. In order to apply these theorems, however,
we must verify that the conditions are met. We thus begin with several additional lemmas addressing the
case that

∏
i ci > 1.

Lemma 12. Let 0 < c1 ≤ · · · ≤ ck be such that
∏
i ci ≥ 1. Then

∑
i ci ln(ci) ≥ 0 with equality if and only if

the ci’s are identically 1.

Proof. Define δj = cj − cj−1 ≥ 0, where c0 is defined to be 0 and define sj =
∑k
i=j ln(ci). As

∑
i ci ln(ci) =∑

i δisi, and all the δi ≥ 0, it suffices to show that si ≥ 0. We note that since the ci’s are increasing and

ln(·) is a monotonically increasing function 0 ≤
∑
i ln(ci) ≤ j−1

k−j+1sj + sj , and thus sj ≥ 0 for all j.

We note that if
∏
i ci > 1, then the previous argument implies that

∑
i ci ln(ci) > 0. Thus suppose that∏

i ci = 1 and yet the ci’s are not identically 1. As this implies that ck > 1 and c1 < 1, there is some minimal

j such that cj > 1. But then as cj−1 ≤ 1, δj > 0 and sj =
∑k
i=j ln(ci) ≥ (k− j + 1) ln(cj) > 0, we have that∑

i ci ln(ci) > 0, as desired. �

Lemma 13. Let P be a symmetric matrix in [0, 1]k×k with non-identical column sums 0 < c1 ≤ · · · ≤ ck.
Further suppose that the associated weighted graph W is connected and non-bipartite. Let f be a strictly
monotonically increasing function on R+ and let L be the vector (f(c1), . . . , f(ck)). If M is the transition
matrix for the uniform random walk on W , then 〈1Ms, L〉 > 〈1, L〉 for all s ≥ 1.
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Proof. We first note that M = C−1P and consider

〈1M,L〉 − 〈1, L〉 =
〈
1C−1P,L

〉
− 〈1, L〉

=

k∑
i=1

k∑
j=1

Pij
ci
Lj −

k∑
j=1

Lj

=

k∑
i=1

k∑
j=1

Pij
ci
Lj −

k∑
j=1

k∑
i=1

Pij
cj
Lj

=

k∑
i=1

k∑
j=1

(
Pij
ci
− Pij

cj

)
Lj

=
∑
ci>cj

Pij

(
1

cj
− 1

ci

)
(Li − Lj)

Note that as f is monotonically increasing, Lj − Li > 0 and 1
cj
− 1

ci
> 0 for ci > cj . Further, as W is

connected, Pij > 0 for some i and j with ci 6= cj , giving that 〈1M,L〉 − 〈1, L〉 > 0.
To complete the proof it would suffice to show that Ms is the transition probability matrix for the uniform

random walk on some connected, non-bipartite graph with the same degree sequence as W . To that end,

fix some s ≥ 2 and note that Ms = C−1
(
PC−1

)s−1
P , and so let P ′ =

(
PC−1

)s−1
P . It is clear that P ′

is symmetric and has the desired column sums, thus it suffices to show that the associated graph W ′ is
connected and non-bipartite. We note that P ′ij > 0 if and only if there is a length s walk between i and j in
W . We note that if s is odd, then the edges present in W ′ are a superset of the edges in W , and thus W ′ is
connected and non-bipartite.

Thus suppose s is even and let C be an odd length cycle in W . Consider the walk in W ′ formed by
starting at vertex v and traversing the cycle C in steps of length s. As s is even and the length of the cycle is
odd, it will take an odd number of steps in W ′ to return to the vertex v. Thus, there is a closed walk in W ′

of odd length and hence W ′ is non-bipartite. We note that as s is even W ′ contains self-loops at all vertices
and edges between pairs of vertices that are connected by a walk of length 2. Thus in order to show that W ′

is connected it suffices to show that there is an even length walk between any two vertices in W . For any
two distinct vertices u and v in W such a walk can be constructed by taking a walk from each vertex to the
odd cycle C and then traversing C in both directions. As C is an odd cycle, these two traversals will have
opposite parity, and thus one of those walks will have even length. �

These two Lemmas immediately give part (4) of our main theorem, as follows.

Theorem 14. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that
W is connected and non-bipartite. If

∏
i ci > 1, then there are constants s, d > 1, depending only on P , such

that for sufficiently large t, G has a giant component with probability at least 1− skte−Θ(dt).

Proof. By Lemma 12, we have that
∑
i ci ln(ci) > 0. Now fix

0 < ε =

∑
i ci ln(ci)

2
∑
i ci ln(ci)− 2 ln(c1) Vol(W )

<

∑
i ci ln(ci)∑

i ci ln(ci)− ln(c1) Vol(W )
.

By Theorem 8, there is some constant d1 > 1 which depends only on P such that Sε is connected with

probability at least 1− e−Θ(dt1).
Fix some positive constant c. Let v be an arbitrary vertex such that

∥∥σ(v)− 1
k1
∥∥ ≤ c√

t
and let ηv =

σ(v)− 1
k1. Noting that 〈1, L〉 = ln (

∏
i ci) > ln(1) = 0, we have that for sufficiently large t and all s ≥ 0,
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〈σ(v)Ms, L〉 =

〈(
1

k
1 + ηv

)
Ms, L

〉
=

1

k
〈1Ms, L〉+ 〈ηvMs, L〉

≥ 1

k
〈1, L〉 − ‖ηv‖1 ‖L‖∞

≥ 1

k
〈1, L〉 −

kc ‖L‖∞√
t

>
1

2k
〈1, L〉 ,

where the first inequality follows from Lemma 13. Let d2 = e
1
2k 〈1,L〉 and note that this implies that

v ∈ Σ 1
2k 〈1,L〉

and so by Theorem 9 there is a constant s such that with probability at least 1− se−( 1
12−o(1))dt2

the vertex v is connected to Sε by a path of length at most s. Observing that a constant fraction of the
vertices have the desired signature by Chernoff bounds completes the proof. �

A slight modification of this argument gives part (3) of the main theorem.

Theorem 15. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that
W is connected and non-bipartite. If

∏
i ci = 1 such that the ci’s are not all equal, then there are constants

s, d > 1, depending only on P , such that for sufficiently large t, G has a giant component with probability at

least 1− e−Θ(dt).

Proof. Since all the ci’s are distinct, we have that
∑
i ci ln(ci) > 0 by Lemma 12. Fix

0 < ε =

∑
i ci ln(ci)

2
∑
i ci ln(ci)− 2 ln(c1) Vol(W )

<

∑
i ci ln(ci)∑

i ci ln(ci)− ln(c1) Vol(W )
.

Again we have by Theorem 8 there is some constant d1 > 1 such that Sε is connected with probability at

least 1− e−Θ(dt1).

Let s =
⌈

1
λ ln

(
2 Vol(W )
εc1

)⌉
and note that by Theorem 3, 1

k1M
j ∈ Sε/2 for all j ≥ s. Thus

〈
1
k1M

j , L
〉
≥

εc1 +
∑
i(1 − ε)π ln(ci) for all j ≥ s. Since s is a fixed constant, this implies that there is some ν > 0 such

that for all j ≥ 1, we have
〈

1
k1M

j , L
〉
≥ ν.

Let c be a constant to be fixed later. We notice that for t sufficiently large all vertices v such that∥∥σ(v)− 1
k1M

∥∥ ≤ c√
t

are contained in Σν/2. Thus by Theorem 9 these vertices are connected to Sε/2 with

probability at least 1− e−Θ(dt2) where d2 = e−ν/2.
At this point it suffices to show that a constant fraction of the vertices in G are adjacent to Σν/2. To this

end, consider the vertices v ∈ V ′ such that
∣∣σj(v)− 1

k

∣∣ ≤ 1
k
√
t

for 1 ≤ j < k and
∣∣σk(v)− 1

k

∣∣ ≥ − ln(c1)

ln(ck)
√
t
.

By Chernoff bounds and Observation 7, we have that a constant fraction of the vertices of G are in V ′.
Furthermore, for every vertex v ∈ V ′, E[deg(v)] ≥ 1. Now by part (1) of Lemma 4, for all v ∈ V ′,∑

‖σ(u)−σ(v)M‖≤ 1√
2t

P(u ∼ v) ≥ (1− e−1)E[deg(v)] ≥ 1− e−1.

Thus, any fixed vertex in v ∈ V ′ has a neighbor u such that ‖σ(u)− σ(v)M‖ ≤ 1√
2t

with probability at least

e−2(1−e−1). Taking c ≥ 1√
2

+ max
{

1
k ,
− ln(c1)
ln(ck)

}
and applying Chernoff bounds completes the proof. �

6. Connectivity

Finally, we turn to the connectivity of G. We note that part (8) of the main theorem follows immediately
from Theorem 2 by observing that the minimum degree in W⊗t is exponential in t and exploiting the
spectral properties of the Kronecker product. However, in keeping with the theme of this paper we provide
an alternative proof which exploits the Markov chain structure.
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Theorem 16. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that
W is connected and non-bipartite. If 1 < c1 ≤ . . . ≤ ck, then there is some constant d > 1, depending only

on P such that G is connected with probability at least 1− e−Θ(dt).

Proof. We first note that as c1 > 1, ln(c1) > 0 and thus for any signature σ, 〈σ, L〉 ≥ ln(c1) > 0. Thus every
vertex is in Σln(c1) and hence by Theorem 9 for every ε > 0, every vertex is connected to Sε by a path of

constant length with probability at least 1 − ne−c
(1−o(1))t
1 . Thus it suffices to show that there is some ε > 0

such that Sε is connected. But as ci > 1 for all i, this implies that
∑
i ci ln(ci) > 0 and thus by Theorem

8 there is some constant d̂ > 1, depending only on P , such that Sε is connected with probability at least

1− e−Θ(d̂t). �

The following two theorems address the case that c1 = 1. We note that we will always have a giant
component in this case, unless c1 = c2 = · · · = ck = 1. However, the connectivity no longer depends entirely
on the degrees in the graph, but is determined based on how the weight is distributed among the vertices.
In particular, the backbone graph will determine the behavior.

Theorem 17. Let G be a tth-order stochastic Kronecker graph generated by P ∈ [0, 1]k×k with column sums
1 = c1 ≤ · · · ≤ ck. If W is connected and non-bipartite and the backbone graph B has a vertex of degree
zero, then there is a constant p ∈ (0, 1) such that with probability at least 1 − pt the graph G has at least
1
2 t

(1−o(1)) ln ln(t) isolated vertices.

Proof. Fix a vertex v such that for all vertices u, P(u ∼ v) ≤ 1
2 . We note that in this case we have

ln (P(deg(v) = 0)) = ln

(∏
u

1− P(u ∼ v)

)
=
∑
u

ln (1− P(u ∼ v))

≥ −
∑
u

P(u ∼ v)

1− P(u ∼ v)

≥ −
∑
u

2P(u ∼ v)

= −2E[deg v] ,

where the last inequality comes from the upper bound on P(u ∼ v). Thus we have that P(deg(v) = 0) ≥
e−2E[deg(v)]. Thus it suffices to find a large collection of vertices in G whose degrees are independent and
where E[deg(v)] is small.

To that end suppose that there is some i such that p1i = 1, that is, the degree of vertex 1 in the B is not

zero. Thus there is some j 6= 1, i such that j has degree zero in B. Now let S
(j)
tj be the set of vertices in G

whose signature σ has σj =
tj
t , σ1 = 1 − tj

t , and σi = 0 for i 6= 0, j. Since c1 = 1 and p1i = 1, we know

that p1j = 0 and thus the degrees of all vertices in S
(j)
tj are independent. We note that there is a choice of

constant c such that if tj = c ln ln(t) then the expected number of isolated vertices in S
(j)
tj is t(1−o(1)) ln ln(t),

and thus by Chernoff bounds with probability at least 1− e− t
(1−o(1)) ln ln(t)

6 there are at least 1
2 t

(1−o(1)) ln ln(t)

isolated vertices in G.
Now suppose that the degree of 1 in B is zero. Choice some index j 6= 1 arbitrarily and consider the set

S
(j)
tj as above. As j is arbitrary there may be some edges between vertices of S

(j)
tj . Thus we note that when
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2tj ≤ t, we have

E
[
e(S

(j)
tj , S

(j)
tj )
]

=
∑
u∈S(j)

tj

∑
v∈S(j)

tj

P(u ∼ v)

= 2

(
t

tj

) tj∑
i=0

(
tj
i

)
p
tj−i
jj pij1p

i
1jp

t−tj−i
11

= 2

(
t

tj

)
p
t−2tj
11

(
p11pjj + p2

1j

)tj
.

In particular, there is a constant c′ such that E
[
e(S

(j)
tj , S

(j)
tj )
]
≤ (c′t)

tj pt11. As p11 < 1, this implies that

the probability of an edge in S
(j)
tj is exponentially small provided tj ∈ o

(
t

ln(t)

)
. Thus, again choosing

tj = c ln ln(t) and conditioning on e(S
(j)
tj , S

(j)
tj ) = 0 gives the desired result. �

A slight simplification of this result gives part (5) of Theorem 1.

Theorem 18. Let G be a tth-order stochastic Kronecker graph generated by a matrix P ∈ [0, 1]k×k such that
W is connected and non-bipartite. If 1 = c1 ≤ . . . ≤ ck and the backbone graph B has no vertices of degree

zero, then there is a constant d > 1 such that G is connected with probability at least 1− e−Θ(dt).

Proof. First we note that ck > 1 as otherwise the only edges present in the W are those present in the
backbone graph, and in particular, W is a perfect matching contradicting the non-bipartiteness. Thus we
have that

∑
i ci ln(ci) > 0 and thus by Theorem 8 there is some ε > 0 and d′ > 1 such that S2ε is connected

with probability at least 1− e−Θ(d′t).
Now in a similar manner as the proof of Theorem 9 it suffices to show that with high probability that

from every vertex v = v0 there is a sequence v0, v1, . . . , vs such that vi ∼ vi+1 and vs ∈ Sε ⊂ S2ε. However,

letting s =
⌈

1
λ ln

(
Vol(W )

2ε

)⌉
and imposing the additional condition that ‖σ(vi)M − σ(vi+1)‖∞ ≤

ε
sk‖L‖∞

,

gives that vs ∈ Sε by Theorem 3 and the Markov chain viewpoint.
To that end fix an arbitrary vertex v and consider the behavior of Z(v) from the point of view of the

product distribution
(
X(1)

)t1 × · · · × (X(1)
)tk

where ti is the number of i’s the label for v. Notice that

for those indicies i where ci = 1, X(i) is the identity distribution. Furthermore, these coordinates perfectly
respect the action of the Markov chain given by M . Suppose then that tj + · · · + tk ≤ ε

sk‖L‖∞
t, then any

neighbor u of v in B⊗t satisfies that ‖σ(v)M − σ(u)‖∞ ≤
ε

sk‖L‖∞
. Otherwise, E[deg(v)] ≥ c

ε
sk‖L‖∞

t

j and by

Lemma 4, there is a constant c such that∑
‖σ(v)M−σ(u)‖∞

P(u ∼ v) ≥ cc
ε

sk‖L‖∞
t

j .

Applying Chernoff bounds to assure the existence of such a vertex completes the proof. �

7. Concluding Remarks

We note that in principle these techniques can be extended to analyze the emergence of connectivity
and the giant component in generalizations of the stochastic Kronecker graph, such as the multiplicative
attribute graph [13]. In fact, based on the work in [20], it is likely that similar transition points will hold.
That is, the multiplicative attribute graph will have a giant component when the median expected degree is
1 and become connected when the probability of an isolated vertex goes to zero.

Perhaps a more interesting direction would to resolve the size of the largest component in the case when
c1 = c2 = · · · = ck = 1. By letting P = 1

k11
T we see that this regime includes the Erdős-Rényi graph

G
(
kt, 1

kt

)
at criticality. Thus it seems likely that in order to understand the size of the largest component of

the stochastic Kronecker graph when c1 = c2 = · · · = ck = 1 it will require a deeper understanding of why
the branching process for G(n, 1

n ) terminates with a largest component of size Θ
(
n2/3

)
[2].
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As a possible intermediate stage, consider a d-regular, connected, non-bipartite graph H on k vertices
and let P be 1

d times the adjacency matrix of H. What is the size of the largest component in the tth-order

stochastic Kronecker graph generated by P? From a natural coupling with G
(
dt, 1

dt

)
it is clear that it should

be at least Ω
(
d2t/3

)
. On the other hand, since the degree of every vertex is still asymptotically Poisson

with parameter 1, the branching process point of view would indicate that the size of the largest component
should be Θ

(
k2t/3

)
. However, we note that if H is the d-regular graph formed by two copies of Kd−1 joined

by a perfect matching, then H⊗t consists of 2t copies of K(d−1)t with relatively few edges between them.

Furthermore, as the expected degree within each of these copies of K(d−1)t is
(
d−1
d

)t ∈ o(1), the largest
component in each of these components is O(t), seemingly indicating that the overall size of the largest
component is relatively small. Thus, it seems likely that any resolution of the case where c1 = c2 = · · · = ck
will necessitate a deeper understanding of the branching process at criticalility, and specifically, how the
branching process interacts with the underlying network of potential edges.
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