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Abstract. A multiplicative attribute graph is a random graph in which vertices are represented by random
words of length t in a finite alphabet Γ, and the probability of adjacency is a symmetric function Γt×Γt →
[0, 1]. These graphs are a generalization of stochastic Kronecker graphs, and both classes have been shown
to exhibit several useful real world properties. We establish asymptotic bounds on the spectra of the

adjacency matrix and the normalized Laplacian matrix for these two families of graphs under certain mild

conditions. As an application we examine various properties of the stochastic Kronecker graph and the
multiplicative attribute graph, including the diameter, clustering coefficient, chromatic number, and bounds

on low-congestion routing.

1. Introduction

Over the last few decades, spurred by the attempts to understand and model modern complex networks,
there has been an extensive amount of literature devoted to studying models for random graphs that differ
significantly from the standard Erdős-Rényi random graph and the d-regular random graph (see for instance
[5, 9, 11, 18, 30]). One trend that has begun to emerge among these random graph models is the use of
mathematical primitives to create models for complex networks that exhibit complicated behavior while still
being analytically tractable. For example, inhomogeneous random graphs [3, 4] and random dot product
graphs [26, 32, 41, 44, 45], both build graphs over an inner product space and use the inner product to
govern the edge connectivity, while stochastic Kronecker graphs [28, 29] and multiplicative attribute graphs
[25] use the Kronecker product of matrices to control the edge probabilities. In this work we focus on the
spectral properties of the latter two random graph models, showing that these properties can be derived in
a natural way using the Kronecker product.

More formally, the Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is a matrix A ⊗ B = C ∈
Rmp×nq where Ci,j = Ad ime,d jneBi mod p,j mod q and x mod p ∈ [p] = {1, 2, . . . , p}. That is,

A⊗B = C =


A1,1B A1,2B · · · A1,nB
A2,1B A2,2B · · · A2,nB

. . . . . .
. . . . . .

Am,1B Am,2B · · · Am,nB

 .
A stochastic Kronecker graph is formed by taking a symmetric k×k matrix P with entries in the interval [0, 1]
and a positive integer t, and forming the t-fold Kronecker product, denoted P⊗t. Each edge {i, j} is then
present independently with probability P⊗ti,j = P⊗tj,i . We will say that such a graph is a tth-order stochastic
Kronecker graph with generating matrix P . Recently, the stochastic Kronecker graph as been advanced as a
model for the internet and other complex networks [29] especially in the case where the generating matrix is[
α β
β γ

]
and α ≥ β ≥ γ. Mahdian and Xu have recently analyzed the connectivity, diameter, and emergence

of the giant component in this context [31] while the first author and Horn analyzed the emergence of the
giant component of a general 2 × 2 generating matrix [37]. The multiplicative attribute graph is a natural
generalization of stochastic Kronecker graphs to allow multiple copies of each vertex before determining
the random edges. In order to make this precise, we equip the k × k generating matrix for the stochastic
Kronecker graph with an alphabet Γ of size k, and define a function w : V → Γt. Then any two vertices
u, v ∈ V are connected independently with probability P⊗tw(u),w(v). We note here that u may be equal to v,
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so that we allow self-edges with the appropriate probability. If the function w is a bijection, then this is a
tth-order stochastic Kronecker graph with generating matrix P , while if w is not a bijection we say that the
resulting graph is a tth-order multiplicative attribute graph with generating matrix P .

We provide here asymptotic bounds on the spectra of both the stochastic Kronecker graph and a gen-
eralization due to Kim and Leskovec [25] known as the multiplicative attribute graph. Moreover, we show
some applications of these bounds to graph properties related to spectra. Although there are several natural
spectra of graphs to consider, we focus on two in particular, the spectrum of the adjacency matrix A and the
normalized Laplacian L = I−D−1/2AD−1/2, where D is the diagonal matrix of degrees. For a given graph G
we will denote the adjacency matrix by A(G) and the normalized Laplacian by L(G). These spectra are of
particular interest in the analysis of complex and real world networks as they provide insight to fundamental
structural properties of the network.

2. Preliminaries

We begin with an overview of the structural properties related to graph spectra and our main tools for the
analysis of the spectra for stochastic Kronecker graphs and multiplicative attribute graphs. Given a graph
G we consider first the structural properties of G determined by the spectrum of its adjacency matrix A. To
that end let µ1 ≤ µ2 ≤ · · · ≤ µn be the spectrum (with multiplicities) of the adjacency matrix A.

It is well known thatAtij represents the number of walks of length t from i to j in the graphG. Furthermore,

this implies that trace(At) is the total number of walks of length t in the graph, and thus the number of
edges is in G is 1

2 trace(A2) = 1
2

∑
i µ

2
i , the total number of triangles in G is 1

6 trace(A3) = 1
6

∑
i µ

3
i , and the

number of 4 cycles in G is

1

8

(
trace(A4)− 2 trace(A2)2 + trace(A2)

)
=

1

8

∑
i

µ4
i − 2

∑
j

µ2
j

2

+
∑
k

µ2
k

 .

The first of these two allow us to calculate a measure of the clustering of the graph G based purely on
the spectrum of the adjacency matrix. More specifically, in the study of complex networks an important
parameter of the network is the clustering coefficient C of the graph (for an overview, see for instance
[6, 10, 24]) which may be variously defined, but is an attempt to capture how often short paths are closed
into cycles. If T is the number of triangles in the graph, then one definition of the clustering coefficient is

3T∑
v (deg(v)

2 )
, that is, the fraction of adjacent pairs of edges that are part of a triangle. It is easy to see that

under this definition of the clustering coefficient we have

C =
trace(A3)

trace(A2)2 − trace(A2)
.

The spectrum of the adjacency matrix also famously gives information about the chromatic number via
result of Wilf [43] and Hoffman [21, 22], which combine to give that

1− µn
µ1
≤ χ(G) ≤ 1 + µn.

Although not directly applicable to the case of stochastic Kronecker graphs and multiplicative attribute
graphs the spectrum of the adjacency matrix of G and its compliment also give some control over the
presence of a small cycles [33] and the Hamiltonicity of G [17]. For a reference to other properties of the
adjacency matrix we refer the reader to the manuscript of Brouwer and Haemers [7].

We now consider the properties of the spectrum of the normalized Laplacian L, which has eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. In many ways the consequences of the spectrum are either directly or indirectly
tied to the ability of the spectral gap λ = maxi 6=1 |1− λi| = max {|1− λ2| , |1− λn|} to control the mixing
rate of the uniform random walk on the underlying graph G. Specifically, let π be the limiting distribution
of the uniform random walk on G (if it exists1), then the relative point-wise distance of the sth power of the

1It is a standard exercise that this distribution exists and is unique if the underlying undirected graph G is connected and
is not bipartite, see for instance [15].
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transition matrix P to the limiting distribution is

∆(s) = max
x,y

|P s(y, x)− π(x)|
π(x)

.

Now, for any subset X of the vertices we denote by vol (X) =
∑
x∈X deg(x), then we have (as given in [15])

∆(s) = e−s(1−λ) vol (G)

minv deg(v)

and as a consequence after at most 1
1−λ ln

(
vol(G)

εminv deg v

)
steps of the uniform random walk the relative point-

wise distance is at most ε. As we will see in a Theorem 3 and Theorem 4, if the parameters of the stochastic
Kronecker and multiplicative attribute graph are such that with high probability the graph is connected, then
the spectral gap is asymptotically constant, yielding rapid mixing of the uniform random walk. Although this
application of the spectrum of the normalized Laplacian has significant applications in the broader context
of algorithms on graphs, we will focus instead on specific structural properties that are consequences of the
spectrum of the normalized Laplacian and more relevant to stochastic Kronecker graphs and multiplicative
attribute graphs in reference to their potential application as models for complex networks.

One of the identifying properties of complex networks is a relatively short diameter compared to the size
of the network, or more prosaically the “six degrees of Kevin Bacon” property [19]. By work of Chung [14]

we have that diameter of a graph can be bounded above by

⌈
ln(n−1)

ln
(
λn+λ2
λn−λ2

)⌉, which in the case of constant

spectral gap gives asymptotically logarithmic diameter. As we will see in Theorem 6 and Theorem 7, for
some settings of the generating matrix, this result is sufficient to give a constant upper bound on the diameter
of a stochastic Kronecker or multiplicative attribute graph.

A significant amount of interest in complex networks has been driven by the ability of networks (such as
the physical layer of the internet) to handle ever increasing demand well beyond earlier projected capacity.
Much of this ability can be explained by the following result which appears in [15] and is adapted from the
work of Alon, Chung, and Graham in [2]:

Theorem 1. Let G be a graph on n vertices. Let A = {(xi, yi) : xi ∈ X, yi ∈ Y } denote any assignment
such that each vertex v is in X with multiplicity deg v and in Y with multiplicity deg v. There are paths Pi
joining xi to yi of length at most 2

λi
ln(n) such that each edge of G is contained in at most 20

λ1
ln(n) paths Pi.

Finally, we would be remiss if we failed to mention the connection between the spectrum of the normalized
Laplacian and the isoperimetric properties of the graph G. The most famous of these connections is to the
Cheeger constant or the conductance, defined as

Φ = min
S⊂V (G)

e(S, S)

min
{

vol (S) , vol
(
S
)} ,

where e(X,Y ) is the number of edges with one end point in X and the other in Y . Via results of Jerrum and

Sinclar [39] and Sokal [27], we know that 2Φ ≥ λ2 ≥ Φ2

2 and thus the spectrum gives reasonable control on
the number of edges crossing cuts in the graph. This control can be refined to the discrepancy property [15]
which gives that for any two subsets of vertices X and Y ,∣∣∣∣e(X,Y )− vol (X) vol (Y )

vol (G)

∣∣∣∣ ≤ λ
√

vol (X) vol (Y ) vol
(
X
)

vol
(
Y
)

vol (G)
.

With these applications in mind, let us turn now to the tools we shall use to analyze the spectra of the
stochastic Kronecker graph and multiplicative attribute graph. Our primary tool will be the following result
of the first author and Chung.

Theorem 2 ([36]). Let G be a random graph with independent edges generated according to the matrix P
and let A be the associated adjacency matrix. Let D be the diagonal matrix of expected degrees and let ∆ and
δ denote the maximum and minimum expected degrees, respectively. If ∆ > 4

9 ln
(

2n
ε

)
and n is sufficiently
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large, then with probability at least 1− ε we have that for all i

|λi(A)− λi(P)| ≤

√
4∆ ln

(
2n

ε

)
.

Additionally, if δ ≥ 3 ln
(

4n
ε

)
, then with probability at least 1− ε we have that, for all i

∣∣∣λi (L(G))− λi
(
I −D−1/2PD−1/2

)∣∣∣ ≤ 3

√
3 ln

(
4n
ε

)
δ

.

We note that this theorem is derived from a matrix Chernoff inequality. Previously, various matrix
concentration inequalities have been derived by many authors including Ahlswede-Winter [1], Cristofides-
Markström [8], Oliveira [34], Gross [20], Recht [38], and Tropp [40]. Oliveira [34] also gives a slightly weaker
version of Theorem 2.

As we can see from Theorem 2, in both the case of the adjacency matrix and the normalized Laplacian,
the spectrum of G is heavily influenced by the underlying probability matrix P, in our cases P⊗t. Thus we
recall the following properties of the Kronecker power of a matrix.

Observation 1. If M has eigenvalues λ1, . . . , λk, then for every non-negative integer solution to a1 + · · ·+
ak = t, M⊗t has the eigenvalue λa1

1 · · ·λ
ak
k with multiplicity

(
t

a1,a2,...,ak

)
.

Observation 2. For matrices A and B and any integer t, we have (AB)⊗t = A⊗tB⊗t.

For other standard properties of the Kronecker product see [42].

3. Stochastic Kronecker Graphs

Although the application of Theorem 2 to stochastic Kronecker graphs can viewed as an easy consequence
of the properties of Kronecker multiplication, we provide the full details here as a prelude to the analysis for
multiplicative attribute graphs.

Theorem 3. Let G be a tth-order stochastic Kronecker graph over the alphabet Γ of size k with affinity
matrix P , and let n = kt. Let D be the diagonal matrix of column sums of P and let δ and ∆ be the

minimum and maximum diagonal entries of D, respectively. Let ε > 0. If ∆ > 1 and t ≥ ln( 4
9 ln( 2n

ε ))
ln(∆) , then

for all i ∈ [n], ∣∣λi(A(G))− λi
(
P⊗t

)∣∣ ≤√4∆t ln

(
2n

ε

)
,

with probability at least 1− ε.
If δ > 1 and t ≥ ln(3 ln( 4n

ε ))
ln(δ) , then for all i ∈ [n],

∣∣∣∣λi(L(G))−
(

1− λn+1−i

((
D−

1/2PD−
1/2
)⊗t))∣∣∣∣ ≤ 3

√
3 ln

(
4n
ε

)
δt

,

with probability at least 1− ε.

Before proving Theorem 3 we comment briefly on the lower bounds required on t. Consider first the bound

on t for the spectrum of the adjacency matrix, as n = kt this condition may be rewritten as ∆t ≥ 4
9 ln

(
2kt

ε

)
.

Solving for t when ∆t = 4
9 ln

(
2kt

ε

)
we have

t = logk

( ε
2

)
− 1

ln(∆)
W
(
−9

4
logk(∆)∆− logk( ε2 )

)
where W is the Lambert-W function and W(z)eW(z) = z (see [16, Section 4.13] for a reference of properties

of the Lambert-W function). Now if z → 0− then W(z) = −η − ln(η) + O
(

ln(η)
η

)
where η = − ln(−z). In
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our case η = − logk
(
ε
2

)
ln(∆) + ln

(
4

9 logk(∆)

)
. Thus we have

t = logk

( ε
2

)
− 1

ln(∆)

(
logk

( ε
2

)
ln(∆)− ln

(
4

9 logk(∆)

)
− ln ln

(
4

9 logk(∆)
∆− logk( ε2 )

)
+ o(1)

)
=

1

ln(∆)
ln

(
4

9 logk(∆)

)
+

1

ln(∆)
ln ln

(
4

9 logk(∆)
∆− logk( ε2 )

)
+ o(1)

= log∆

(
4

9 logk(∆)

)
+

1

ln(∆)
ln

(
ln

(
4

9 logk(∆)

)
− ln(∆) logk

( ε
2

))
+ o(1)

= log∆

(
4

9 logk(∆)

)
+

1

ln(∆)
ln

(
logk

(
2

ε

)
(ln(∆)− o(1))

)
+ o(1)

= log∆

(
4

9 logk(∆)

)
+

1

ln(∆)
ln

(
logk

(
2

ε

))
+

1

ln(∆)
ln ln (∆− o(1)) + o(1)

= log∆

(
logk

(
2

ε

))
+ log∆

(
4 ln(∆)

9 logk(∆)

)
+ o(1)

= log∆

(
logk

(
2

ε

))
+ log∆

(
4 ln(k)

9

)
+ o(1)

= log∆

(
4 ln

(
2
ε

)
9

)
+ o(1) .

Thus for ε sufficiently small it suffices for t > log∆

(
4
9 ln

(
2
ε

))
. A similar statement holds for the condition

on t for the normalized Laplacian, namely for ε sufficiently small it suffices for t > logδ
(
3 ln

(
4
ε

))
. However,

in the case of the normalized Laplacian the bound on t is essentially superfluous as the entire spectrum is

contained in [0, 2] and if t <
ln(3 ln( 2n

ε ))
ln(δ) , then the error bound given is at least

√
27 > 2.

Proof. We first consider the degree of an arbitrary vertex v with w(v) = σ = σ1σ2 · · ·σt. For any s ≥ 1 and
each γ ∈ Γs let dγ be the appropriate column sum of P⊗s. Using this notation we have

E [deg(v)] =
∑
τ∈Γt

P⊗tω,τ =
∑
τ∈Γt

t∏
i=1

Pσi,τi =

t∏
i=1

∑
γ∈Γ

Pσi,γ =

t∏
i=1

dσi .

Thus the expected minimum degree is δt and the expected maximum degree is ∆t. Thus, if δ > 1 or ∆ > 1
we can apply the appropriate results from Theorem 2. In order to finish the result it suffices to note by
Observation 2 that (D−1/2PD−1/2)⊗t = (D−1/2)⊗tP⊗t(D−1/2)⊗t, and thus for any σ, τ ∈ Γt with expected

degrees dσ and dτ , we have
(
D−1/2PD−1/2

)⊗t
σ,τ

=
P⊗t
σ,τ√
dσdτ

. �

4. Multiplicative Attribute Graphs

Although the stochastic Kronecker graph model has been proposed as a model for a variety of different
complex networks, it has the significant drawback that with a k× k generating matrix, it is only possible to
generate a network whose size is a power of k. There are several natural methods to attempt to bootstrap
a stochastic Kronecker graph to a network of arbitrary size, but it is not clear a priori that these methods
preserve the theoretical properties of stochastic Kronecker graphs. One such method, proposed by Kim and
Leskovec, is the multiplicative attribute graph [25]. In this model there is an alphabet Γ, a generating matrix
P , an order t, and a function w : V → Γt, which associates to each vertex in V a word in Γt. We define the
signature function n : Γt → N by n(σ) =

∣∣w−1(σ)
∣∣. That is, n(σ) indicates how many vertices are associated

with the word σ. For simplicity of notation, we will write nσ = n(σ). Note that the resulting graph has
n =

∑
σ∈|Γ|t nσ vertices. Given these functions, each edge is present independently with the probability of

u and v being adjacent equal to P⊗tw(u),w(v). As with the stochastic Kronecker graph, we allow u = v, so that

this graph may have loops. We will call the collection {nσ}σ∈Γt the signature of the graph G.
We will restrict ourselves to the case where the signature of the multiplicative attribute graph is determined

randomly and by a probability distribution over Γ. Specifically, if Q is a diagonal matrix representing the
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probability distribution over Γ, in the tth-order multiplicative attribute graph, each vertex is assigned the
word σ ∈ Γt independently with probability Q⊗tσ,σ. Without loss of generality, we may assume that for all
γ ∈ Γ, Qγ,γ > 0 as otherwise we may consider the smaller alphabet Γ′ = Γ−{γ}. In the following theorem we
show that the qualitative behavior of the spectral properties of multiplicative attribute graph are essentially
that of an appropriate stochastic Kronecker graph plus some nearly trivial eigenvalues. In particular, if
the distribution on Γ is uniform then (up to trivial eigenvalues) the spectrum of a tth-order multiplicative
attribute graph is the essentially the same as that of the tth-order stochastic Kronecker graph with the same
generating matrix.

Theorem 4. Let G be a tth-order multiplicative attribute graph on n vertices over the alphabet Γ of size k,
with probability matrix Q and affinity matrix P . Let D be the diagonal matrix of column sums of QP and
let δ be the minimum diagonal entry of D and qmin be the minimum diagonal entry of Q. Let ε > 0. If

(1) t ≤ min

 ln(n)− ln
(
6 ln

(
8n
ε

))
ln
(

1
δ

) ,
ln(n)− ln

(
12 ln

(
2n
ε

))
ln
(

1
qmin

)
 ,

then with probability at least 1− ε there is a set A ⊂ [n], where A = {a1, . . . , akt}, such that for i ∈ [kt],∣∣∣∣λai(L(G))−
(

1− λkt+1−i

((
D−

1/2Q
1/2PQ

1/2D−
1/2
)⊗t))∣∣∣∣ ≤ 3

√
6 ln

(
8n
ε

)
δtn

+ 4

√
3 ln

(
2n
ε

)
qtminn

≤ 15

√
ln
(

8n
ε

)
nmin {qtmin, δ

t}
.

Furthermore, for all j /∈ A, |λj(L(G))− 1| ≤ 3

√
6 ln( 8n

ε )
δtn .

The precise conditions on t in (1) will fall out from the proof. We note that as with the bound in Theorem
3, this can be transformed into a bound on n in the case that t→∞, specifically

n ≥ max

6 ln
(

48
εδt

)
δt

,
12 ln

(
24

εqtmin

)
qtmin

+ o(1) .

This should be unsurprising, as when n is sufficiently large, we will have close to the expected number of
vertices for each σ ∈ Γt, and we can thus use concentration techniques on the expected signature. Alter-
natively, we note that there is some ρ, depending only on δ, qmin, and ε, such that if t ≤ ρ ln(n) and n is
sufficiently large the conditions for the theorem hold.

Proof. In order to analyze the spectrum of G we consider the random assignment of vertices to words in Γt

separately from the random generation of edges.
Fix the signature {nσ}σ∈Γt of the graph G, and define for each σ ∈ Γt, dσ =

∑
τ∈Γt nτP

⊗t
σ,τ . We note that

for any vertex v, E [deg v] = dw(v) and thus the minimum expected degree is dmin = minσ∈Γt dσ for graphs

with a fixed signature. Now using Theorem 2, if dmin ≥ 3 ln
(

8n
ε

)
, then with probability at least 1 − ε

2 ,

|λi(L(G))− (1− λn−i+1(M))| ≤ 3

√
3 ln( 8n

ε )
dmin

for all i, where

Mu,v =
P⊗tw(u),w(v)√
dw(u)dw(v)

.

In order to understand the spectrum of M , we consider the case where every element of the signature is at
least 1, that is, nσ ≥ 1 for all σ ∈ Γt. Thus for every σ ∈ Γt, there exists a vertex v ∈ V such that w(v) = σ.
We will abuse notation and refer to any such vertex as w−1(σ). Hence we may define the kt × kt matrix by

M̃σ,τ =
√
nσnτMw−1(σ),w−1(τ). We claim that M̃ captures the non-trivial portion of the spectrum of M .

Observe that for any two vertices u and v with w(u) = w(v), the corresponding rows of M are identical,
and thus for each σ ∈ Γt, M has an eigenvalue of 0 of multiplicity nσ − 1. Hence, the multiplicity of 0
as an eigenvalue of M is at least n − kt. In order to show that the remaining eigenvalues of M are the

spectrum of M̃ , let ϕ be an eigenvector for M with corresponding eigenvalue λ 6= 0. Define ψ ∈ Rkt by
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ψ(σ) = 1
nσ

∑
w(v)=σ ϕ(v). Now for any v ∈ V (G) with w(v) = σ, λϕ(v) = Mϕ(v) =

∑
u∈V Mv,uϕ(u) =∑

τ∈Γt M̃σ,τnτψ(τ). As this quantity is independent of the choice of v (up to the choice of the representative

σ) this implies that the eigenvector ϕ has ϕ(u) = ϕ(v) as long as w(u) = w(v). Thus we define ϕ̃ ∈ Rkt by
ϕ̃(σ) =

√
nσψ(σ) and we have for w(v) = σ

M̃ϕ̃(σ) =
∑
τ∈Γt

M̃σ,τ ϕ̃(τ)

=
∑
τ∈Γt

Mw−1(σ),w−1(τ)

√
nσnτ

√
nτψ(τ)

=
√
nσ
∑
τ∈Γt

Mw−1(σ),w−1(τ)nτψ(τ)

=
√
nσMϕ(v)

=
√
nσλψ(σ)

= λϕ̃(σ).

Therefore, the nonzero eigenvalues of M are the same as the nonzero eigenvalues of M̃ , and hence it suffices
to consider the spectrum of M̃ .

For each σ ∈ Γt define qσ = Q⊗tσ,σ, that is, qσ is the probability that an arbitrary vertex v has w(v) = σ.

Now the expected value of nσ is qσn ≥ qtminn, and thus by Chernoff bounds (1− ε∗) qσn ≤ nσ ≤ (1 + ε∗)qσn
with probability at least 1− ε

2 , where

(2) ε∗ =

√
3 ln

(
2kt

ε

)
qtminn

≤

√
3 ln

(
2n
ε

)
qtminn

≤ 1

2

by condition (1). We note that δ = minj∈[n] (
∑n
i=1 qipij) ≤

∑n
i=1 qi = 1. Moreover, equality holds only in

the case that P is the all ones matrix, in which case the graph is complete and the theorem is trivial. Thus,
we may assume δ < 1, and we obtain

dmin ≥
1

2
δtn ≥ 1

2
nδ

ln(6 ln( 8n
ε ))−ln(n)

ln(δ) = 3 ln

(
8n

ε

)
,

and thus with probability at least 1 − ε, the spectrum of L(G) is controlled by the spectrum of M̃ with a
signature near the expected signature. Thus we define

Mσ,τ =
√
qσnqτn

P⊗tσ,τ√∑
η∈Γt nqηP

⊗t
σ,η
∑
ν∈Γt nqνP

⊗t
τ,ν

=
√
qσqτ

P⊗tσ,τ√∑
η∈Γt qηP

⊗t
σ,η
∑
ν∈Γt qνP

⊗t
τ,ν

=

√
Q⊗tσ,σQ

⊗t
τ,τ

P⊗tσ,τ√∑
η∈Γt Q

⊗t
η,ηP

⊗t
σ,η
∑
ν∈Γt Q

⊗t
ν,νP

⊗t
τ,ν

=

√
Q⊗tσ,σQ

⊗t
τ,τ

P⊗tσ,τ√
D⊗tσ,σD

⊗t
τ,τ

=
(
D−

1/2Q
1/2PQ

1/2D−
1/2
)⊗t
σ,τ

,

where the last two equalities come from the fact that both Q and D are diagonal matrices.
We make the standard observation that for any matrix A and invertible matrix S, the spectrum of

S−1AS−1 is the same as the spectrum of S−2A as the eigenpairs (λ, v) for S−1AS−1 correspond to the
eigenpairs (λ, S−1v) for S−2A. In particular ‖M‖ =

∥∥D−1/2Q1/2PQ1/2D−1/2
∥∥ =

∥∥D−1QP
∥∥ = 1, as D is

7



formed from the column sums of QP . Now,∥∥∥M̃ −M∥∥∥ = max
‖f‖=1

∣∣∣fT (M̃ −M) f ∣∣∣
= max
‖f‖=1

∣∣∣∣∣∑
σ∈Γt

∑
τ∈Γt

fσ

(
M̃ −M

)
σ,τ

fτ

∣∣∣∣∣
≤ max
‖f‖=1

∑
σ∈Γt

∑
τ∈Γt

|fσ|
∣∣∣M̃ −M∣∣∣

σ,τ
|fτ | .

Notice that from the Chernoff bound on nσ above, we have that

1 + ε∗

1− ε∗
Mσ,τ ≥ M̃σ,τ ≥

1− ε∗

1 + ε∗
Mσ,τ .

Subtracting Mσ,τ from this inequality yields

2ε∗

1− ε∗
Mσ,τ ≥ M̃σ,τ −Mσ,τ ≥

−2ε∗

1 + ε∗
Mσ,τ ,

and thus
∣∣∣M̃σ,τ −Mσ,τ

∣∣∣ ≤ 2ε∗

1−ε∗ |Mσ,τ | for all σ, τ . Moreover, by definition Mσ,τ is positive for all σ, τ .

Therefore,

∥∥∥M̃ −M∥∥∥ ≤ 2ε∗

1− ε∗
max
‖f‖=1

∑
σ∈Γt

∑
τ∈Γt

|fσ|Mσ,τ |fτ |

≤ 2ε∗

1− ε∗
‖M‖

=
2ε∗

1− ε∗

Thus, by Weyl’s theorem (see for instance [23]), for any i,
∣∣∣λi(M̃)− λi(M)

∣∣∣ ≤ 2ε∗

1−ε∗ ≤ 4ε∗ by (2). The result

for the non-zero eigenvalues follows by the triangle inequality. �

In an analogous manner to Theorem 4 we can control the spectrum of the adjacency matrix of a multi-
plicative attribute graph.

Theorem 5. Let G be a tth-order multiplicative attribute graph on n vertices over the alphabet Γ of size k,
with probability matrix Q and affinity matrix P . Let D be the diagonal matrix of column sums of QP and
let ∆ < 1 be the maximum diagonal entry of D and qmin be the minimum diagonal entry of Q. Let ε > 0. If

(3) t ≤ min

 ln(n)− ln
(

8
9 ln

(
4n
ε

))
ln
(

1
∆

) ,
ln(n)− ln

(
12 ln

(
2n
ε

))
ln
(

1
qmin

)
 ,

then with probability at least 1− ε there is a set A ⊂ [n], where A = {a1, . . . , akt}, such that for i ∈ [kt],∣∣∣∣λai(A(G))− λi
((

Q
1/2PQ

1/2
)⊗t)∣∣∣∣ ≤

√
6∆tn ln

(
4n

ε

)
+

√
3 ln

(
2n
ε

)
qtminn

.

Furthermore, for all j /∈ A, |λj(A(G))| ≤
√

6∆tn ln
(

4n
ε

)
.

As above the bound on t can be transformed into a bound on n in the case that t→∞, specifically

n ≥ max

8 ln
(

32
9ε∆t

)
9∆t

,
12 ln

(
24

εqtmin

)
qtmin

+ o(1) .

Again, we note that there is some ρ, depending only on ∆, qmin, and ε, such that if t ≤ ρ ln(n) and n is
sufficiently large the conditions for the theorem hold.
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5. Applications and Summary

We conclude with some applications of the spectral results for the tth-order stochastic Kronecker graph and

multiplicative attribute graph with generating matrix P =

[
α β
β γ

]
and probability matrix Q =

[
µ 0
0 1− µ

]
for the multiplicative attribute graph.

Theorem 6. Let G be a tth-order stochastic Kronecker graph with generating matrix P =

[
α β
β γ

]
with

α ≥ γ, and α, β, γ ∈ [0, 1]. If γ + β > 1 then for any fixed constant c > 0, the following hold with probability
at least 1− 2−ct:

(1) The clustering coefficient of G is(
α3 + 3αβ2 + 3β2γ + γ3

α2 + γ2 + 2β2 + 2β(α+ γ)

)t
+ o(1) .

Furthermore this is asymptotically 0 unless α = β = γ = 1.
(2) The diameter of G satisfies

diam(G) ≤ 1 + o(1) +



ln(4)
ln(β+γ) αγ − β2 > 0, γ ≤ β
ln(4)

ln(2β) αγ − β2 > 0, γ ≥ β > 1
2

ln(2)

ln
(

2(α+β)(β+γ)

αγ−β2 −1
) t αγ − β2 > 0, β < γ, 1

2

ln(4)
ln(β+γ) αγ − β2 = 0

ln(4)
ln(γ+

√
αγ) αγ − β2 < 0, γ +

√
αγ > 1

ln(2)

ln
(

1+
2(α(β+γ)+γ(α+β))

β2−αγ

) t αγ − β2 < 0, γ +
√
αγ ≤ 1

.

(3) The chromatic number of G is at most 1+

(
α+γ+

√
(α−γ)2+4β2

2

)t
(1+o(1)). Furthermore, if αγ−β2 <

0 then the chromatic number satisfies

2
√

(α− γ)2 + 4β2√
(α− γ)2 + 4β2 − α− γ

+ o(1) ≤ χ(G) ≤ 1 +

(
α+ γ +

√
(α− γ)2 + 4β2

2

)t
(1 + o(1)).

(4) For any two subsets of vertices X and Y of G, the number of edges between them satisfies∣∣∣∣e(X,Y )− vol (X) vol (Y )

vol (G)

∣∣∣∣ ≤
( ∣∣αγ − β2

∣∣
(α+ β)(β + γ)

+ o(1)

)√
vol (X) vol (Y ).

(5) Let A = {(xi, yi) : xi ∈ X, yi ∈ Y } be any assignment of the vertices such that each vertex v appears
in X and Y with multiplicity deg(v). If αγ−β2 ≥ 0, then there are paths Pi joining xi and yi each of

length at most 2 ln(2)(α+β)(β+γ)
β(α+2β+γ) t+o(1) such that each edge is contained in at most 20 ln(2)(α+β)(β+γ)

β(α+2β+γ) t+

o(1) paths. If αγ − β2 < 0, then there are paths Pi joining xi and yi each of length at most
2 ln(2)(α+β)(β+γ)

β(α+2β+γ)( α
α+β+ γ

γ+β )
t+o(1) such that each edge is contained in at most 20 ln(2)(α+β)(β+γ)

β(α+2β+γ)( α
α+β+ γ

γ+β )
t+o(1)

paths.

Proof. We first consider the eigenvalues of the adjacency matrix and note that a quick calculation yields that

the eigenvalues of P are x ± y where x = α+γ
2 and y =

√
(α−γ)2+4β2

2 . Since α + β ≥ β + γ by assumption,
Theorem 3 gives that with probability at least 1− 2ct the eigenvalues of the adjacency matrix are such that
for each i there are

(
t
i

)
eigenvalues satisfying

(x+ y)i(x− y)t−i +O
(√

t(α+ β)t
)
.

9



Thus the number of closed walks of length 3 in G is at most

2t∑
j=1

µ3
j =

t∑
i=0

(
t

i

)(
(x+ y)i(x− y)t−i +O

(√
t(α+ β)t

))3

=

t∑
i=0

(
t

i

)
(x+ y)3i(x− y)3t−3i +

t∑
i=0

(
t

i

)
(x+ y)2i(x− y)2t−2iO

(√
t(α+ β)t

)
+

t∑
i=0

(
t

i

)
(x+ y)i(x− y)t−iO

(
t(α+ β)t

)
+

t∑
i=0

(
t

i

)
O
(√

t3(α+ β)3t
)

=
(
(x+ y)3 + (x− y)3

)t
+
(
(x+ y)2 + (x− y)2

)tO(√t(α+ β)t
)

+ ((x+ y) + (x− y))
tO
(
t(α+ β)t

)
+O

(
2t
√
t3(α+ β)3t

)
=
(
2x3 + 6xy2

)t
+
(
2x2 + 2y2

)tO(√t(α+ β)t
)

+ (2x)
tO
(
t(α+ β)t

)
+O

(
2t
√
t3(α+ β)3t

)
.

Now we note that
2x(α+ β) = (α+ γ)(α+ β) ≤ 2α(α+ β) ≤ 2(α+ β)

√
α+ β,

and so (2x)tO(t(α+ β)t) ∈ o
(√

t3(α+ β)3t
)

. In a similar manner we have that

2x2 + 2y2 =
1

2

(
(α+ γ)2 + (α− γ)2 + 4β2

)
=

1

2

(
2α2 + 2γ2 + 4β2

)
≤ 2α2 + 2β2 ≤ 2(α+ β),

and so (2x2 + 2y2)O
(√

t(α+ β)t
)
∈ o
(

2t
√
t3(α+ β)3t

)
. Observing that

2x3 + 6xy2 =
α+ γ

4

(
(α+ γ)2 + 3(α− γ)2 + 12β2

)
= α3 + 3αβ2 + 3β2γ + γ3

we have that the number of closed walks of length 3 in G is
(
α3 + 3αβ2 + 3β2γ + γ3

)t
+O

(
2t
√
t3(α+ β)3t

)
.

Applying the Chernoff bounds to the degrees, we have
∑2t

j=1

(
deg(vj)

2

)
= 1

2

(
(α+ β)2 + (β + γ)2

)t
(1+o(1)).

Noting that (α+β)2+(β+γ)2

(α+β)
3
2

=
√
α+ β+ (β+γ)2

(α+β)
3
2
> 1 and that the contribution of the self-loops to the number

of closed walks of length 3 and the number of adjacent edges is O(
∑
v deg(v)), we have that the clustering

coefficient of G is (
α3 + 3αβ2 + 3β2γ + γ3

α2 + γ2 + 2β2 + 2β(α+ γ)

)t
+ o(1) ,

as desired. Observing that α3 + 3αβ2 ≤ α2 + 2αβ+β2 and γ3 + 3γβ2 ≤ γ2 + 2γβ+β2 with equality holding
simultaneously if and only if α = β = γ = 1, completes the proof of (1).

We now consider the asymptotic behavior of the largest eigenvalue of the adjacency matrix, and to that
end consider the function

f(α, γ) = (x+ y)−
√
α+ β =

α+ γ

2
+

√
(α− γ)2 + 4β2

2
−
√
α+ β,

where β is held constant and restricted to the domain γ ≤ α ≤ 1 and 1− β < γ. We note that

∇f(α, γ) =

 1
2 + α−γ

2
√

(α−γ)2+4β2
− 1

2
√
α+β

1
2 −

α−γ
2
√

(α−γ)2+4β2

 .
In order for ∂

∂γ f(α, γ) = 0, we must have 1 = α−γ√
(α−γ)2+4β2

, but then as
√
α+ β ≥ 1, this implies that

∂
∂αf(α, γ) 6= 0. Thus the minimum (and the maximum) value for f must occur along the boundaries given

by α = γ, α = 1, or γ = 1 − β. We note that f(α, 1 − β) = 1+α−β
2 + 1

2

√
(α+ β − 1)2 + 4β2 which is an

increasing function of α, so f(α, 1− β) ≥ f(1− β, 1− β) = 0. Furthermore f(α, α) = α+ β −
√
α+ β ≥ 0.

Finally we observe that ∂
∂γ f(1, γ) = 1

2 −
1−γ

2
√

(1−γ)2+4β2
≥ 0 and so f(1, γ) ≥ f(1, 1−β) ≥ f(1−β, 1−β) = 0.

Thus f(α, γ) ≥ 0 for all feasible choices of α, β, γ and furthermore f(α, γ) > 0 if γ+β > 1. Thus we have that
10



O
(√

t(α+ β)t
)
∈ o((x+ y)t) and so the largest eigenvalue of the adjacency matrix of G is (x+y)t(1+o(1)).

Furthermore if x < y then the smallest eigenvalue is (x + y)t−1(x − y)(1 + o(1)). Observing that x < y if
and only if αγ − β2 < 0 and applying Hoffman’s [21, 22] and Wilf’s [43] bounds give result (3).

We now turn our attention to the spectrum of the normalized Laplacian of G and note that by Theorem

3 the relevant matrix for the spectrum is

 α
α+β

β√
(α+β)(β+γ)

β√
(α+β)(β+γ)

γ
β+γ

. The eigenvalues of this matrix are

1 and αγ−β2

(α+β)(β+γ) and thus the second smallest eigenvalue of the normalized Laplacian of G is

1− αγ − β2

(α+ β)(β + γ)
+ o(1) = β

α+ 2β + γ

(α+ β)(β + γ)
+ o(1)

if αγ − β2 ≥ 0 and

1− (αγ − β2)2

(α+ β)2(β + γ)2
+ o(1) = β

α+ 2β + γ

(α+ β)(β + γ)

(
α

α+ β
+

γ

β + γ

)
+ o(1)

otherwise. Together these eigenvalues bound the deviation from 1 of the non-principle eigenvalue and yield
the discrepancy result (4). These bounds also immediately yield the result on the congestion of paths in G.

We now consider the diameter of G in the case when αγ − β2 = 0. In this case all of the non-principle
eigenvalues of L are centered around 1 and hence we have that

1− 3

√
3 ln(2(1+c)t+2)

(β + γ)t
≤ λ2 ≤ λn ≤ 1 + 3

√
3 ln(2(1+c)t+2)

(β + γ)t
.

Thus we have that

λn + λ2

λn − λ2
= 1 +

2λ2

λn − λ2
≥ 1 +

2

(
1− 3

√
3 ln(2(1+c)t+2)

(β+γ)t

)
6
√

3 ln(2(1+c)t+2)
(β+γ)t

=
1

3
√

3 ln(2(1+c)t+2)
(β+γ)t

=

√
(β + γ)t

ln
(
227(1+c)t+54

) .
Thus we have that

diam(G) ≤

 ln(2t − 1)

ln
(
λn+λ2

λn−λ2

)
 ≤

⌈
t ln(2)

1
2 t ln(β + γ)− 1

2 ln ln
(
227(1+c)t+54

)⌉ =

⌈
2 ln(2)

ln(β + γ)− o(1)

⌉
.

Now if αγ − β2 6= 0, we note that if H is a tth-order Stochastic Kronecker graph generated by P ′ and
if P ′ is dominated by P component-wise, then by the natural coupling we have that diam(G) ≤ diam(H).
Thus we consider the following matrices

P ′ =

[
α′ β′

β′ γ′

]
=



[
β2

γ β

β γ

]
αγ − β2 > 0, γ ≤ β[

β β

β β

]
αγ − β2 > 0, γ > β > 1

2[
α

√
αγ

√
αγ γ

]
αγ − β2 < 0, γ +

√
αγ > 1

.

It is easy to verify that in all these cases, P dominates P ′ component-wise, α′ ≥ γ′ and β′ + γ′ > 1. The
remaining cases yield a linear upper bound, and complete the argument for (2). �

We note that portions of the result (2) were proven previously by Mahdian and Xu [31] who analyzed
the case where α ≥ β ≥ γ. In their work they claim a bound on the diameter of 2 + 1

β+γ−1 which roughly

agrees with the bound
⌈

ln(4)
ln(β+γ)

⌉
+o(1). This result represents partial progress towards their conjecture that

any stochastic Kronecker graph with generating matrix such that α + β > 1 and β + γ > 1 has constant
11



diameter with high probability. We believe that essential obstructions to confirming their conjecture are the
generating matrices [

1 ε
ε 1

]
and

[
ε 1
1 ε

]
.

Before considering the implications of the spectrum for the multiplicative attribute graph, we note that the

spectrum of Q1/2PQ1/2 is x±y where x = µα+(1−µ)γ
2 = ∆+δ−β

2 and y = 1
2

√
(µα− (1− µ)γ)

2
+ 4µ(1− µ)β2 =

1
2

√
(∆− δ)2 + (4µ− 2)β(∆− δ) + β2, where ∆ = µα + (1− µ)β ≥ µβ + (1− µ)γ = δ. Viewing 2x+ 2y as

a function f of β with δ,∆, µ fixed, we have

f ′(β) = −1 +
2β + (4µ− 2)(∆− δ)

2
√

(∆− δ)2 + (4µ− 2)β(∆− δ) + β2

We find that there is some β where f ′(β) = 0 if and only if (4µ−2)2(∆− δ)2 = 4(∆− δ)2, which occurs only
in the degenerate cases where µ = 0 or µ = 1. Furthermore, f ′(0) = −1 + 1

2 (4µ− 2) = −2 + 2µ < 0. Thus
for all β ∈ [0, 1], f(β) ≤ f(0) = ∆ < 1. Thus by Theorem 5, the eigenvalues of the adjacency matrix are

O
(√

∆tn ln
(
n
ε

))
, with the spectrum of Q

1
2PQ

1
2 contributing essentially no information to the spectrum of

the multiplicative attribute graph. However, with appropriate controls on t, we see from Theorem 4 that the
spectrum of the normalized Laplacian can be controlled. Specifically, using similar techniques as Theorem
6, we have the following theorem.

Theorem 7. Let G be a tth-order multiplicative attribute graph on n vertices with generating matrix P =[
α β
β γ

]
, probability matrix Q =

[
µ 0
0 1− µ

]
with µα+ (1− µ)β ≥ µβ + (1− µ)γ, and α, β, γ, µ ∈ (0, 1). Let

∆ = µα + (1− µ)β and δ = µβ + (1− µ)γ and let ρ be a fixed constant such that t
log(n) ≤ ρ. For any fixed

constant c > 0 and for sufficiently large n, with probability at least 1− n−c the graph G satisfies:

(1) If ρ ≤ −1
ln(∆q2

min)
, then the clustering coefficient of G is asymptotically 0.

(2) If ρ < −1
ln(δ) ,

−1
ln(qmin) then the diameter satisfies

diam(G) ≤ 1 + o(1) +



2 ln(n)
1−ρmin{ln(δ),ln(qmin)} αγ − β2 > 0, γ ≤ β

ln(n)

ln

(
1+2

(δ∆)t−1−µ(1−µ)(αγ−β2)

(δ∆)t−1µ(1−µ)(αγ−β2)−(µ(1−µ)(αγ−β2))t

) αγ − β2 > 0, β < γ

2 ln(n)
1−ρmin{ln(δ),ln(qmin)} αγ − β2 = 0

ln(n)

ln

(
1+2

(δ∆)−µ(1−µ)(αγ−β2)

(δ∆)µ(1−µ)(αγ−β2)−(µ(1−µ)(αγ−β2))2

) αγ − β2 < 0

.

(3) If ρ < −1
ln(∆) ,

−1
ln(qmin) , then the chromatic number of G is at most 1+

(√
6(1 + c)∆tn ln(n)

)
(1+o(1)).

(4) For any two subsets of vertices X and Y of G, the number of edges between them satisfies∣∣∣∣e(X,Y )− vol (X) vol (Y )

vol (G)

∣∣∣∣ ≤
(
µ(1− µ)

∣∣αγ − β2
∣∣

∆δ
+ o(1)

)√
vol (X) vol (Y ).

(5) Let A = {(xi, yi) : xi ∈ X, yi ∈ Y } be any assignment of the vertices such that each vertex v appears
in X and Y with multiplicity deg(v). If αγ − β2 ≥ 0, then there are paths Pi joining xi and yi
each of length at most 2 ln(n)∆δ

β(µ2α+2µ(1−µ)β+(1−µ)2γ) + o(1) such that each edge is contained in at most
20 ln(n)∆δ

β(µ2α+2µ(1−µ)β+(1−µ)2γ) + o(1) paths. If αγ− β2 < 0, then there are paths Pi joining xi and yi each

of length at most 2 ln(n)∆δ

β(µ2α+2µ(1−µ)β+(1−µ)2γ)(µα∆ +
(1−µ)γ

δ )
+ o(1) such that each edge is contained in at

most 20 ln(n)∆δ

β(µ2α+2µ(1−µ)β+(1−µ)2γ)(µα∆ +
(1−µ)γ

δ )
+ o(1) paths.

From these theorems, particular with regards to the diameter, it is clear that the situation where the
generating matrix has a zero determinant, that is αγ − β2 = 0, is a particularly well behaved class of
stochastic Kronecker and multiplicative attribute graphs. More specifically, the spectrum of the normalized
Laplacian for both of these graphs converges with t to a point mass at 1.
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We consider this special regime of the stochastic Kronecker and note that if v is a vertex with weight k,
then

E [deg(v)] = (α+ β)k(β + γ)t−k =

(
β2

γ
+ β

)k
(β + γ)t−k =

(
β

γ

)k
(β + γ)t.

Moreover, for any v ∈ V (G) and transposition π ∈ Sn, we have that P(v ∼ u) = P(v ∼ π(u)), as either we
exchange two equal coordinates and preserve probabilities, or we exchange unequal coordinates, resulting in
either a preservation of probabilities or switching αγ for β2 (or vice versa). Thus the only information that
contributes to the probability of adjacency of two vertices u and v is their respective weights. In particular,
it can easily be show that

P(u ∼ v) = β|v|+|u|γt−(|v|+|u|),

where |v| is the weight of the vertex v.
On the other hand, we also have that

E [deg(v)]E [deg(u)]∑
w E [deg(w)]

=

(
β
γ

)|v|
(β + γ)t

(
β
γ

)|u|
(β + γ)t

(β + γ)t
(
β
γ + 1

)t
= γt

(
β

γ

)|v|+|u|
= β|v|+|u|γt−(|v|+|u|) = P(u ∼ v).

Thus the 2 × 2 stochastic Kronecker where the generating matrix has determinant zero is a special case of
a G(~w) graph, a random graph with a given expected degree sequence and independent edges. Such graphs
have been studied extensively in, for example, [9, 10, 12, 13]. Furthermore, although the multiplicative
attribute graph in this case is not an expected degree sequence graph, it is a blow-up of such a graphs and
thus unsurprisingly preserves many of the same properties.
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