Discrete Math

Instructor: Mike Picollelli

Day R(4,4)-4
The Pigeonhole Principle: If $n + 1$ pigeons are placed into n holes, then one hole has at least two pigeons.
Claim: In any collection of 6 people, there are always 3 mutual acquaintances or three mutual strangers.
Claim: In any collection of 6 people, there are always 3 mutual acquaintances or three mutual strangers.

That’s right, this is a graph theory problem: we can restate it as “In any graph with 6 vertices, there are always three mutually adjacent vertices or three mutually nonadjacent vertices.”
But we can *also* describe it as a problem involving coloring.
But we can *also* describe it as a problem involving coloring.

Definition: A *clique* in a graph is a set of vertices which are all mutually adjacent. A graph is *complete* if its entire vertex set is a clique.
But we can also describe it as a problem involving coloring.

Definition: A clique in a graph is a set of vertices which are all mutually adjacent. A graph is **complete** if its entire vertex set is a clique.

Claim, Again: Let G be a complete graph on 6 vertices. If we color the edges of G red or blue, then we can either find a clique with three vertices whose edges are all red, or a clique with three vertices whose edges are all blue.

Furthermore, this isn't true if G only has 5 vertices.
But we can also describe it as a problem involving coloring.

Definition: A clique in a graph is a set of vertices which are all mutually adjacent. A graph is complete if its entire vertex set is a clique.

Claim, Again: Let G be a complete graph on 6 vertices. If we color the edges of G red or blue, then we can either find a clique with three vertices whose edges are all red, or a clique with three vertices whose edges are all blue. Furthermore, this isn’t true if G only has 5 vertices.
Notation: We let K_n denote the complete graph with vertex set \{1, 2, \ldots, n\}.
Notation: We let K_n denote the complete graph with vertex set \{1, 2, \ldots, n\}.

Theorem: (Ramsey, 1930) For $k, l_1, \ldots, l_k \in \mathbb{N}$, there is a number N such that if we color the edges of K_N with the “colors” 1, 2, \ldots, k, then we can always find a clique with l_i vertices whose edges all have color i, for some i. (i depends on the actual coloring.)
Notation: We let K_n denote the complete graph with vertex set \{1, 2, \ldots, n\}.

Theorem: (Ramsey, 1930) For $k, l_1, \ldots, l_k \in \mathbb{N}$, there is a number N such that if we color the edges of K_N with the “colors” 1, 2, \ldots, k, then we can always find a clique with l_i vertices whose edges all have color i, for some i. (i depends on the actual coloring.)

Notation: The Ramsey Number $R(l_1, \ldots, l_k)$ is the smallest value of N that satisfies Ramsey’s Theorem for the given k, l_1, \ldots, l_k.
Ramsey’s Theorem: A Proof When $k = 2$.

Call the two colors red and blue. Our earlier claim is actually that $R(3, 3) = 6$.
Ramsey’s Theorem: A Proof When $k = 2$.

Call the two colors red and blue. Our earlier claim is actually that $R(3, 3) = 6$. It’s also easy to see that $R(s, 2) = s$ and $R(2, t) = t$, for any $s, t \geq 2$.
Ramsey’s Theorem: A Proof When $k = 2$.

Call the two colors red and blue. Our earlier claim is actually that $R(3, 3) = 6$. It’s also easy to see that $R(s, 2) = s$ and $R(2, t) = t$, for any $s, t \geq 2$.

We can show that if $s, t > 2$, and $R(s - 1, t)$ and $R(s, t - 1)$ exist, then by letting

$$N = R(s - 1, t) + R(s, t - 1)$$

and coloring K_N with two colors, we’ll always find either a clique with s vertices whose edges are red or a clique with t vertices whose edges are blue.
Ramsey’s Theorem: A Proof When $k = 2$.

Call the two colors red and blue. Our earlier claim is actually that $R(3, 3) = 6$. It’s also easy to see that $R(s, 2) = s$ and $R(2, t) = t$, for any $s, t \geq 2$.

We can show that if $s, t > 2$, and $R(s - 1, t)$ and $R(s, t - 1)$ exist, then by letting

$$N = R(s - 1, t) + R(s, t - 1)$$

and coloring K_N with two colors, we’ll always find either a clique with s vertices whose edges are red or a clique with t vertices whose edges are blue. In particular, this means

$$R(s, t) \leq R(s - 1, t) + R(s, t - 1).$$
The relationship between Ramsey’s Theorem and the Pigeonhole Principle isn’t hard to guess, especially if we restate the latter:

The Pigeonhole Principle, Take 2: If $n + 1$ objects are colored with n colors, then at least two objects have the same color.
The relationship between Ramsey’s Theorem and the Pigeonhole Principle isn’t hard to guess, especially if we restate the latter:

The Pigeonhole Principle, Take 2: If \(n + 1 \) objects are colored with \(n \) colors, then at least two objects have the same color.

Ramsey’s Theorem gives a much stronger variant: not only do we get several edges with the same color, we actually guarantee a more complicated structure exists!
Some Known Ramsey Numbers.

We saw $R(3, 3) = 6$, and it turns out $R(4, 4) = 18$. Additionally, the numbers $R(3, k)$ with $4 \leq k \leq 9$, $R(4, 5)$, and $R(3, 3, 3)$ are known.
Some Known Ramsey Numbers.

We saw $R(3, 3) = 6$, and it turns out $R(4, 4) = 18$. Additionally, the numbers $R(3, k)$ with $4 \leq k \leq 9$, $R(4, 5)$, and $R(3, 3, 3)$ are known.

No other Ramsey numbers are known completely. Currently, the best bounds on some of the others are

$$43 \leq R(5, 5) \leq 49,$$
Some Known Ramsey Numbers.

We saw $R(3, 3) = 6$, and it turns out $R(4, 4) = 18$. Additionally, the numbers $R(3, k)$ with $4 \leq k \leq 9$, $R(4, 5)$, and $R(3, 3, 3)$ are known.

No other Ramsey numbers are known completely. Currently, the best bounds on some of the others are

$$43 \leq R(5, 5) \leq 49,$$

$$102 \leq R(6, 6) \leq 165,$$
Some Known Ramsey Numbers.

We saw $R(3, 3) = 6$, and it turns out $R(4, 4) = 18$. Additionally, the numbers $R(3, k)$ with $4 \leq k \leq 9$, $R(4, 5)$, and $R(3, 3, 3)$ are known.

No other Ramsey numbers are known completely. Currently, the best bounds on some of the others are

$$43 \leq R(5, 5) \leq 49,$$

$$102 \leq R(6, 6) \leq 165,$$

and, skipping ahead,

$$798 \leq R(10, 10) \leq 23556.$$