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CHAPTER I

Introduction

The purpose of this introduction is to describe the program of classification the-
ory of non-elementary classes with respect to categoricity and stability. This thesis
tackles the classification theory of non-elementary classes from two perspectives. In
Chapter II we work towards a categoricity transfer theorem, while Chapter III fo-
cuses on the development of a stability theory for abstract elementary classes. At
the end of this chapter we provide a brief outline of the thesis.

Early work in model theory was closely tied to other areas of mathematics. Led
by Robinson, Malcev and Tarski, model theorists worked on generalizing known
theorems about fields to arbitrary first order theories. In the sixties, James Ax
and Simon Kochen found far reaching applications of model theory to the theory of
valued fields. Their work on Hensel fields and p-adic numbers was used to refute a
conjecture of Artin [CK]. One direction of current work in model theory focuses on
pure model-theoretic questions which may someday shed light on open questions in
algebra and other areas of mathematics.

The origins of much of pure model theory can be traced back to Los” Conjecture,
one of the most influential conjectures in model theory, motivated by an algebraic

result of Steinitz from 1915. Steinitz’s Theorem states that for every uncountable



cardinal, A, there is exactly one algebraically closed field of characteristic p of car-
dinality A (up to isomorphism). In 1954, Los conjectured that elementary classes

mimic the behavior of algebraically closed fields:

Conjecture 1.0.1. IfT is a countable first order theory and there exists a cardinal
A > Ny such that T has ezactly one model of cardinality A (up to isomorphism), then

for every p > RNg, T has exactly one model of cardinality .

This conjecture was resolved by Michael Morley in his Ph.D. thesis in 1962 [Mo].
Morley then questioned the status of the conjecture for uncountable theories. Build-
ing on work of W. Marsh, F. Rowbottom and J.P. Ressayre, S. Shelah proved the
statement for uncountable theories in 1970 [Sh31].

The theorem which affirmitavely resolves Los’ Conjecture is often referred to as

Morley’s Categorcity Theorem, which motivates the following terminology:

Definition 1.0.2. A theory T is said to be categorical in A if and only if there is

exactly one model of T of cardinality A up to isomorphism.

Out of Morley and Shelah’s proofs, fundamental techniques and concepts such
as prime models, rank functions, superstable theories, stable theories and minimal
types surfaced. Present day research in first order model theory, particularly stability
theory or classification theory, would be unrecognizable without these techniques and
concepts. Model theorists have used the techniques and concepts of stability theory
to answer open questions in algebraic geometry.

While first order logic has far reaching applications in other fields of mathematics,
there are several interesting frameworks which cannot be captured by first order logic.
For example, non-archimedian fields, Noetherian rings, locally finite groups and finite

structures cannot be axiomatized by first order logic. Extending the work of Erdos-



Tarski, Hanf, D. Scott, Lopez-Escobar and C. Karp, model theorists C.C. Chang
and H.J. Kiesler made much progress in the study of non-first order logics including
L(Q) and L, ., [CK],[Kel], [Ke2]. L(Q) is an extension of first order logic with
the addition of a quantifier Q, where Q is interpretted as there exists at least N;.
L, ., is also an extension of first order logic allowing for countable disjunctions and
conjunctions.

A major breakthrough in non-first-order model theory occured in 1974 when She-
lah answered John Baldwin’s question (which was made in the early 1970s and re-

produced on Harvey Friedman’s list of open problems):

Problem 1.0.3. Does there exists a countable similarity type and a countable 7' C
L(Q) (in the Xy interpretation) such that 7" has a unique uncountable model (up to

isomorphism)?

Shelah’s negative answer to this problem in the mid-seventies indicated a strong
link between categorical theories and the existence of models in uncountable car-
dinals ([Sh 48] under Oy, ,[Sh 87b] under 2% < 2% [Sh 88] in ZFC, or see [Grl]
for an exposition). The solution prompted Shelah to pose a generalization of Los’
Conjecture to Ly, ., as a test question to measure progress in non-first-order model

theory.

Conjecture 1.0.4. If ¢ is an L, ., theory categorical in some A\ > Hanf(p) then

@ 1is categorical in every > Hanf(p).

Definition 1.0.5. Hanf(p) is called the Hanf number of ¢ and is defined to be
the minimal cardinality g such that if ¢ has a model of cardinality u, then ¢ has

arbitrarilary large models.

In the late seventies Shelah identified the notion of abstract elementary class



(AEC) to capture many non-first-order logics [Sh 88] including L, .(Q). An ab-
stract elementary class is a class of structures of the same similarity type endowed

with a morphism satisfying natural properties such as closure under directed limits.

Definition I1.0.6. K is an abstract elementary class (AEC) iff K is a class of models
for some vocabulary 7 and is equipped with a binary relation, <y satisfying the

following:
(1) Closure under isomorphisms.

(a) For every M € K and every L(K)-structure N if M = N then N € K.

(b) Let Ny, Ny € K and My, My € K such that there exist f; : N, = M, (for

[ =1,2) satisfying f; C fo then Ny < Ny implies that My <x M.
(2) = refines the submodel relation.
(3) =k is a partial order on K.
(4) If (M; | i < 6) is a <g-increasing and chain of models in K
(2) Uics Mi € K,
(b) for every j < 0, M; <k |J;.s M; and

(c) if M; <x N for every i < 6, then (J,_s M; <x N.
(5) If My, M7 < N and M, is a submodel of My, then My <xc M;.

(6) (Downard Lowenheim-Skolem Axiom) There is a Léwenheim-Skolem number of
K, denoted LS(K) which is the minimal x such that for every N € K and every

A C N, there exists M with A C M < N of cardinality x + |A].

This has led Shelah to restate his conjecture in the following form:



Definition 1.0.7. We say K is categorical in A whenever there exists exactly one

model in IC of cardinality A up to isomorphism.

Conjecture 1.0.8 (Shelah’s Categoricity Conjecture). Let KC be an abstract el-
ementary class. If K is categorical in some X > Hanf(K), then for every u >

Hanf(K), K is categorical in p.

Despite the existence of over 500 published pages of partial results towards this
conjecture, it remains very open. Similar to the solution to Los’ conjecture, a solution
of Shelah’s categoricity conjecture is expected to provide the basic conceptual tools
necessary for a stability theory for non-first order logic. This enhances the potential
for further applications of model theory to other areas of mathematics.

Since the mid-eighties, model theorists have approached Shelah’s conjecture from
two different directions. Shelah, M. Makkai and O. Kolman attacked the conjecture
with set theoretic assumptions [MaSh], [KoSh], [Sh 472]. On the other hand, Shelah
also looked at the conjecture under additional model theoretic assumptions [Sh 394],
[Sh 600]. More recent work of Shelah and A. Villaveces [ShVi] profits from both
model theoretic and set theoretic assumptions. These assumptions are weaker than
the hypothesis made in [MaSh], [KoSh], [Sh 472], [Sh 394], and [Sh 600]. Shelah and

Villaveces make the following assumptions:

Assumption 1.0.9. (1) K is an AEC with no mazimal models with respect to the

relation <y,
(2) K is categorical in some X\ > Hanf(KC),
(3) GCH holds and

4) a form of the weak diamond holds, namely ®,+ S holds for every regqular 0
ptRg

and every p with 0 < pu < A.



A central emphasis of Chapter II is to resolve problems from [ShVi] and to work
towards a solution to Shelah’s conjecture in this framework.

Let us recall some definitions in AECs which differ from the first-order counter-
parts. Because of the category-theoretic definition of abstract elementary classes, the
first order notion of formulas and types cannot be applied. To overcome this bar-
rier, Shelah has suggested identifying types, not with formulas, but with the orbit
of an element under the group of automorphisms fixing a given structure. In order
to carry out a sensible definition of type, the following binary relation £ must be an
equivalence relation on triples (a, M, N). In order to avoid confusing this new notion
of “type” with the conventional one (i.e. set of formulas) we will follow [Grl] and

[Gr2] and introduce it below under the name of Galois type.

Definition I1.0.10. For triples (a;, M;, N;) where a; € N;, M;, N, € K, for | = 0,1,

we define a binary relation E as follows:
(@o, Mo, No) E(ay, My, Ny) iff

M := My = M; and there exists N € K and <,-mappings fy, f1 such that for [ =0, 1
fi: Ni—= N, fi I M =idy and fo(ao) = fi(as).

Ny ——=N

fo
idT Tfl

M T N 1
To prove that E is an equivalence relation (more specifically, that F is transitive),

we need to restrict ourselves to amalgamation bases.

Definition I1.0.11. Let £ be an AEC. A model M € K is said to be an (po, f1)-
amalgamation base if and only if for every N; € IC of cardinality u; with M <x N;
for © = 0,1, there exists a model N € K and <y -mappings fy : Ng — N and

f1 : Ny — N such that the following diagram commutes:



Ny —— N

fo
idT Tfl

M T N1
When po = g = || M|, we say that M is an amalgamation base.

We can now define types in terms of this equivalence relation:

Definition 1.0.12. For M, N € K, with M, N amalgamation bases and a, a finite
sequence in N, the (Galois-)type of a in N over M, written ga-tp(a/M, N), is defined

to be (a, M, N)/E.

Remark 1.0.13. Unlike the first-order definition of type, this definition depends on
not only M and N, but also the class . Subtlities such as this commonly arise
when generalizing first-order notions to the context of AECs. With this in mind,
consequences which may seem trivial in the first order context, will have far deeper

proofs in the context of AECs.
In 1985 Rami Grossberg made the following conjecture:

Conjecture 1.0.14. If K is an AEC, categorical above the Hanf number of IC, then

every M € IC is an amalgamation base.

This conjecture encouraged Shelah to produce a partial ”downward” solution to
the categoricity conjecture under the assumption that every model M € K is an

amalgamation base [Sh 394]:

Fact 1.0.15. If K is categorical in some A* > Hanf(K) and K satisfies the amal-

gamation property, then for every p with Hanf(K) < p < AT, K is categorical in

L.



This result redirects future work from the categoricity conjecture to solving Con-
jecture 1.0.14. The underlying goal of [ShVi] was to make progress towards Conjec-
ture 1.0.14 under Assumptions 1.0.9. Not knowing that every model is an amalgama-
tion base presents several obstacles in applying known notions and techniques. For
instance, there may exist some models over which we cannot even define the most
basic notion of a type. New approaches have been identified and explored in [ShVi]
and in Chapter II of this thesis.

One approach to Conjecture 1.0.14 is to see if arguments from [KoSh] can be
carried out in this more general context. Shelah and Kolman prove Conjecture
1.0.14 for L, theories where x is a measurable cardinal. They first introduce limit
models as a substitute for saturated models, and then prove the uniqueness of limit
models. A major objective of [ShVi] was to show the uniqueness of limit models.

In the Fall of 1999, I identified a gap in Shelah and Villaveces’ proof of uniqueness
of limit models. As of the Fall of 2001, Shelah and Villaveces could not resolve the
problem. The goal of Chapter II is to prove the uniqueness of limit models.

The main attraction to solving Shelah’s Conjecture is to harvest the proof in
order to develop stability theory for abstract elementary classes. It is with the
stability theory in first order logic that model theoretic proofs are applied to other
mathematical fields. Thus having a stability theory for abstract elementary classes
provides the potential for further applications of model theory to other areas.

By investigating work towards Shelah’s Conjecture, one may eliminate the as-
sumption of categoricity and develop a stability theory. The notion of splitting that
appears in [Sh 394] can be studied in stable AECs. Rami Grossberg and I identi-
fied a nicely behaved, yet general class of AECs (tame AECs see Definition 111.4.2)

in which non-splitting can be exploited. We begin developing a stability theory by



proving the existence of Morley sequences in tame, stable AECs. This is the subject
of Chapter III.
The structure of the remainder of the thesis follows. Each chapter begins with a

brief introduction and an outline of the chapter.

Chapter IT We solve a conjecture of [ShVi] by proving the uniqueness of limit mod-
els in a categorical AEC with no maximal models under some mild set theoretic
assumptions. The uniqueness of limit models suggests that limit models are the
right substitute for saturation when considering Shelah’s Categoricity Conjec-
ture. In this chapter, we provide an exposition of results from [ShVi| featuring

proofs of

- Limit models are amalgamation bases using a version of Devlin-Shelah’s

weak diamond,
- Weak Disjoint Amalgamation and

- Stability implies a bounded number of strong types.

We introduce the notion of nice towers to resolve a problem from [ShVi] in
proving the extension property for towers. In order to prove the uniqueness
of limit models, we prove the extension property for non-splitting types. This
result does not rely on categoricity and will be used in Chapter III to prove the
existence of Morley sequences. We also identify the notion of relative fullness
which is a weakening of Shelah and Villaveces’ notion of fullness. This chapter

includes other new theorems listed below.

Chapter IITI Some background on AECs required for this chapter is included in
Section 2.2 of Chapter II. Chapter III focuses on developing a stability theory

for AECs. We introduce a nicely behaved class of AECs, tame AECs, in which
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consistency has small character. Showing that a categorical AEC is tame is a
common step in partial solutions to Shelah’s Categoricity Conjecture. In this
chapter, we prove the existence of Morley Sequences for tame, stable AECs. Up
until this point the only known proofs of existence of indiscernible sequences in
general AECs has been under the assumption of categoricity using Ehrenfeucht-
Mostowski models. Our proof does not use categoricity. The existence of Morley
sequences suggests a notion of dividing which may be used to prove a stability

spectrum theorem for tame AECs.
Here we list the main new results of the thesis:

Theorem I1.6.10 The <Z7a—extensz'0n property for nice towers. For every nice (M, a) €

K such that (M,a) <5, (M',a).

pye?

Moreover, if |J

there exists a nice tower (M’,a) € K, ,

M; is an amalgamation base and |J.__. M; < M, for some

<o <o

(11, )-limit, M, then we can find a nice extension (M’, @) such that |J._ M! <x

<o

M.

Shelah and Villaveces claim the <Zva—extension property for all towers. Their

proof does not converge, even for the sublass of nice towers.

Theorem I1.7.6 (new) Extension of non-splitting types. Let M be a (u, p*)-limit
containing a|J M. Suppose that M € IC, is universal over N and ga-tp(a/M, M)
does not p-split over V.

Let M' € K™ be an extension of M with M' <k M. Then there exists a
<j-mapping g € Auty, M such that ga-tp(a/g(M')) does not p-split over N.
Alternatively, g=' € Auty, (M) is such that ga-tp(g—"(a)/M’) does not p-split

over N.

Theorem I1.7.8 (new) Uniqueness of non-splitting extensions. Let N, M, M' €
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K™ be such that M’ is universal over M and M is universal over N. If p €
ga-S(M) does not p-split over N, then there is a unique p’ € ga-S(M’) such

that p’ extends p and p’ does not u split over N.

Theorem 11.7.13 The <j, ,-extension property for nice towers. If (M,a,N) €
+IC;7Q is nice, then there exists a nice (M’,a, N') € +IC:7a such that (M, a, N) <¢,,

(M',a, N'). Moreover if | J;_,, M; is an amalgamation base such that | J,_, M; <x

<o

M for some (j, pit)-limit, M, then we can find (M’, @, N') such that | J,_. M! <x

<«

M.

Shelah and Villaveces claim the <j, ,-extension property for all towers. Their

proof does not converge, even for the sublass of nice towers.

Theorem I1.8.8 <¢-extension property for nice scattered towers. Let 4 and U? be
sets of intervals of ordinals < p* such that 4% is an interval extension of 4'. Let
(M*',a', N') +ICZ7u1 be a nice scattered tower. There exists a nice scattered
tower (M2, a2 N?) € +IC:7uz such that (M?!,al, N') <¢ (M?, a2 N?).
Moreover, if | ;o ¢ M; is an amalgamation base and (J;¢ ) Mi <x M for some
(1, t)-limit M, then we can find (M’ @', N') such that Uieyu Mi <k M.
Shelah and Villaveces claim the <“extension property for all towers. Their

proof does not converge, even for the sublass of nice towers.

Theorem I1.9.7 Reduced towers are continuous. For every o < pu™ < X and every
set of intervals U on «, if (M,a, N) € J“ICZ’il is reduced, then M is continuous.
Shelah and Villaveces’ proof (with or without the full <“extension property)

does not converge. We provide an alternative proof.

Theorem 11.10.12 (new) Let a be an ordinal < p* such that & = p - . Suppose

U= {axd§} forsome § < ut. If (M,a, N) € J“ICZu is full relative to (M7 | v <
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6) and M is continuous, then M := Uieyu Mi is a (u, cf(a))-limit model over

M.

This improves a theorem from [ShVi].

Theorem I1.11.2 Uniqueness of limit models. Let u be a cardinal 6,605 limit or-
dinals such that 61,0y < p™ < A. If My and M, are (u,6;) and (u,0s) limit
models over M, respectively, then there exists an isomorphism f : M; = M,

such that f | M = idy,.

Shelah and Villaveces make this claim, but their proof does not converge. We

provide an alternative proof.

Theorem II1.0.5 (new) Ezistence of Morley sequences. Let K be a tame abstract
elementary class satisfying the amalgamation property without maximal models.
There exists a cardinal 1o(KC) such that for every p > po(K) and every M € K,
A, I C M such that |I| > p™ > |A], if £ is Galois-stable in u, then there exists
J C I of cardinality u*, Galois-indiscernible sequence over A. Moreover J can

be chosen to be a Morley sequence over A.

This extends results from [Sh3] and [GrLel].



CHAPTER II

Towards a Categoricity Theorem for Abstract Elementary
Classes

2.1 Introduction

Shelah’s paper, [Sh 702] is based on a series of lectures given at Rutgers University.
In the lectures, Shelah elaborates on open problems in model theory which he has
attempted but which have not yet been solved. There Shelah refers to the subject
of Section 13, “Classification of Non-elementary Classes,” as the major problem of
model theory. He points out that one of the main steps in classifying non-elementary
classes is the development of stability theory. In first order logic, solutions to Los’
Conjecture produced machinery that advanced the study of stability theory. It is
natural, then, to consider a generalization of this conjecture as a test question for a
proposed stability theory for AECs (Conjecture 1.0.8)

Despite the existence of over 500 published pages of partial results towards this
conjecture, it remains very open. Since the mid-eighties, model theorists have ap-
proached Shelah’s conjecture from two different directions. Shelah, M. Makkai and O.
Kolman attacked the conjecture with set theoretic assumptions (see [MaSh], [KoSh]
and [Sh 472]). On the other hand, Shelah also looked at the conjecture under ad-

ditional model theoretic assumptions in [Sh 394] and [Sh 600]. More recent work of

13
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Shelah and A. Villaveces [ShVi] profits from both model theoretic and set theoretic
assumptions. These assumptions are weaker than the hypotheses made in [MaSh],
[KoSh], [Sh 472], [Sh 394], and [Sh 600]. A main feature of their context is that they
work in AECs where the amalgamation property is not known to hold. This chapter

focuses on resolving problems from [ShVi]. Here we recall the context of [ShVi].

Assumption I1.1.1. We make the following assumptions for the remainder of this

chapter:

(1) K is an abstract elementary class,
(2) K has no mazximal models,
(3) K is categorical in some X\ > Hanf(KC),

(4) GCH holds and

(5) <I>H+(Sg+) holds for every cardinal ;i < X\ and every reqular 6 with 0 < u™.

Assumption I1.1.1.(5) is not explicitly made in [ShVi]. We believe this version
of weak diamond is needed to carry out Shelah and Villaveces’ suggestion for the
proof that limit models are amalgamation bases. We provide a complete proof of the
theorem which uses Assumption I1.1.1.(5) (see Theorem I1.4.3) and give an exposition
of the strength of Assumption I1.1.1.5 in Section 2.4.

In light of Conjecture 1.0.14 and the downward solution to Conjecture 1.0.8 under
the assumption of the amalgamation property (Fact 1.0.15), work towards Conjecture
[.0.8 is directed towards deriving the amalgamation property from categoricity. The
underlying goal of [ShVi] was to make progress towards Conjecture 1.0.14 under
Assumption II.1.1. Not knowing that every model is an amalgamation base presents
several obstacles in applying known notions and techniques. For instance, there may

exist some models over which we cannot even define the most basic notion of a type.
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One approach to Conjecture 1.0.14 is to see if arguments from [KoSh] can be
carried out in this more general context. Shelah and Kolman prove Conjecture
1.0.14 for L, theories where x is a measurable cardinal. They first introduce limit
models as a substitute for saturated models, and then prove the uniqueness of limit

models. A major objective of [ShVi] was to show the uniqueness of limit models:

Conjecture I1.1.2 (Uniqueness of Limit Models). Suppose Assumption I1.1.1
holds. For 01,05 < u™ < A, if My and My are (p,01)-, (i, 02)-limit models over M,

respectively, then M is isomorphic to M.

While limit models were used to prove that every model is an amalgamation base
in [KoSh], limit models played a behind-the-scenes role in Shelah’s downward solution
to the categoricity conjecture in [Sh 394]. Furthermore, there is evidence that the
uniqueness of limit models provides a basis for the development of a notion of non-
forking and a stability theory for abstract elementary classes. Limit models are used
in Chapter III to produce Morley sequences in tame and stable AECs. They also
appear in [Sh 600] as an axiom for frames.

In all of these applications, limit models provide a substitute for saturation. With-
out the amalgamation property, it is unknown how to prove the uniqueness of satu-
rated models. This may seem strange, because the proof is so straight-forward in the
first order case. However, since we only have types over amalgamation bases (not
arbitrary sets), the usual back-n-forth argument cannot be carried out. Even with
the amalgamation property, the back-n-forth consrtuction is non-trivial (see [Grl] for
details). Since we are working in a context without the luxury of the amalgamation
property, in order for limit models to provide a reasonable substitute for saturated
models, there must be a uniqueness theorem. This is the main result of this chapter.

Here we outline the structure of this chapter:
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Section 2.1 We connect the uniqueness of limit models with its role in understand-
ing Shelah’s Categoricity Conjecture for AECs, the amalagamation property
and stability theory for AECs. An outline of the remainder of the chapter is

given.

Section 2.2 In this section we provide some of the necessary definitions for AECs
including the amalgamation property and limit models. This background is also

used in Chapter III.

Section 2.3 We provide a description of an index set used to prove the existence
of universal models and to prove weak disjoint amalgamation. We summarize
a few properties of EM reducts constructed with this index set. Because of

categoricity, we can view every model of IC as a IC-substructure of an EM reduct.

Section 2.4 Using a version of the weak diamond, we provide a complete proof of
a fact from [ShVi| that limit models are amalgamation bases. This allows us to

show the existence of limit models.

Section 2.5 We provide a complete proof of Shelah and Villaveces’ Weak Disjoint
Amalgamation Theorem. This theorem will be used in constructing extensions

of towers. The proof uses the EM models which were described in Section 2.3.

Section 2.6 In the next few sections we will be introducing classes of towers. Ulti-
mately, we will only use scattered towers to prove the uniqueness of limit models.
However, to make the proof of the extension property for scattered towers more

manageable, we begin with naked towers and slowly modify them.

We will show that every tower (M,a) € K, o can be properly extended (with

«

respect to the ordering <Z,a) to a larger tower in K, ,. This closes one of the

gaps from [ShVi]. The proof utilizes directed systems and direct limits. The
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reader is suggested to refer to Section 2.2 for a discussion of these concepts in

AECs.

Section 2.7 We define the notion of splitting for AECs and prove the extension
property for non-splitting. This result does not rely on the categoricity assump-
tion. We will use the extension property for non-splitting in Chapter III as
well. We also recall Shelah and Villaveces’ result concerning splitting chains
(Fact I1.7.3). After analyzing their proof we are able to read out a very useful
corollary which serves as a substitute for x(7") for non-splitting (Fact 11.7.4).
We then augment the towers from Section 2.6 with non-splitting types. We
prove the extension property for this class of towers as well. The proof relies on

understanding the <Z7a—extension property from Section 2.6.

Section 2.8 We begin this section with a description of the structure of the proof of
the uniqueness of limit models. We now make the final modification for towers
by adjusting the index set from an ordinal to a collection of intervals of ordinals
and prove an extension property for this class. This is a new theorem. The
proof relies on the proofs from Section 2.6 and Section 2.7 and on the results

about non-splitting.

Section 2.9 One of the problems with our chains of towers is that <“-extensions
are often discontinuous. We provide a complete proof that reduced towers are
continuous. This solves another problem from [ShVi]. The proof relies on the
non-splitting results from Section 2.7. We then conclude that every scattered

tower has a continuous <‘¢-extension.

Section 2.10 Here we define strong types and provide a proof of Shelah and Villave-

ces’ result that stability gives us a bound to the number of strong types over
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a given model. In this section we also introduce relatively full towers which
are towers realizing many strong types. This is a weakening of Shelah and
Villaveces’ notion of full towers. We then show that the top of a relatively full,
continuous tower is a limit model. This is a new result used in our proof of the

uniqueness of limit models.

Section 2.11 Here we prove Conjecture I1.1.2. The proof uses the extension prop-

erty for scattered towers and the results on reduced and relatively full towers.

2.2 Background

Recall the definition of an abstract elementary class from the introduction (Defi-

nition 1.0.6.)

Notation I1.2.1. If A is a cardinal and K is an abstract elementary class, ICy is the

collection of elements of K with cardinality .

Definition I1.2.2. For models M, N in an AEC, K, the mapping f : M — N is an
<ic-embedding iff f is an injective L(X)-homomorphism and

fIM] =x N.

Using the axioms of AEC, one can show that Axiom 4 of the definition of AEC

has an alternative formulation (see [Sh 88| or Chapter 13 of [Gr2]):

Definition I1.2.3. A partially ordered set (I, <) is directed iff for every a,b € I,

there exists ¢ € I such that a < cand b < ec.

Fact 11.2.4 (P.M. Cohn 1965). Let (I,<) be a directed set. If (M; |t € I) and

{he, |t <r €1} are such that

(1) forte I, My € K
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(2) fort <re€l, hy, : My — M, is a <x-embedding and
(3) fOT’ tl S tQ S t3 c I, ht17t3 = ht27t3 o} htth and h’t,t == Z.th,

then, whenever s = limyes t, there exist My € K and <xc-mappings {h:s | t € I} such
that

his: My — My, M, = | hes (M) and

t<s

forty <ty < s,hy s = Ny s 0y, and hy s = idyy, .

Definition I1.2.5. (1) ((M; |t € I),{his|t < s € I}) from Fact I11.2.4 is called a

directed system.

(2) We say that M, together with (h:, | t < s) satisfying the conclusion of Fact

11.2.4 is a direct limit of ((My |t < s),{he, | t <7 < s}).

In fact we can conclude more about direct limits (Lemma I1.2.6). We will use this

lemma in our proofs of the extension property for towers.

Lemma I1.2.6. Suppose that (M; <x Ny |t € I) and (fis |t < s € I) is a directed
system with fis: Ny — Ng and fy s | My : My — M. Then we can find a direct limit

(N*, (fraupgry [ £ € 1)) of ((Ne |t € 1), (frs [t <5 €1)) and (M", (grsupry | T € 1))

a direct limit of ((My |t € I),(frs | My |t < s € I)) such that M* <x N* and

ft,sup{[} f Mt = Ot,sup{l}-
The proof of Lemma I1.2.6 is straight-forward using the following fact:

Fact I1.2.7 ([Sh 88] or see [Gr2]). K¢ := {(N,M) | M\,N € K,M <x N} is
an abstract elementary class with L(K™*) = L(K) |J{P} where P is a unary predicate

and <y=<x 1S defined by

(N,M) <K<K (N/,M/) = (N <K N’ and M <K M/).
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We will use Lemma I1.2.6 as well as the trivial observation (Claim I1.2.8) in the

proof of the Conjecture 11.1.2.

Claim I1.2.8. If (N; |t < s) and (f.: | 7 <t < s) form a directed system and for
every r < t < s we have that Ny = N, = N and f,; € Aut(N). Then a direct limit
(Ns, (frs | t < s)) of this system is such that fi s : Ny = Ny for every t < s. Moreover

we can choose a direct limit such that Ny = N.

The following gives a characterization of AECs as PC-classes. Fact 11.2.10 is often

referred to as Shelah’s Presentation Theorem.

Definition I1.2.9. A class IC of structures is called a PC — class if there exists a
language L1, a first order theory, T, in the language, L, and a collection of types

without parameters, I', such that L; is an expansion of L(K) and
K=PC(T\,I'L):={M | L:MET, and M omits all types from I'}.

When |T1] + |L1| + |T| + Xg = p, we say that £ is PC),.

Fact 11.2.10 (Lemma 1.8 of [Sh 88| or [Gr2]). If (K, <x) is an AEC, then there

exists p1 < 2250 such that K is PC,.

In Section 2.3 we will see that this presentation of AECs as PC-classes allows us

to construct Ehrenfeucht-Mostowski models.
Definition I1.2.11. Let K be an abstract elementary class.

(1) Let p,51 and ko be cardinals with g < k1, ko. We say that M € K, is a (k1, k2)-
amalgamation base if for every Ny € I, and Ny € Ky, and g; : M — N; for
(1 = 1,2), there are <x-embeddings f;, (i = 1,2) and a model N such that the

following diagram commutes:
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Ny ——N

f1
ng sz
M T N2

(2) We say that a model M € I, is an amalgamation base if M is a (u,p)-

amalgamation base.
(3) We write K™ for the class of amalgamation bases which are in K.

(4) We say K satisfies the amalgamation property iff for every M € K, M is an

amalgamation base.

Remark I1.2.12. We get an equivalent definition of amalgamation base, if we ad-
ditionally require that g; | M = idy, for i = 1,2, in the definition above. See [Gr2]

for details.

Amalgamation bases are central in the definition of types. Since we are not
working in a fixed logic, we will not define types as collections of formulas. Instead,

we will define types as equivalence classes with respect to images under < -mappings:

Definition I1.2.13. For triples (a;, M;, N;) where a; € N; and M; <¢ N, € K
for [ = 0,1, we define a binary relation F as follows: (ag, My, No)E(ay, My, Ny) iff
My = M; and there exists N € K and <x-mappings fo, f1 such that f; : N; - N

and fl r M = ZdM for [ = 071 and fo((_lo) = fl(C_Ll)Z



22

Remark I11.2.14. F is an equivalence relation on the set of triples of the form

(a, M, N) where M <x N, a € N and M, N € K" for fixed p > LS(K).

In AECs with the amalgamation property, we are often limited to speak of types
only over models. Here we are further restricted to deal with types only over models

which are amalgamation bases.
Definition I1.2.15. Let u > LS(K) be given.

(1) For M, N € K™ and a € “>N, the Galois-type of a in N over M, written

ga-tp(a/M, N), is defined to be (a, M, N)/FE.
(2) For M € K™, ga-S'(M) := {ga-tp(a/M,N) | M < N € Ki"™,a € N}.

(3) We say p € ga-S(M) is realized in M’ whenever M < M’ and there exist

a € M’ and N € K" such that p = (a, M, N)/E.

(4) For M" € K} with M <x M' and q = ga-tp(a/M’, N) € ga-S(M’), we define

the restriction of q to M as q | M := ga-tp(a/M, N).
(5) For M" € K™ with M <, M’, we say that ¢ € ga-S(M') extends p € S(M) iff
q I M=p.

Remark I1.2.16. We refer to these types as Galois-types to distinguish them from

notions of types defined as a collection of formulas.

Notation I1.2.17. We will often abbreviate a Galois-type ga-tp(a/M, N) as ga-tp(a/M)
when the role of NV is not crucial or is clear. This occurs mostly when we are working

inside of a fixed structure M.

Fact 11.2.18 (see [Gr2]). When KL = Mod(T') for T a complete first order theory,

the above definition of ga-tp(a/M, N) coincides with the classical first order defintion
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where ¢ and a have the same type over M iff for every first order formula ¢(x,b)

with parameters from M,
= ¢le,b) = F ¢(a,b).

Proof. By Robinson’s Consistency Theorem. -

Definition I1.2.19. We say that K is stable in i if for every M € K7™, | ga-S*(M)| =
1.
Fact 11.2.20 (Fact 2.1.3 of [ShVi]). Since K is categorical in A, for every pn < A,

we have that KC is stable in L.

Definition I1.2.21. (1) Let s be a cardinal > LS(K). We say N is k-universal
over M iff for every M’ € K, with M <y, M’ there exists a <x-embedding

g: M’ — N such that g [ M = idy;:

Ml

AN

(2) We say N is universal over M iff N is || M ||-universal over M.
The existence of universal extensions follows from categoricity and GCH:

Fact I1.2.22 (Theorem 1.3.1 from [ShVi]). For every p with LS(K) < p < A,

if M € K", then there exists M' € K™ such that M" is universal over M.

Notice that the following proposition asserts that it is unreasonable to prove a
stronger existence statement than Fact 11.2.22, without having proved the amalga-

mation property.

Proposition I11.2.23. If M’ is universal over M, then M is an amalgamation base.
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We can now define the central concept of this chapter:

Definition I1.2.24. For M’, M € IC, and ¢ a limit ordinal with o < p*, we say that
M'is a (p, 0)-limit over M iff there exists a <x-increasing and continuous sequence

of models (M; € K, | i < o) such that
(1) M =k Mo,
2) ' =U,., M,
(3) for i < o, M; is an amalgamation base and
(4) M4 is universal over M.

Remark I1.2.25. (1) Notice that in Definition 11.2.24, for ¢ < ¢ and 7 a limit

ordinal, M; is a (p,7)-limit model.
(2) Notice that Condition (4) implies Condition (3) of Definition I1.2.24.

Definition I1.2.26. We say that M’ is a (p, 0)-limit iff there is some M € K such

that M’ is a (i, 0)-limit over M.

Notation I1.2.27. (1) For p a cardinal and o a limit ordinal with o < u™, we

write K7, for the collection of (y, o)-limit models of K.
(2) We define

K :={M e K|Misa (u,0) — limit model for some limit ordinal 6 < y*}.

as the collection of limit models of K.

Limit models also exist in certain abstract elementary classes. By repeated appli-

cations of Fact 11.2.22, the existence of (p,w)-limit models can be proved:



25

Fact I1.2.28 (Theorem 1.3.1 from [ShVi]). Let p be a cardinal such that pn < \.
For every M € K", there exists M’ € K such that M <x M" and M" is a (j1,w)-limit

over M.

In order to extend this argument further to yield the existence of (u, o)-limits for
arbitrary limit ordinals ¢ < p*, we need to be able to verify that limit models are
in fact amalgamation bases. We will examine this in Section 2.4.

While the existence of certain limit models is relatively easy to derive from the
categoricity assumption, the uniqueness of limit models is more difficult. Here we
recall two easy uniqueness facts which state that limit models of the same length are

isomorphic:

Fact 11.2.29 (Fact 1.3.6 from [ShVi]). Let u > LS(K) and o < p*. If My and
M, are (u,0)-limits over M, then there exists an isomorphism g : My — My such
that g | M = idy;. Moreover if My is a (p,0)-limit over My; Ny is a (u,o)-limit
over Ny and g : My = Ny, then there exists a <x-mapping, g, extending g such that

gZMlgNl.

Fact 11.2.30 (Fact 1.3.7 from [ShVi]). Let p be a cardinal and o a limit ordinal

with o < pu™ < X. If M is a (u,0)-limit model, then M is a (u,cf(o))-limit model.

A more challenging uniqueness question is to prove that two limit models of
different lengths (o1 # 09) are isomorphic (Conjecture 11.1.2). A main result of this
chapter, Theorem II.11.2, is a solution to this conjecture.

We will need one more notion of limit model, which will appear implicitly in the
proofs of Theorem I1.6.10, Theorem I1.7.13, Theorem I1.8.8 and Theorem I1.9.7. This

notion is a mild extension of the notion of limit models already defined:

Definition I1.2.31. Let x be a cardinal < ), we say that M is a (u, u*) limit over M
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iff there exists a <x-increasing and continuous chain of models (M; € K™ | i < p™)

satisfying
(1) Mo=M
(2) Uicr M; = M and
(3) for i < ut, M;yq is universal over M;

Remark I1.2.32. While it is known that (u, #)-limit models are amalgamation bases
when 6 < p| it is open as to whether or not (i, u*)-limits are amalgamation bases.
To avoid confusion between these two concepts of limit models, we will always denote

(11, p*)-limit models with a~above the model’s name (ie. M).

The existence of (p, u*)-limit models follows from the fact that (u, #)-limit models
are amalgamation bases when 0 < u*, see Corollary I1.4.9. The uniqueness of
(i, p7)-limit models (Proposition 11.2.33) can be shown using an easy back and forth

construction as in the proof of Fact 11.2.29.

Proposition I1.2.33. Suppose M, and My are (uu, p*)-limits over My and My, re-
spectively. If there exists an isomorphism h : My = M,y, then h can be extended to

an isomorphism g : My = M,.

(u, p™)-limit models turn to be useful as replacement for monster models as Propo-

sition I1.2.33 and the following proposition provide some level of homogeneity:

Proposition I1.2.34. If M is a (p, u)-limit, then for every N <x M with N €

K™, we have that M is universal over N. Moreover, M is a (p, pt)-limit over N.



27

2.3 Ehrenfeucht-Mostowski Models
Since K has no maximal models, K has models of cardinality Hanf(K). Then by
Fact I1.3.1, we can construct Ehrenfeucht-Mostowski models.

Fact I1.3.1 (Claim 0.6 of [Sh 394| or see [Gr2]). Assume that K is an AEC
that contains a model of cardinality > j(QLS(}C))+. Then, there is a ®, proper for

linear orders', such that for linear orders I C J we have that
(1) EM(1,®) | L(K) < EM(J,®) | L(K) and
(2) |[EM(L,®) [ L(K)|| = [I] + LS(K).

We describe an index set which appears often in work toward the categoricity

conjecture. This index set was used in [KoSh], [Sh 394] and [ShVi].

Notation I1.3.2. Let a < X be given. We define

]aiz{ ne “a:{n<w|nn|#0} is finite }
Associate with I, the lexicographical ordering <. If X C «, we write Iy := {77 €
“X:{n <w|nln] # 0} is finite} }.
The following fact is proved in several papers e.g. [ShVi].

Fact 11.3.3. If M < EM (I, ®) | L(K) is a model of cardinality u* with p* < X,

then there exists a <x-mapping f: M — EM(I,+,®) [ L(K).
A variant of this universality property is (implicit in Lemma 3.7 of [KoSh]):

Fact I11.3.4. Suppose k is a regular cardinal. If M <x EM(I,,®) | L(K) is a

model of cardinality < k and N <x EM(I\,®) | L(K) is an extension of M of

1 Also known as a blueprint, see Chapter VII, §5 of [Shc].
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cardinality || M||, then there exists a <x-embedding f: N — EM (1., ®) | L(K) such

that f | M = idyy.

2.4 Amalgamation Bases

Since the amalgamation property for abstract elementary classes is inherent in
the definition of types, most work towards understanding AECs has been under
the assumption that the class K has the amalgamation property. In [ShVi], Shelah
and Villaveces begin to tackle the categoricity problem with an approach that does
not require the amalgamation property as an assumption. Shelah and Villaveces,
however, prove a weak amalgamation property, which they refer to as density of

amalgamation bases, summarized here:

Fact 11.4.1 (Theorem 1.2.4 from [ShVi]). Forevery M € K., there exists N €

Kﬁﬂ” wlth M "<]C N

We can now improve Fact 11.2.22 slightly. This improvement is used throughout

this paper.

Lemma I1.4.2. For every p with LS(K) < p < X\, if M € K", N € K and
a € "N are such that M <x N, then there exists M® € K™ such that M® is

universal over M and M|Ja C M.

Proof. By Axiom 6 of AEC, we can find M’ < N of cardinality p containing M | a.
Applying Fact 11.4.1, there exists an amalgamation base of cardinality u, say M”,
extending M’. By Fact 11.2.22 we can find a universal extension of M" of cardinality
i, say M®.

Notice that M? is also universal over M. Why? Suppose M* is an extension of

M of cardinality u. Since M is an amalgamation base we can amalgamate M"” and
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M* over M. WLOG we may assume that the amalgam, M**, is an extension of M"

of cardinality p and f*: M* — M*™ with f* | M = idy,.

M* > M**

f**
4

M T M//
Now, since M?® is universal over M”, there exists a <y -mapping ¢g such that
g: M* — M®*with g | M" = idy;. Notice that go f* gives us the desired mapping

of M* into M@. —|

While Fact 11.4.1 asserts the existence of amalgamation bases, it is unknown (in
this context) what characterizes amalgamation bases. Shelah and Villaveces have
claimed that every limit model is an amalgamation base (Fact 1.3.10 of [ShVi]),
using O nga). Notice this is more than the asssumption of GCH that they make
throughout their paper. The set theoretic assumptions (namely GCH and the weak
form of diamond listed as Assumption I1.1.1.(5)) are sufficient. We provide a proof

that every (u,)-limit model with § < u* is an amalgamation base under these

assumptions:

Theorem 11.4.3. Under Assumption I11.1.1 (specifically under the set theoretic as-
sumption of .+ (Sgﬁ) for every reqular 0 < p*), if M is a (u,0)-limit for some 0

with 0 < ut < X\, then M is an amalgamation base.

Let us first recall some set theoretic definitions and facts concerning the weak

diamond.

Definition I1.4.4. Let 0 be a regular ordinal < u*. We denote

ST = o < it | ef (@) = 6}
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Definition II.4.5. For p a cardinal and S C " a stationary set, ®,+(.5) is said to
hold iff for all F: *">2 — 2 there exists g : AT — 2 so that for every f: AT — 2 the

set

{6€S|F(f]0)=g(0)} is stationary.
We will be using a consequence of ®,+(S), called ©,+(S) (see [Gr2]).

Definition I1.4.6. For p a cardinal S C p* a stationary set, ©,+(.S) is said to hold

if and only if for all families of functions
{fy : n€ "2 where f, : pt — p*}

and for every club C' C u*, there exist n # v € #"9 and there exists a § € C'N S

such that

(3) n[o] # v[o].

The following implications (Fact 11.4.7) are consequences of work of Devlin and

Shelah [DS]. For an exposition of Fact 11.4.7 see [Gr2].
Fact IL4.7. 20 < 2" — &, (S ) = ©,+ (S4).
Before we begin the proof of Theorem 11.4.3, notice that:

Remark I1.4.8 (Invariance). By Axiom 1 of AEC, if M is an amalgamation base

and f is an <x-embedding, then f(M) is an amalgamation base.

Proof of Theorem II.4.3. Given p, suppose that 6 is the minimal infinite ordinal < p™
such that there exists a model M which is a (u,#)-limit and not an amalgamation

base. Notice that by Fact 11.2.30, we may assume that cf(f) = 6.
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Now we define by induction on the length of n € HT>9 a tree of structures,

(M, | n € #">2), satisfying:
(1) for n <v e *'>2, M, <x M,
(2) for I(n) a limit ordinal with cf(l(n)) < 0, My = U, Myta
(3) for n € “2 with a € 5",
(a) M, is a (4, 6)-limit model
(b) M,~9, M, cannot be amalgamated over M,

(c) M, and M, are amalgamation bases of cardinality p
« : +
(4) for n € *2 with a ¢ S},

(a) M, is an amalgamation base
(b) M,-o, M, are universal over M, and

(c) M, and M, are amalgamation bases of cardinality ;1 (it may be that

M,~o = M, in this case).

This construction is possible:
n = (): By Fact I1.4.1, we can find M" € K™ such that M <x M'. Define
M<> = M.

I(n) is a limit ordinal: When cf(I(n)) > 0, let M) :=J

a<i(n) Mya. M) is not nec-

essarily an amalgamation base, but for the purposes of this construction, continuity
at such limits is not important. Thus we can find an extension of M, say M,, of
cardinality ; where M, is an amalgamation base.

For n with cf(I(n)) < 0, we require continuity. Define M, = J M. We

a<l(n)

need to verify that if [(n) ¢ S§ " then M,, is an amalgamation base. In fact, we will

show that such a M, will be a (y,cf(I(n)))-limit model. Let (a; | 7 < cf(I(n))) be an
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increasing and continuous sequence of ordinals converging to [(n) such that cf (a;) < 6

for every i < cf(l(n)). Condition (4b) guarantees that for ¢ < cf(l(n)), M,

nloit1

i < ct(l(n)))

is continuous. This sequence of models witnesses that M, is a (i, cf({(n)))-limit

18

universal over M,,. Additionally, condition (2) ensures us that (M,

model. By our minimal choice of 6, we have that (u,cf(l(n)))-limit models are
amalgamation bases.

n"i where l(n) € Sgﬁ : We first notice that M, = J M0 is a (1, 0)-limit

a<l(n)
model. Why? Since I(n) € S} " and 0 is regular, we can find an increasing and
continuous sequence of ordinals, («; | ¢ < 6) converging to I(n) such that for each
i < 6 we have that cf(a;) < 6. Condition (4b) of the construction guarantees that

for each © < 0, M,q,,, is universal over M,,,. Thus (M., | i < 0) witnesses that

+1
M, is a (1, 6)-limit model.

Since M, is a (yu, #)-limit, we can fix an isomorphism f : M = M,. By Remark
I1.4.8, M,, is not an amalgamation base. Thus there exist M,y and M,-; extensions of
M,, which cannot be amalgamated over M,. WLOG, by the Density of Amalgamation
Bases, we can choose M~ and M, to be elements of K™

n"i where I(n) ¢ Sgﬁ : Since M, is an amalgamation base, we can choose M,
and M, to be extensions of M, such that M, € ICZ’” and M, is universal over
M,, for [ =0, 1.

This completes the construction. For every n € ”+2, define M, = |, i+ Maa
By categoricity in A and Fact I1.3.3, we can fix a <x-mapping g, : M,y — EM(I,+,®) |
L(K) for each n € *'2. Now apply @M(Sgﬁ) to find n,v € *"2 and a € Sg‘+ such

that
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'gnrMp:gurMp-

By Axiom 6 (the Léwenheim-Skolem property) of AEC, there exists N <x EM ({,+,P) |

L(K) of cardinality p such that the following diagram commutes:

My == Mo
Notice that g, [ Myo, g | M, and N witness that M, and M, can be

amalgamated over M,. Since l(p) = o € S) " we contradict condition (3b) of the

construction.

Corollary 11.4.9 (Existence of limit models and (p, x")-limit models). For ev-
ery cardinal i and limit ordinal 0 with 0 < pu™ < X, if M is an amalgamation base

of cardinality p, then there exists M' € K™ which is a (u,0)-limit over M.

Proof. By repeated applications of Fact 11.2.22 and Theorem 11.4.3. -

2.5 Weak Disjoint Amalgamation

Shelah and Villaveces prove a version of weak disjoint amalgamation in an at-
tempt to prove an extension property for towers. We will be using weak disjoint
amalgamation to build extensions of towers. We provide a proof of weak disjoint

amalgamation here for completeness.

Fact I1.5.1 (Weak Disjoint Amalgamation [ShVi]). Given A\ > p > LS(K)

and o,y < pt with 0y regular. If My is a (p, 6p)-limit and My, M, € IC,, are <x-
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extensions of My, then for every b € “( Mi\My), there exist Ms, a model, and h, a

<xc-embedding, such that

(1) h: My — Ms;

(2) h | My =idy, and

(3) h(My)Nb =0 (equivalently h(My) N M; = Mj).

Shelah and Villaveces provide a proof of this theorem in [ShVi]. It has been
suggested that I elaborate on the proof here. John Baldwin may have a simplification

of this proof.

Proof. Suppose that My, My, My and b € M, form a counter-example. Since My is a
amalgamation base, we may assume that there exists M* € K, with M, My < M*.
Let 0 be regular and < p* such that My is a (u, #)-limit. We define a <-increasing

and continuous sequence of models (N; | i < u™) satisfying:
(1) N; e K"
(2) Njyq is universal over N; and

(3) when cf(i) = 6, we additionally define N}, N2, N; and b; € N} such that there
exists an isomorphism f; : M* = N* with f;(My) = N;, fi(My) = N}, fi(Ms) =

]\/vi2 and fz([;) = l_)Z

The construction is possible by Fact 11.2.22, Theorem I1.4.3 and Fact 11.2.29.

Let N+ := {J,_,+ N;. Since K is categorical in A, Fact 11.3.3 allows us to find

<p
a <x-mapping g : N+ — EM(IF,®) [ L(K). So WLOG, we may assume that
Nyt <k EM(IF,®) | L(K).

Let £ C pt be a club such that

§ € E = Ny <x EM(I5,®) | L(K).
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. + o
Foreachi € S | choose a Skolem-term 7; and a sequence of indices o g, . . . , Qi p,—1

such that l_)l = Ti(Oéi,O, . ,Oéi’m._l). Let m; < n; be such
k<m; < Qi € 1;.

Set i em, == (g | 0 <k <my) and @ >, = (g | mi <k <ny).
Let 6 € EN S
For every §;, with 9 < 0; < u'. Define g5, to be the <y-mapping from

EM(Is,,®) | L(K) to EM(I

4+, ®) | L(K) induced by the mapping from p*t to

u defined by
jl—)
(51+] 1f(50§j<(51
Let 0 € C with §y < 9.

Subclaim I1.5.2. Then g5, (N3, ) N bs, = 0.

Proof. Suppose the claim fails. Then there exist b € bs,, a Skolem term o; and a

sequence of elements of I

ﬁé,Oa e ’/85,77’7,5—17 55,77157 cee 755,715—1

such that

k:<m5<:)ﬁ57k G](;O

and b = 0'5(6570, c. 7ﬁ6,n5—1)-
Let Bs,<m,; = (Bsp | 0 < k < myg) and Bs>m, = (Bsx | ms < k < ng).

Notice that

EM(IAL‘U CI)) | L(]C) ): b= 05 (ﬁ5,<m5; 55,27715) = Tso (O‘5o,<m50; 04507277150)‘

Since all our indices are finite sequences and ¢y is a limit ordinal, there exists

0* < 9y and such that so,<msy s B5,<ms € I5. This allows us to find a sequence
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a*"f* € Is, which has the same type over s (with respect to the lexicographical

ordering) as asy,>ms, 35,>ms- S0 by indiscernibility

(*) EM(IM+7 (I)) r L(’C> ): 060 (657<m5; 6*) = 75 <a50,<m50;0‘*)’

By our definition of g5, we have that

(x)s k=>ms < Bsi € Is\s,u0-

In other words when k& > my, every term from the sequence 35 which is larger
than dy is also larger than ;. Thus, for £ > mg, the ordinals in (35 above ¢, are
all greater than the ordinals above §y appearing in the sequences Qs >my,» @ and
Bs.<ms- Thus the type (with respect to the lexicographical ordering) of fs5 >, and

" are the same over as <, " 5 <m,- Indiscernibility applied to (%) yields:

EM([/PL? Q)) r L(’C) ): 05 (65,<m53 /65727”6) = Ts (a50,<m50;a*)'

Notice that o5, (85<ms; 05,>ms) = b. Thus we have found a way to construct b from

Is, (by Ts,(0tsy,<mg,; @)). This contradicts our choice of b ¢ EM (Is,) | L(K).

Let 0; be as in Subclaim I1.5.2. There exists an ordinal ay < p* such that gs, :
01 — ag. Let g be the <x-mapping induced by gs, such that g : N5, — EM(1,,,P) |
L(K). Notice that by our choice of 6, we have that g and EM(I,,,®) [ L(K)

witnesses that Nj,, IV, 510, N, 520 and bs, can be weakly disjointly amalgamated.

Let us state an easy corollary of Fact I11.5.1 that will simplify future constructions:
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Corollary I1.5.3. Suppose ju, My, My, My and b are as in the statement of Fact

IL.5.1. If M is universal over My, then there exists a <x-mapping h such that
(1) h: My — M,
(2) h | My =idy, and
(3) h(M3) b= My (equivalently h(Ms) N\ M; = ).

Proof. By Fact 11.5.1, there exists a <x-mapping g and a model Mj of cardinality u

such that
~ g My — My
g f MO = idMo

- g(My) b= My and
- My <x Ms.
Since M is universal over M;, we can fix a <,-mapping f such that
- f:M;— M and
< 1My = idag

Notice that h := g o f is the desired mapping from M, into M.

2.6 <Zya-Extension Property for K}, ,

Shelah introduced towers in [Sh 48] and [Sh 87b| as a tool to build a model of

cardinality u* from models of cardinality u. Here we will use the towers to prove the
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uniqueness of limit models by producing a model which is simultaneously a (u, 6;)-
limit model and a (p, 65)-limit model. The construction of such a model is sufficient
to prove the uniqueness of limit models by Fact 11.2.29.

The proof of Theorem I1.11.2 uses scattered towers. The proof of the extension
property for this class of towers is quite technical. For expository reasons, we in-
troduce weaker notions of towers and prove the extension property for these towers
in Sections 2.6 and 2.7. Understanding the <Z,a and <, ,-extension properties will
make the proof of Theorem I1.8.8 (the extension property for scattered towers) more

approachable.

Definition I1.6.1 (Towers Definition 3.1.1 of [ShVi]). Let x> LS(K) and a, 0 <

(1)

4 )

(M,a) == ((My | v < a),{ay | ¥ < a));

o M is <y —increasing;
Kipo:=1< (M,a)
for every v < o, a, € M, 1\ M,;

for every v < o, M, € K,
(2) ICfW = {(M,a) € K, | for every v < a, M, is a (p, 0)-limit}

(3) ]CZ,a = LJ49<,LL+ ]CfL,a

Fact 11.6.2 (Fact 3.1.7 from [ShVi]). Suppose K is categorical in X. Given X\ >

uw>LS(K), a < put and 6 a reqular cardinal with 0 < u*, we have that ICfW # (.

Roughly speaking, in order to prove the uniqueness of limit models, we will con-
struct an array of models of width oy and height o5 in such a way that the union

will simultaneously be a (p, o1)-limit model and a (u, 02)-limit model. Each row in
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our array will be a tower from K7, 5 . We define the array by induction on the heigth
(02) by finding an ”increasing” and continuous chain of towers from K7, , . We need
to make explicit what we mean by ”increasing.” One property that the ordering on
towers should have is that the union of an ”increasing” chain of towers from K}, 5
should also be a member of K/, 5 . In particular we need to guarantee that the models
that appear in the union be limit models. This motivates the following ordering on

towers:

Definition I1.6.3 (Definition 3.1.3 of [ShVi]). For (M,a), (N,b) € K7, , we say

that

(1) (M,a) <®_ (N,b) if and only if

— o
(a) @=1b;
(b) for every v < a, M, <x N, and

(c) whenever M, <x N,, then N, is universal over M,.

(2) (M,a) <%, (N,b) if and only if (M,a) <’ , (N,b) and for every v < a,

—p,o
M, # N,
Remark 11.6.4. If (M,a), € K}, | 0 <) is a < -increasing and continuous

chain with v < u*, then |J M,a), € K. o Why? Notice that for i < a,

o<r
M; ., = UU<7 M, , is a limit model, witnessed by (M;, | 0 < 7).

Notation I1.6.5. We will often be looking at extensions of an initial segment of a
tower. We introduce the following notation for this. Suppose (M,a) € Ko Let
3 < a. We write (M, a) | 3 for the tower ((M; | i < f8), (a; | i < 3)) € K, 5. We also

abbreviate (M; | i < 3) by M | 8 and (a; | i < 8) by a | 3.

In order to construct a non-trivial chain of towers, we need to be able to take

proper <Z o-€xtensions.
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Definition I1.6.6. We say the <Z’a—e:1:tension property holds iff for every (M, a) €

* : Vi * T = b Vi
K., o there exists (M’ a) € K, , such that (M,a) <, , (M',a).

Remark I1.6.7. Shelah and Villaveces claim the <Z7a—extension property as Fact
3.19(1) in [ShVi]. Their proof does not converge. As of the Fall of 2001, they were

unable to produce a proof of this claim.

We introduce a subclass of K7, , (nice towers) and prove the <!, -extension prop-
erty these towers. With new proofs in Sections 2.9 and 2.10, the limited extension
property (for scattered towers) turns out to be sufficient to prove the uniqueness of

limit models.

Definition I1.6.8. ((M; | i < a),a) € K}, is nice provided that for every limit

ordinal ¢ < «, we have that | J._, M; is an amalgamation base.

1<t
Remark I1.6.9. If (M, a) is continuous, then (M, a) is nice.

Notice that in the definition of towers, we do not require continuity at limit
ordinals ¢ of the sequence of models. This allows for towers in which M; # U;_; M.
Since we only require that M; is an amalgamation base, there are towers which are
not necessarily nice. Moreover, the union of a <’-increasing chain of < p* nice

towers, is not necessarily nice.

Theorem I1.6.10 (The <Z7a-extension property for nice towers). For every nice

(M,a) € K*

220k

there exists a nice tower (M',a) € K, , such that (M,a) <5, ., (M',a).

Moreover, if\J,_., M; is an amalgamation base and | J,_, M; <k M, for some (p, ut)-

limit, M, then we can find a nice extension (M', @) such that \J,_, M] <x M.

!/

It is natural to attempt to define (M | i < «) to form an extension (M’ a) of

(M, a) by induction on i < o (as Shelah and Villaveces suggest). Fact 11.5.1 makes
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the base case possible. The limits could be taken care of by taking unions. The
problem arises in the successor step. We would have defined M/ extending M; such
that M/ N{a; | i < j < a} = 0. Fact I1.5.1 is too weak to find an extension of
both M and M;, which avoids {a; | i +1 < j < a}. We can only find M/, ; which
contains an image of M/ and M,,, and avoids {a; | i +1 < j < a} by applying Fact
I1.5.1 to M;;1, some extension of M; 1 |JM], M, and {q; |i+1<j < a}.

Alternatively, one might try defining approximations (M’,a')" € K, a <) -
extension of (M, a) by induction. In this construction, we have no problem with
the successor stages (because we do not require the approximations to be increas-
ing). However, we will get stuck at the limit stages, because we can no longer take
unions.

Since Fact I1.5.1 gives us a mapping from M; to M, ; we have decided to look at
a directed system of models ((M] | i < a),(f;; |1 < j < a)).

Before beginning the proof of Theorem I1.6.10, we prove the following lemma

which will be used in the successor stage of the construction.

Lemma I1.6.11. Suppose (M,a) € K. o lies inside a (p, pu)-limit model, M, that

is Ujcq Mi <k M. If (M',d) € K% is1 for some j +1 < « is a partial extension
of (M,a) (ie (M,a) | (j+2) <\, (M',d)), then there exists a K-mapping f

M} — M such that f | M; = idy, and there exists M, € IC;, so that ({(f(M]) |i <

UML) a ] (5+2)) is a partial <8, extension of (M, a).

Proof. Since M} and M;, are both <j-substructures of M, we can get M, (a
first approximation to the desired M, ) such that M}, € K} is universal over
M; and universal over M;,;. How? By the Downward Lowenheim Skolem Axiom

(Axiom 6) of AEC and the density of amalgamation bases (Fact 11.4.1), we can find

an amalgamation base L of cardinality p such that M}, Mj, <x L. By Fact 11.2.22
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and Corollary I1.4.9, there exists M7, , a (u, w)-limit over L.

Subclaim I1.6.12. M}, is universal over M and is universal over Mj, .

Proof. Tt suffices to show that when Lo <x L; <x L are amalgamation bases of
cardinality g, if L is universal over L, then L is universal over Ly. Let L' be an
extension of Ly of cardinality p. Since Ly is an amalgamation base, we can find an

amalgam L” such that the following diagram commmutes:

L/ o > Ll/

g

Ly i Ly
Since L is universal over Li, there exists g : L” — L with ¢g | Ly = idp,. Notice

that goh: L' — L with go h | Ly = idy,. -

M, | may serve us well if it does not contain any a; for j +1 <1 < «, but this is
not guaranteed. So we need to make an adjustment. Notice that M is universal over
M 1. Thus we can apply Corollary I1.5.3 to Mj 1, My, M7, and (a; | j+1 <1 < a).

This yields a <x-mapping f such that
f M, — M
< f I My =idy,,, and
fMP )N | j 1< <a}=0.
Set M}, :== f(M],,). —|

Proof of Theorem I1.6.10. Let p be a cardinal and « a limit ordinal such that a <
pt < A Let a nice tower (M, a) € K.« be given. Denote by M, a model in K™

extending | J,_,, M;. As discussed above, we have decided to look at a directed system

<o
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of models ((M; | i < a),(fi; | i < j < a)), as opposed to an increasing sequence,

such that at each stage i < a:

(1) ((f7,(M]) | j <4),a 1) is a <}, -extension of (M,a) | i

(2) M is universal over M;,

(3) M, is universal over f;,, (M;) and

(4) f1, 1 M, = idy,,

jsi

It may be useful at this point to refer to Section 2.2 concerning directed systems
and direct limits. In order to carry out the construction at limit stages, we need to
work inside of a fixed structure. Fix M to be a (p, u*)-limit model over M,. We will
simultaneously define a directed system ((M; | i < a), (fi; | i < j < a)) extending
(M |i<a),(f]; |i<j<a)) such that:

(5) M} <x M,

6) f:. can be extended to an automorphism of M , f i, for j < and
J,t Js

(7) ((M] =M | j <), (fk] | k < j <1i)) forms a directed system.

Notice that the M/’s will not necessarily form an extension of the tower (M, a).
Rather, for each i < «, we find some image of (M; | j < ) which will extend the
initial segment of length i of (M,a) (see condition (1) of the construction).

The construction is possible:

i = 0: Since My is an amalgamation base, we can find Mg € K}, (a first approx-
imation of the desired M{) such that M[ is universal over M,. By Corollary I1.5.3
(applied to My, M, M} and @), we can find a <x-mapping h : M} — M such that

h'| My =idy, and h(M{) Na = 0. Set M} := h(M{)), f}o = iday and fop = idy.
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i = j+ 1 Let h and M}, be as in Lemma I1.6.11. Set M}, = h(M},,),
g = idar, fit1j01 = idy and fijs1 = h | M. Since M is a (u, pt)-
limit over both M} and f ;,,(M}), by Proposition I1.2.33 we can extend f; .., to an
automorphism of M, denoted by fjﬁjﬂ.

To guarantee that we have a directed system, for k < 7, define f,’g’jJrl = fiin Ofl/w‘

and kaJrl = fj:j+1 © fkvj'

i is a limit ordinal: Suppose that ((M] | j <), (f;; | k < j <1i)) and (M |j<
i), (fr; | k < j <)) have been defined. Since they are both directed systems, we
can take direct limits, but we want to choose the representations of the direct limits

carefully:

Claim I1.6.13. We can choose direct limits (M;,(f;; | j < 1)) and (M, { vjﬂ- |7 <

D) of (M) | § < i) (fl; | k< j<i)and (V] <i)(foy |k <j<d)

respectively such that
(a) My <x M
(b) fj*z is an automorphism of M} for every j < i
(c) M = M and
(d) f1; 1 My =idy; for every j <i.

Proof. We will first find direct limits which satisfy the first 3 conditions ((a)-(c)).
Then we will make adjustments to them in order to find direct limits which satisfy
conditions (a)-(d) in the claim.

By Lemma I1.2.6 we may choose direct limits (M;™, (f7 | j <)) and (M;*, { vj*j |

j < i)) such that M* <x M;*. By Claim 11.2.8 we have that for every j < i,

f;ocf is an automorphism and Mz** = M Notice that (M,L**7<f;;k | ] S Z>) and

32
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(2

(M, { f]*j | 7 <)) form direct limits satisfying the first three properties. However,

condition (d) may not hold. However we do know that:
Subclaim I1.6.14. (f;7 [ M; | j < i) is increasing.
Proof. Let j < k < i be given. By construction
fiw T Mj = idyy,.

An application of f;} yields

ko fin I My = [ T M;.
By the definition of direct limits, we have

fii My = fiio fin I My =[5 1 M.

This completes the proof of Subclaim 11.6.14

We still have not finished the proof of Claim I11.6.13. By the subclaim, we have that
9:=U;. [;7 I M; is a partial autmorphism of M from U, i Mj onto U, f77(M;).

Jit Jj<iJ g

Since M is a (u, u*)-limit model and since | J,_, M; is an amalgamation base we

j<i
can extend g to G € Aut(M) by Proposition 11.2.33. Notice this is the point of the
proof where we use the assumption of niceness when we observe that | J i Mj is an
amalgamation base.

Now consider the direct limit defined by M := G~'(M;*) with (f;; := G~ "o 7 |
J <) and f7; = idy> and the direct limit M; := M with { VJ*Z =G 'o vj}‘ | j < 1)
and f7; := idy-. Notice that f, | M; = G~' o fi7 | M; = idy, for j < i. This

completes the proof of Claim 11.6.13
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Our choice of (M}, (f;; | j <)) and (M, <fj*l | 7 <)) from Claim I1.6.13 may
not be enough to complete the limit step since M;" may contain a; for some ¢ < j < .
So we need to apply weak disjoint amalgamation and find isomorphic copies of theses
systems. By Condition (4) of the construction, notice that M is a (u, ¢)-limit model
witnessed by (f7;(Mj) | j < 14). Hence M} is an amalgamation base. Since M} and
M; both live inside of M, we can find M/ € K, which is universal over M; and
universal over M. By Corollary 11.5.3 applied to M;, M., M/ and {(a; | | <i < «)
we can find h : M/ — M such that h | M; = idy;, and h(M/) N {a; |i <1< a} =0,

Set M[ := h(M}), fl; :=idy,,, fi; = idy and for j <i, fi, = ho fi;. We need
to verify that for j <, f;,(Mj)(a | j <1< a} = 0. Clearly by our application of
weak disjoint amalgamation, we have that for every [ with ¢ <[ < a and every j <1,
a; ¢ f; (M) since Mj D f7.(M;). Suppose that j < i and [ is such that j <1 <.
By construction a; ¢ fj,,1(Mj) and [, ;(a) = ai. So fi,(Mj) = /11,0 f}141(Mj)
implies that a; ¢ f;,(M}).

Notice that for every j < i, M is a (p, u*)-limit over both M and f;,(M7). Thus
by the uniqueness of (y, 1 )-limit models, we can extend f;; to an automorphism of
M, denoted by f], This completes the limit stage of the construction.

The construction is enough: Let M/ and (fi, | @ < a) be a direct limit of
(M} | i < a),(fji | 7 <1 < «)). By Subclaim II1.6.14 we may assume that
Uica Mi < M. It is routine to verify that ((f;o(M]) | i < a),a) is a <), ,-extension
of (M, a).

If U, M; is an amalgamation base we can find a K-mapping as in the limit stage

to choose J,_,, f'(M]) <x M.

Remark I1.6.15. Notice that the extension (M’,a) in Theorem I1.6.10 is not con-
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tinuous. Continuity of towers will be desired in the proof of the uniqueness of limit
models. Taking an arbitrary <’-extension will not give us a continuous tower. In
fact, at this point, it is not apparent that any continuous extensions exist. However,
in Section 2.9 we will show that reduced towers are continuous and reduced towers

are dense. Thereby, allowing us to take continuous extensions.

Remark I1.6.16. Although the extension (M’,a) is not continuous, it does have

the property that M/, , is universal over M/ for every i < a.

c . —+ *
2.7 <, Extension Property for "I, ,

Unfortunately, it seems that working with the relatively simple K , towers is
not sufficient to carry out the proof for the uniqueness of limit models. Shelah and
Villaveces have idenitified a more elaborate tower. The extension proprerty for these
towers is also missing from [ShVi]. We provide a partial solution to this extension
property, analagous to the solution for ’C;,a in the previous section. In fact, we will
have to further adjust our definition of towers to scattered towers in the following
section. We introduce the scaled down towers of Sections 2.6 and 2.7 to break down
the proof of the desired extension property into more manageable constructions.

We augment our towers with a dependence relation. The following variant of the
first-order notion of splitting is often used in AECs. Most results relying on this
notion are proved under the assumption of categoricity. Just recently progress has

been made by considering p-splitting in Galois-stable AECs (see Chapter I11.)

Definition I1.7.1. Let p be a cardinal with p < A\. For M € K" and p € ga-S(M),
we say that p p-splits over N iff N <x M and there exist Ni, Ny € K, and a <x-

mapping h : N; = N, such that
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(1) h(p I N1) #p | No,
(2) N < Nl,NQ <x M and
(3) h | N = idy.

Remark I1.7.2 (Monotonicity). If N <x M <, M’ are all amalgamation bases
of cardinality p and ga-tp(a/M’) does not p-split over N, then ga-tp(a/M) does not

pu-split over N.

Shelah and Villaveces draw a connection between categoricity and superstability-
like properties by showing that under the assumption of categoricity there are no long
splitting chains (Fact 11.7.3). The proof of this fact relies on a blackbox consequence

of GCH.
Fact I1.7.3 (Theorem 2.2.1 from [ShVi]). Under Assumption I1.1.1, suppose that
(1) (M; | i < o) is <k-increasing and continuous,
(2) for alli < o, M; € K",
(3) for alli < o, M;yq is universal over M;
(4) ct(o) =0 < put <\ and
(5) p € ga-S(M,).
Then there exists © < o such that p does not u-split over M;.

Implicit in their proof of Fact I1.7.3 is a statement which in the superstable first
order case is an implication of x(7") being finite (see Fact 11.7.4). If Fact 11.7.3 fails
to be true, then there is a counter-example that has one of three properties (cases

(a), (b), and (c) of their proof). Each case is separately refuted. Case (a) yields:

Fact I1.7.4. Under Assumption I1.1.1, suppose that
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(1) (M; | i < o) is <x-increasing and continuous,
(2) for alli <o, M; € K",

(3) for alli < o, M;,q is universal over M;,

(5) p € ga-S(M,) and
(6) p | M; does not p-split over My for all i < o.
Then p does not p-split over My.

Remark I1.7.5. The proofs of Fact I1.7.3 and Fact I1.7.4 utilize the full power of
the categoricity assumption. In particular, Shelah and Villaveces use the fact that
every model can be embedded into a reduct of an Ehrenfeucht-Monstowski model.
It is open as to whether or not similar theorems can be proven under the assumption

of Galois-stability in every cardinality (Galois-superstablity).

We now derive the extension property for non-splitting types (Theorem I1.7.6).
This result does not rely on the categoricity assumption. We will use it to find
extensions of towers, but it is also useful for developing a stability theory for tame

abstract elementary classes in Chapter III.

Theorem I1.7.6 (Extension of non-splitting types). Let M be a (u, ut)-limit
containing a\J M. Suppose that M € K, is universal over N and ga-tp(a/M, M)
does not p-split over N.

Let M' € K™ be an extension of M with M’ <x M. Then there exists a <y-
mapping g € Auty M such that ga-tp(a/g(M')) does not p-split over N. Alterna-

tively, g~ € Auty (M) is such that ga-tp(g—"(a)/M') does not p-split over N.
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Proof. Since M is universal over N, there exists a <, mapping b’ : M’ — M with
R | N = idy. By Proposition I1.2.33, we can extend &’ to an automorphism h of M.

Notice that by monotonicity, ga-tp(a/h(M’)) does not p-split over N. By invariance,
(*) ga-tp(h~'(a)/M") does not p-split over N.

Subclaim I1.7.7. ga-tp(h~'(a)/M) = ga-tp(a/M).

Proof. We will use the notion of u-splitting to prove this subclaim. So let us rename
the models in such a way that our application of the definition p-splitting will become
transparent. Let Ny := h™'(M) and Ny, = M. Let p := ga-tp(h~(a)/h~1(M)).
Consider the mapping h : N7 = Nj. Since p does not u-split over N, h(p [ N1) =p |

Ny. Let us calculate this
h(p I Nv) = ga-tp(h(h™'(a))/R(h™"(M))) = ga-tp(a/M).

While,
p | No = ga-tp(h™'(a)/M).

Thus ga-tp(h~'(a)/M) = ga-tp(a/M) as required. .

From the subclaim, we can find a <-mapping g € Auty; M such that goh™'(a) =

a. Notice that by applying g to (x) we get
(x%)  ga-tp(a/g(M'), M) does not p-split over N.
Applying ¢! to (xx) gives us the alternatively clause:

ga-tp(g~*(a)/M’, M) does not p-split over N.



o1

Theorem I1.7.8 (Uniqueness of non-splitting extensions). Let N, M, M’ € K"
be such that M’ is universal over M and M is universal over N. If p € ga-S(M)
does not p-split over N, then there is a unique p' € ga-S(M') such that p' extends p

and p' does not p split over N.

Proof. By Theorem I1.7.6, there exists p’ € ga-S(M’) extending p such that p’ does
not p-split over N. Suppose for the sake of contradiction that there exists ¢ #
P € ga-S(M’) extending p and not p-splitting over N. Let a,b be such that p’ =
ga-tp(a/M’) and ¢ = ga-tp(b/M’). Since M is universal over NNV, there exists a <j-
mapping f : M’ — M with f [ N = idy. Since p’ and ¢ do not p-split over N we

have

(x)a  ga-tp(a/f(M')) = ga-tp(f(a)/f(M')) and
(x)y  ga-tp(b/f(M")) = ga-tp(f(b)/ f(M")).
On the otherhand, since p # ¢, we have that
(x)  ga-tp(f(a)/f(M)) # ga-tp(f(b)/f(M')).
Combining (#)a, (+), and (%), we get
ga-tp(a/f(M")) # ga-tp(b/f(M")).
Since f(M’) <x M, this inequality witness that
ga-tp(a/M) # ga-tp(b/M),
contradicting our choice of p’ and ¢ extending p. N

Now we incorporate p-splitting into our definition of towers.
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Definition I1.7.9.
(M,a) € K*

a0

N=(N;|i+1<a);
K. =19 (M,a,N) for every i +1 < a, N; <x M;, ;

M; is universal over N; and;

ga-tp(a;, M;, M;11) does not p-split over N;.

Similar to the case of K}, , we define an ordering,

Definition I1.7.10. For (M,a, N) and (M’,a@’, N') € TK,

IR

we say (M,a, N) <6,

(1@, NY) iff

(3) for every i < o, ga-tp(a;/M;, M, ,) does not p-split over N;.

Remark I1.7.11. Notice that in Definition I1.7.10, condition (3) follows from (2).

We list it as a separate condition to emphasize the role of u-splitting.

Notation I1.7.12. We say that (M, a, N) is nice iff when i is a limit ordinal Ui M

is an amalgamation base.
The following theorem is a partial solution to a problem from [ShVi]:

Theorem I1.7.13 (The <, ,-extension property for nice towers). If(M,a,N) €
-+ *
}C,u‘z

o is mice, then there exists a nice (M',a,N') € YK, , such that (M,a,N) <5,

(M',a,N"). Moreover if |J,_., M; is an amalgamation base such that \J,_, M; <x M

for some (u, pt)-limit, M, then we can find (M',a’, N') such that | J,_, M! <x M.

i<a
Proof. Let u be a cardinal and « a limit ordinal such that a < put < A Let

(M,a,N) € *K,, be given. Denote by M, a model in Ko™ extending |, M;. Fix

<o

M to be a (u, pF)-limit model over M,.
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Similar to the proof of Theorem I1.6.10, we will define by induction on 7 < « a
sequence of models (M | i < o) and sequences of <x-mappings, (fj; | j <1 < @)

and (f;; | j <i < a) such that for i <

(1) ((fj.(M}) [ j <i),ald N [i)isa <{,-extension of (M,a,N) | 1,

g
(2) ((M; |7 <i),(fj;|j<1i)) forms a directed system,
(3) M is universal over M;,

(4) M;

o ) )
i1 is universal over f, (M]),

(5) fia I M; = id,

Jst

(6) M =i M,
(7) f;; can be extended to an automorphism of M, iji, for j < i and
(8) ((M | j < i), {fr; | k <j <i)) forms a directed system.

The construction is enough: We can take M, and (f, | i < ) to be a direct
limit of ((M] | i < a),(fj; | j < i < a)). Since fi; [ M; = idy;, for every
J < i < a, we may assume that f/, [ M; = idy;, for every i < a. Notice that
((flo(M]) | i < a),a) is a <¢, ,-extension of (M,a). For the moreover part, simply
continue the construction one more step for i = a.

The construction is possible:

i = 0: Since My is an amalgamation base, we can find Mg € K, (a first approx-
imation of the desired M]) such that M is universal over M. By Theorem II.7.6,
we may assume that ga-tp(ag/MY) does not p-split over Ny and M} <x M. Since

ap ¢ My and ga-tp(ag/Mp) does not p-split over Ny, we know that ay ¢ MJ. But,

we might have that for some [ > 0, a; € M[/. We use weak disjoint amalgamation
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to avoid {a; | 0 < [ < a}. By the Downward Loweneim-Skolem Axiom for AECs
(Axiom 6) we can choose M? € K, such that M{, M; <x M? <, M.
By Corollary 11.5.3 (applied to My, M,, M?* and {(a; | 0 < I < «)), we can find a

<jc-mapping h such that
ch:M?*— M
- h [ My =idyy,
Sh(MA) N {a |0<i<a}=10

Define M| := h(M{). Notice that ag ¢ M| because ag ¢ M| and h(ag) = ao.
Clearly MjN{a; | 0 <1 < a} =0, since M} <x M?* and h(M*)N{a; |0 <1< a} = 0.
We need only verify that ga-tp(ag/M() does not p-split over Ny. By invariance,
ga-tp(ag/M{) does not p-split over Ny implies that ga-tp(h(ag)/h(M[)) does not
p-split over Ny. But recall h(ag) = ag and h(M{) = M]. Thus ga-tp(ag/M}) does
not p-split over Nj.

Set foo = idy and f} o = idy.

i = 7 + 1: Suppose that we have completed the construction for all £ < j. Since
M, My <k M, we can apply the Downward-Lowenheim Axiom for AECs to find
M7\, (a first approximation to M}, ) a model of cardinality y extending both M;
and M; ;. WLOG by Subclaim I1.6.12 we may assume that M is a limit model of
cardinality y and M| is universal over M, and M. By Theorem II1.7.6, we can find
a <x mapping f : M, — M such that f | Mj,, = idn,.,, and ga-tp(a;y1/f(M]))

does not p-split over Njy. Set MY, := f(M,).

Subclaim 11.7.14. a;,, ¢ M},

" : ;. : .
Proof. Suppose that a1 € M}, ;. Since M, is universal over N;,1, there exists a

<k-mapping, g : M7, — M, such that g [ Njy, = idy,,. Since ga-tp(a;1/M], )



95

does not p-split over N;;, we have that

ga-tp(a;1/9(Mjy,) = ga-tp(g(a;1)/9(Mjy,)).

Notice that because g(a;;1) € g(M} ), we have that a;,1 = g(a;1). Thus a;11 €

g(M}\, ) <x Mji1. This contradicts the definition of towers: a;1 ¢ M;

MY, | may serve us well if it does not contain any a; for j +1 < | < «, but
this is not guaranteed. So we need to make an adjustment. Let M? be a model of
cardinality p such that M, o, M7, <x M 2 <x M. Notice that M is universal over
M 5. Thus we can apply Corollary 11.5.3 to M 9, My, M? and {a; | j+2 <1 < ).

This yields a <j,-mapping h such that
ch:iM?— M
“h | Mjio = idM].+2 and
(M) |j+2<l<a}=0.

Set M., := h(M],,). Notice that by invariance, ga-tp(a;11/M} ;) does not u-
split over Nj,, implies that ga-tp(h(a;y1)/h(M],,)) does not u-split over h(Nji1).
Recalling that h [ Mj,o = idy,,, we have that ga-tp(a;41/M}, ;) does not p-split
over Nj1. We need to verify that a;; ¢ M;,,. This holds because a;11 ¢ M\,
and h(aj11) = ajt1.

Set fii1 41 = idn;,, ., and fiv1j01 = idy; and fijs1:=hof ] M. Since M is a
(11, p*)-limit over both M and f} ;. (Mj), we can extend f7 ., to an automorphism
of M, denoted by fjJH.

To guarantee that we have a directed system, for k < j, define f; ;. , = fi 110/,

and f 11 = fjj410 frj-
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i is a limit ordinal: Suppose that ((M] | j < i),(f;; | kK < j <)) and (M |
§ < i), (fr; | k < j <)) have been defined. Since they are both directed systems,
we can take direct limits. By niceness we can apply Claim I1.6.13, so that we may

assume that (M, (fF; | j <4)) and (M, ( V;i | 7 <)) are the respective direct limits

such that My <x M and |J,_, M; <x M;. By Condition (4) of the construction,

j<i
notice that M;" is a (u,)-limit model witnessed by (f;;(M}) | j < i). Hence M} is an
amalgamation base. Since M; and M; both live inside of M, we can find M!" € K,
which is universal over M; and universal over M.

By Theorem I1.7.6 we can find a <x-mapping f : M — M such that f | M; =
idyg, and ga-tp(a;/ f(M]")) does not p-split over N;. Set M!" := f(M]"). By a similar
argument to Subclaim I1.7.14, we can see that a; ¢ M.

M! may contain some a; when i < [ < a. We need to make an adjustment
using weak disjoint amalgamtion. Let M? be a model of cardinality g such that
M!" My <x M? <x M. By Corollary 11.5.3 applied to M;, M,, M? and (a; | i <

| < a) we can find h : M — M such that h | My, = idy

i1

and h(M?*) N {a |1 <
Il <a}=0.

Set M] := h(M]). We need to verify that a; ¢ M/ and ga-tp(a;/M]) does not
p-split over N;. Since a; ¢ M/ and h(a;) = a;, we have that a; ¢ h(M]) = M].
By invariance of non-splitting, ga-tp(a;/M/’) not p-splitting over N; implies that
ga-tp(h(a;)/h(M])) does not p-split over h(N;). Recalling our definition of h and
M. This yields ga-tp(a;/M]) does not p-split over N;.

Set fl;:=id,;, fi; = idy and for j <4, fi, = ho fo f,.

Notice that for every j < i, M is a (p, u*)-limit over both M and f},(M;). Thus
by the uniqueness of (u, 1 )-limit models, we can extend f}: to an automorphism of

M, denoted by ;..
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2.8 Extension Property for Scattered Towers

We now make the final modification to the towers and prove an extension theorem
for these scattered towers. Let’s recall the general strategy for proving the uniqueness
of limit models. Our goal is to construct an array of models (M JZ | § < 63,0 <0;) of
width 0 and height #; such that the union will be simultaneously a (y, 62)-limit model
(witnessed by <]\4;?1 | j < 62)) and a (u, 61)-limit model (witnessed by (M, | i < 64)).
In spirit our construction will behave this way, but the technical details involve an
array of models indexed by put x (p- ™).

A straightforward construction on 6; x 5 is too much to expect for the following

reasons:

(1) We would like | J,_, M; to be a (i, «)-limit model. One way to accomplish this

<«

would be to focus on towers (M, a, N) € +IC:‘W such that
(%) M4 is universal over M; for all i < a.

While these towers are easy to construct, we could not guarantee (%) to oc-
cur at limit stages in our <j, ,-increasing and continuous chain of such towers,
((M,a,N)?| B < a). For 8 a limit ordinal < a, the tower (M,a, N)” may not
satisfy (x). Even in first order logic it is unknown whether M ; universal over
M for all v < ( implies that Mf_ﬂ is universal over M. This seems like too

much to hope to be true.

There are several tools to deal with this difficulty. We introduce the notion of

relatively full towers (Definition 11.10.6) which are towers realizing many strong
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types. If a tower, (M,a, N) € T,

a0 18 relatively full and continuous, then the

top of the tower, | J,_., M; is a (i, «)-limit model (Theorem I1.10.12).

i<a
Once we have the existence of relatively full towers, we need to guarantee that
they are continuous in order to apply Theorem I1.10.12. Continuity is not
immediate. In fact, continuous extensions are hard to find (Remark I11.6.15).
To remedy this, Shelah and Villaveces restrict themselves to reduced towers
(Definition 11.9.1). An increasing and continuous chain of reduced towers results
in an array such that Ml’g N M] =M J’g for # <~ and ¢ < j. All reduced towers
are continuous (Theorem I11.9.7). So the density of reduced towers with respect

to the ordering <, , (Proposition 11.9.6) gives us continuous extensions of all

nice towers.

While our ordering on towers is enough to get that Mfl is a (u,0;)-limit for
i < 0 (witnessed by (M7 | j < 6,)), we cannot say anything about the model
Mg;. Unfortunately it is not reasonable to ”fix” our definition of ordering to
guarantee that Mg; is a limit model, since we would then be unable (at least

we see no way of doing it directly) to prove the extension property for towers.

Instead, we define scattered towers (Definition I1.8.2). Since we know that
M is a (u,0;)-limit for i < 6, (witnessed by (M7 | j < 6)), the idea is
to construct a very wide array of towers (of width ™) and then focus in on
some o < pt of cofinality . Then M won’t be in the last column of the
array, so the ordering will guarantee us that M? is a (u,6;)-limit (witnessed
by (M? | j < 6;)). However, we have not proved an extension property for
towers of width p*. Our arguments won’t generalize to IC, ,+ because Fact

I1.5.1 (Weak Disjoint Amalgamation) isn’t strong enough since we would have
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pt many elements to avoid ({a; | i < p*}). So we will construct the tower in
K.+ in pt-many stages by shorter towers (in K3, o for a < ). To do this we
introduce the notion of scattered towers, which will allow us to extend a tower

in IC}, , to a longer tower in K}, 5 when o < 3 < u* (Theorem 11.8.8).

Notation I1.8.1. Let o be an ordinal. We say that & C P(«a) is a set of disjoint

intervals of o of which one contains 0 provided that
- 0e Uy,
- for uy # uy € U, uy Nugy = P and
- for u € U, if B < (B € u, then for every + with 8; < v < (2, we have v € w.

Since we will not be looking at any other sets of intervals, we abbreviate a set of

disjoint intervals of o of which one contains 0 as a set of intervals.

Definition I1.8.2 (Definition 3.3.1 of [ShVi]). For i a set of intervals of ordi-

nals < pt, let

)
M = (M, | i € u for some interval u € l);

M is <x increasing, but not

necessarily continuous;

+IC;,21 = (M757N> a; € Mi—l—l\Mi when Z,Z +1€ Uil,

N =(N; [ieUu);

M, is universal over N; when i,7+ 1 € [J4 and

\ ga-tp(a;, M;, M; 1) does not p — split over NV;
Remark II.8.3. Suppose that I is a linear, well-ordering. Then if (M,a, N) is a
tower indexed by I, we can find a an ordinal, such that (M,a, N) € +IC;7Q. This

allows us to interchange between sequences of linear, well-orderings (such as ordered

pairs of ordinals, ordered lexicographically) and seqeunces of intervals of ordinals.
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Notice that these scattered towers are in some sense subtowers of the towers +ICZ,a-

Hence we can consider the restriction of <j, , to the class +IC;’u:
Definition II.8.4 (Definition 3.3.2 of [ShVi]). Let (M',a', N') € *IC,  for | =

1,2. (MY at, NY) <¢ (M? a2, N?) iff for i € U,
(1) M} =k M?, aj = a? and N} = N? and
(2) if M} # M?, then M? is universal over M}.
We say that (M, at, N') <¢ (M?,a%, N?) provided that for every i € [ JU, M} # M2.

Actually we can extend the ordering to compare towers from classes *IC;';L[1 and

* . . . . .
K s When s is an interval-extension of ;. By interval-extension we mean:

Definition I1.8.5. 5 is an interval-extension of 4, iff for every u; € U, there is
us € s such that u; C uy. We write Ut Cjpp U2 when 42 is an interval extension of
Ul
Definition I1.8.6. Let i, be an interval extension of ;. Let (M! a', N') € +’C:,ul
for 1 =1,2. (M',a*, N') <¢ (M2 a? N?) iff for i € |y,

(1) M} =x M?, a} = a? and N} = N? and

(2) if M} # M?, then M? is universal over M}.

Now we can generalize the notion of niceness and prove an extension property for

the class of all scattered towers.

Definition I1.8.7. A scattered tower (M,a, N) € JFICZ’Ll is said to be nice provided
that whenever a limit ordinal 7 is a limit of some sequence of elements from J4,

then |J M; is an amalgamation base.

jelUy, j<i
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Theorem I1.8.8 (<°-Extension Property for Nice Scattered Towers). Let 4"
and U be sets of intervals of ordinals < u* such that U is an interval extension of
' Let (M',a', N') € *K, s be a nice scattered tower. There exists a nice scattered
tower (M?,a*, N?) € *K, o such that (M*,a', N') <¢ (M? a* N?).

Moreover, if UieuuMi is an amalgamation base and UieUuMi <x M for some

(1, w)-limit M, then we can find (M?,a%, N?) such that Uieyu Mi =x M.

Proof. WLOG we can rewrite 4 as a collection of disjoint intervals such that for
every u? € U2, there exists at most one u' € ' such that u! C u?. Let us enumerate
U as (u} | t € ') in increasing order (in other words when ¢t < ¢’ € o' we have that
max(uy) < min(uy).)

For bookkeeping purposes, we will enumerate U* as (u? | t € o) as

) {i e U | min{u}} <i < minfu},,}} ift+1<al
u; =

{i e YW | min{u;} < i} otherwise

Remark I1.8.9. The second part of the definition of w7 is used only to define u2,

when a! is a successor ordinal.

Since 0 € [J4U', this enumeration of 4> can be carried out.

Given (M*',a', N') € +IC:7H1 a nice tower, we will find a <“extension in +IC:”112
by using direct limits inside a (p, u™)-limit model as we have done in the proofs
of Theorem I1.6.10 and Theorem I1.7.13. As before, fix M a (y, u*)-limit model
containing UiEU o M}, We will define approximations to a tower in ﬂC;,u? with
towers in +IC;7L@ extending towers in +K:,ut1 where U, = {u! | s <t} for I =1,2.

These partial extensions will be defined by constructing sequences of models (M? |
i€ | JU?) and (N? | 4,5+ 1 € JU?), a sequence of elements (a? | 4,7+ 1 € | JU*) and

<x-mappings {fs; | s <t < a'} (or {fss] s <t < a'}for a® a successor) satisfying
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(1) ({fs(M?)]i € u? and s < t),a’, N) is a < y-extension of (M',a*,N') | a4

ol
where a' = (a? | i,i+1 € 42) and N* = (N? |4,i +1 € U2),

(2) ((M* | s <t),{fss|s<t)) forms a directed system where M* = J,_,. M?.

i€u?2
(3) M? is universal over M} for all i € |J 4,

2

2 and

(4) M? is universal over f,,(M7) for every i < j and s <t such that i € u

J € u (consequently, M+ is universal over f;;1(M?")),
(5) fou | M} = idy for all j € u?,
(6) M? <x M,
(7) f.: can be extended to an automorphism of M, fs’t, for s <t < a! and

(8) ((M | s <t),{fss|s <t)) forms a directed system.

The construction is enough:

Let a := ! if ! is a limit, otherwise a := o' + 1. We can take M/, and (f;, | t <
a) to be a direct limit of ((M' [t < a),(fs: | s <t < a)). Since fi; [ M} = idyp,
for every i € u?, we may assume that f;, | M* = idy; for every t < a. Notice that
(fraM)) | i €uf, t <a),{a?|ie U, (N?|ielJU))isa < -extension of
(M,a, N)'. For the moreover part, simply continue the construction one more limit
step.

The construction:

t = 0: First notice that by Theorem II.7.13, we can find (M | ¢ € u}) such that
(M',a* | up, N' | u) is a <{g-extension of (M',a', N') | U and M’ avoids a'
above u; (specifically (U;e,2 M{)(aj | j € Uu'\ul} = 0.) Moreover the proof of

Theorem 7.10 gives us an extension such that Ui@é M} is a limit model.
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We can choose M € K, such that | J, . M/, M}

iEu(l) min{u%} <K MT <K M and MT 1S
a (i, 74)-limit over Uicuy M where A is otp(u2) if u2 is infinite, otherwise 7§ = w.

icuy Mj 1s an amalgamation base. Let (MI |~ < 7Y witness

This is possible since [ J
that M7 is a (s, )-limit over Uieu(l) M. Since limit models are amalgamation bases,
we may choose M7T+1 to be a (i, w)-limit over M.

By weak disjoint amlagamation (Corollary 11.5.3) applied to (|, . M}, Uieué M/, MT)

; 1
ZGQLO

and {aj | j € UU\ 45}, there exists an automorphism g of M such that

. g r UZEu(l) ‘2\47:1 = idUiEul Mil and
0
~g(MY) N {aj |5 € U \ug} = 0.

Denote by (i | v € otp(ud\uy)) the increasing enumeration of u3\ug. Define

g(M!) for i€ u}

(2

g(MI)  fori =iy € ug\ug
Since M1 is an limit model witnessed by the M1’s, we can choose aj € M7\ M for
all 4,7+ 1 € u2\u}. Since M? is a limit model for each 7,7 + 1 € u3\u}, we can apply
Fact 11.7.3 to find N? <x M? such that ga-tp(a?/M?) does not p-split over N? and
M? is universal over N7
All that remains is to define fj := idUieué M} and JEO,O = idy;.

= s+1 : By condition (4) of the construction, we have that | J,_ . M? is a limit model

1€u2

witnessed by (f.s(M?) | i € u? and r < s). Thus | J,.,. M? is an amalgamation base.

i€u?

M2, M!

Now we can choose a model M’ € K, such that (¢, minful ,} <K M" and M"

is a (u, [uZ, |+ Ro)-limit over | J,.,. M7?. By identical arguments to the successor case

i€u?
in Theorem I1.7.13, we can find M’ = (M] | i € 4> Jul,,) and an automorphism h

of M such that
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- (M',@,N'") is a nice scattered tower, where @ = (a? | i € 2Jul,;) and

N' = (N} |ieslJuly)
(MY at, NY) Ul <o (M@, N

’ Uieuzuuiﬂ M N {agl' |jed \iliﬂ} =0.

-th”:MHgM/' 1 and
mln{u5+1}
. 1 - )
h r Mmin{u;_;ﬂ} ZdMi]in{u§+1}'
Let Mt be a (Mﬁlﬂ)-limit model over UieiﬁUuiﬂ M; such that Méliﬂ{ﬁu} ~K

M* <y M, where 7, is otp(u?,,) if u2,, is infinite, otherwise 71, ; = w. Let (M |
v < fyi 1) witness that MT is a limit model. Since limit models are amalgamation
bases, we may choose M$+1 to be a (p,w)-limit over M.

Applying Corollary 11.5.3 to (| M}, Uicseyur,, Mi: MT)and {a} | j € Ut"\ 86,4},

ie“;-u

there exists an automorphism of M, g, such that

gl Ui@l“ M} = idy ap and

: 1
1Eus+1

Cg(Mh) N el | e U\ atl,) = 0.

Denote by (i, | v € otp(uZ,;\ui,,)) the increasing enumeration of u2, \u._;.

Define

A2 g(M;)  fori € ug,y

7

Q(MWT) fori =i, € “§+1\u§+1
Since M is a limit model witnessed by the MI’s, we can choose a € M7\ M}
forall¢,i+1 € u2, \ui,,. Since M? is a limit model for each i,i4+1 € u? ;\ul,,, we

can apply Theorem 7.2 to find N? <x M? such that ga-tp(a?/M?) does not u-split

over N7 and M? is universal over N7
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Define fo i1 :=goh | ;e M7 and fsst1 1= g o h. To complete the definition
of a directed system, for every r < s, set f, o411 := fss+10 frs and fr,s = f5’5+1 o fns'

t is a limit ordinal: Suppose that ((U,c,. MZ (= M*) | s <t),{f,s |7 < s <t)) and

i€u2
(M| s <t),{frs | 7 <s <t)) have been defined. Since these are both directed
systems, we can take direct limits. By niceness, we can apply Claim I1.6.13, so that
we may assume that (M*, (f, | s <t)) and (M, <f';‘t | s <'t)) are respective direct
limits such that M* < M, fz, D f2, and U, Use,s M} < M*.

By condition (4) of the construction, notice that M* is a (u,t)-limit model wit-
nessed by (f7,(M?®) | s < t). Hence M; is an amalgamation base. As in the

successor case of the construction in the proof of Theorem I1.7.13, we can find

M = (M]|i€ U, 4 Ju}) and an automorphism h of M such that

- (M',a’, N") is a nice scattered tower, where @’ = (a? | i € (J,_,4>Ju}) and

N'= (N7 | i€ U 8 Uuf)
. (M176—117N1> rui <c (M’,G’,N’)
: UieUKtugng Mi/m{a} |je U\ Y} =0

A MM =M and

min{u;

ChT ML

min{ul} idpyp

min{u%}

Let M be a (u,~])-limit model over Uicu._, s yur Mi such that M,

rnln{ufJrl

<t p K
M' <, M, where 7] is otp(u2) if u2 is infinite, otherwise ] = w. Let (MI |y < A
witness that MT is a limit model. Since limit models are amalgamation bases, we
may choose ]\ﬂ+1 to be a (p,w)-limit over M.

Applying Corollary 11.5.3 to (U, M},UieU 2 U M}, M) and {a; | j €

UJU'\ 4!}, there exists an automorphism of M, g, such that
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. g r UZEU% ]\47:1 = idUiEul Mil and
Cg(MY) N {aj |5 € YW\ L} =0.

Denote by (i | v € otp(u?\u;)) the increasing enumeration of u?\u;. Define

g(M!) forieu}

7

1

g(MI)  fori=i, €uf\uf
Since M is a limit model witnessed by the MI’s, we can choose a € M7\ M}
for all 4,7 + 1 € u?\u;. Since M? is a limit model for each i,i + 1 € u?\u}, we can
apply Theorem 7.2 to find N? <y M? such that ga-tp(a?/M?) does not u-split over
N? and M7 is universal over N7.

Define fo; :=goho fi, [ Uicw M? and f,,:=goho fi, for all s <.

If we isolate the induction step, we get the following useful fact:

Corollary I1.8.10. Suppose (M,a,N) € *KC, lies inside a (p, u+)-limit model,
M, that is Uica Mi <k M. 1If for some ' Ciy U, (M',a',N') € +IC;7H/ is a
partial extension of (M,a, N) (ie (M,a,N) | UNB <¢ (M’',a’,N")), then there ex-

!/
and an element AgupiU '}
such that f : Ujeqe M — M, f | M; = idy, for j € W and ((f(M]) | i €

Uu/>A<Mslup{Uu/}+1>a (aj | i€ Uu,y(a;up{uufprl% (f(N}) i€ Uu/>A<NS/up{Uu/}+1>) is

a partial <¢-extension of (M,a, N).

and N'

ist a <x-mapping f, models Ms/up{uu’ sup{U 0} +1

}1

2.9 Reduced Towers are Continuous

In Section 2.10 we identify a property (relatively full and continuous) which will

guarantee that for a tower (M,a, N) € +IC;7 with this property, we have that

[0}
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Uica Mi is a (p, o)-limit model over M, (see Theorem I11.10.12). This addresses
problem (1) in our construction of an array of models described at the beginning of
Section 2.8. The first point that (1) breaks down is that (M | i < 6;) need not
be a continuous chain of models, since we do not require towers to be continuous.
Shelah and Villaveces introduced the concept of reduced towers in an attempt to
capture some continuous towers. Unfortunately, their proof that reduced towers
are continuous does not converge. Here we solve this problem. We introduce a

strengthening of reduced towers, completely reduced towers, for easier reading.

Definition I1.9.1. A tower (M,a, N) € +IC:7M is said to be reduced provided that
for every (M',a',N') € TK, y with (M,a, N) <¢ (M',a’, N') we have that for every
ieJu,

()i M0 ] M; =M,
jeyu

If we slightly modify the proof of Theorem I1.8.8 by using the full power of Fact
I1.5.1, we can conclude that given (M,a, N) € +ICzu we can always find some
extension (M’,a’, N') such that (x); holds for every i € 4. The definition of reduced
isolates towers in which every <‘-extension of (M, a, N) satisfies (x); for i € [J4.

The following seems to be a strengthening of reduced, but by Proposition 11.9.3
it turns out to be equivalent to reduced. We introduce it primarily for expository
reasons as it breaks down the proof of Theorem I1.9.7. The formal difference between
completely reduced and reduced, is that for a tower to be reduced we require every

partial extension (M',a',N') € TK,,  of (M,a, N) to satisfy (x); for i € [JU'.

Definition I1.9.2. A tower (M,a, N) € +ICZ’u is said to be completely reduced

provided that for every ¢ < sup{JU} and every (M’ ,a’,N') € +’C;,umg with
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(M,a,N) [ 4n¢ < (M',a’, N') we have that for every i € [JUNC,
Mn ) M=M

jeyung

Proposition 11.9.3. If (M, a, N) is reduced, then it is completely reduced.

Proof. Suppose that (M,a, N) is not completely reduced, then there exist a ( <

sup{U}, a tower (M’,a’, N') € +,C:,M[C’ i € JUNC and an element b such that
- (M,a,N) | (&4 ]¢) < (M',a',N') and

be (M N M)\ M;.

jeyyune

By Lemma I1.8.10, there exists a <x-mapping f and a tower (M*,a*, N*) € +’Cu,u

such that
(1) (M,a,N) <° (M*,a*, N*),
(2) f: Ujeuumg M — Ujeuumg M;,
(3) T Ujeyune Mi = idy, | e M

(4) for every j € JUNC, f(M]) = M}

J

Notice that by (3) and the fact that b € J M, we have that f(b) = b. Since

jelJunc
b € M/, we have b € f(M]) = M. Thus (M*,a*, N*) witnesses that (M,a, N) is

not reduced.

_|

Corollary 11.9.4. If (M,a,N) € JFICZ’u is reduced, then for every ¢ < sup{lJu},

(M,a,N) | ¢ is also reduced.

Proof. Immediate from the definitions and Proposition I1.9.3. -
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If we take a <“increasing and continuous chain of reduced towers with increasing
index sets, the union will be reduced. The following proposition appears in [ShVi] for
the special case when { = {a} for some limit ordinal o (Theorem 3.1.14 of [ShVi].)

We provide the proof here for completeness.

Fact I1.9.5. Let (&L, | v < B) be an increasing and continuous sequence of sets of
intervals (4,41 is an interval-estension of ., and if v is a limit ordinal |, =
Use, Ulks.) If (M,a,N)¥ € JF/CZ’LIW | v < B) is <®-increasing and continuous
sequence of reduced towers, then the union of this sequence of towers is a reduced

tower.

Proof. Denote by (M,a, N)? the union of the sequence of towers and 45 the limit
of the intervals. More specifically, iz is a fixed set of intervals such that |JUs =
U,<s UL, and for every v < 3, Uz is an interval extension of ii,. MP = (MP |
i€ Ulls) where M = Uy, gicyuy M. NP = (NPOFUSE 1 e J1lg) and
s — <a§nin{vlieuﬂy} i e i)

Suppose that it is not reduced. Let (M’,a, N) € ﬂCZ,u , Witness this. Then there

exists an ¢ € |JHs and an element a such that a € (M N Y MJB)\M{B There

jE}Jﬂ
exists 7 < [ such that ¢ € 4, and there exists j € 4, such that a € M] Now
consider the tower in +IC:7LLW (M',a, N) | $k,. Notice that (M’,a, N) | 4, witnesses

that (M, a, N)7 is not reduced. -

The following proposition will be used in conjunction with Theorem I1.9.7 to
show that every tower can be properly extended to a continuous tower. It appears
in [ShVi] (Theorem 3.1.13) for the particular case of U = {«a} for limit ordinals a.
John Baldwin has asked for us to elaborate on their proof here. We provide a proof

of the more general result with i an arbitrary set of intervals on o < p*.
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Proposition 11.9.6 (Density of reduced towers). Let (M,a, N) € +IC:7H be nice.
Fiz M a (p, p*)-limit model containing \J,cq M;. Then there exists (M',a,N) €

JFIC;Ll such that
- (M,a,N) < (M',a,N),

- (M',a, N) is reduced and

' UieUuMz'/ =K M.

Proof. We first observe that it suffices to find a <®-extension, (M’,a’, N'), of (M, a, N)
that is reduced. If (M’,a’, N') does not lie inside of M, since (M, a, N) is nice, we
can apply Proposition 11.2.34 to find a <x-mapping f : UieUuMi/ — M such that
f1 UieUuMi‘ Notice that f[(M’,a’, N')] is as required.

Suppose for the sake of contradiction that no <‘-extension of (M,a, N) in JFIC:;Ll
is reduced. This allows us to construct a <“increasing and continuous sequence of
towers ((M¢,a¢, N¢) € *IC, o | ¢ < pt) such that (M, a¢™, N¢™) witnesses that
(M¢,ac, N¢) is not reduced for ¢ > 0.

The construction: Since (M,a, N) is nice, we can apply Theorem I1.8.8 to find
(M,a, N)* a <¢ extension of (M,a, N). By our assumption on (M,a, N), we know
that (M, a, N)! is not reduced.

Suppose that (M, a, N)¢ has been defined. Since it is a <®-extension of (M, a, N),
we know it is not reduced. By the definition of reduced towers, there must exist
a (M,a, N+t e +IC:7L[ a <‘extension of (M,a, N)*, witnessing that (M,a, N)¢ is
not reduced.

For ¢ a limit ordinal, let (M,a, N)¢ = |J._.(M,a, N)?. This completes the con-

7<¢

struction.
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For each b € UC</ﬁ,i€UﬂMi< define

i(h) :=min{i e | Ju|be |J (J My} and
@ 25

¢(b) :==min {¢ < p* | be Mf,}.
¢(+) can be viewed as a function from p* to pu*. Thus there exists a club E =
{6 <ut|Wbe Uieuqu, ¢(b) < d}. Actually, all we need is for £ to be non-empty.
Fix § € E. By construction (M°*+! a’*1 No+1) witnesses the fact that (M?,a®, N9)
is not reduced. So we may fix i € |Jtl and b€ M N Ujeuqu such that b ¢ M?.
Since b € M™!, we have that i(b) < 4. Since § € E, we know that there exists ¢ < §

such that b € M¢

i) Because ¢ < 0 and i(b) < i, this implies that b € M? as well.

This contradicts our choice of 7 and b witnessing the failure of (M? a’, N%) to be

reduced. -

The following theorem was claimed in [ShVi]. Unfortunately, their proof does not

converge. We resolve their problems here.

Theorem I1.9.7 (Reduced towers are continuous). For every a < ut < X and

every set of intervals U on o, if (M,a, N) € +ICZ’u is reduced, then M is continuous.

Proof. Let p be given. Suppose the claim fails for ¢ and ¢ is the minimal limit ordinal

for which it fails. More precisely, d is the minimal element of

( 3
0 is a limit ordinal

there exist 4 a set of intervals

and a reduced tower (M,a,N) € *KC, ; such that
sup{UU} Nd =4,

e JU and

Ms # Uiewswns Mi
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Let ¢ be a set of intervals and (M, a, N) € +K;,u witness 0 € S. Let b €
M5\ Uiewsns Mi be given. Our goal is to arrive to a contradiction by showing that
(M,a, N) is not completely reduced. By Corollary 11.9.4, it is enough to show that
(M,a,N) | (§ +1) is not reduced. We will find a <“-extension (M*,a | (§4+1), N |
(6 +1)) of (M,a,N) | (6 +1) such that b € M for some ¢ < .

Fix M a (u, pF)-limit over Mjs. We begin by defining by induction on ¢ < 4 a
<C‘-increasing and continuous sequence of reduced towers, ((M,a, N)¢ € +KZ,MF6 |
¢ < 0), such that (M,a, N)° | § = (M,a, N) and M < M for all ¢ < ¢ and for
all ¢ € ([JUNS. Why is this possible? By the minimality of 6 and Corollary 11.9.4,
(M,a, N)° | § is continuous. Therefore, it is nice. This allows us to apply Proposition
I1.9.6 to get a reduced extension (M,a, N)! of length ¢ inside M. Similarly we can
find reduced extensions at successor stages. When ( is a limit ordinal, we take unions
which will be reduced by Fact I1.9.5.

Consider the diagonal sequence (Mé | ¢ € YU and ¢ < §). Notice that this
is a <y-increasing sequence of amalgamation bases and Mg is universal over Mé
whenever ¢ < ¢’ € [JUNJ. By minimality of §, the sequence <M§ |¢e Y and ¢ <
J) is continuous:

for ¢ € Uilﬂé with ¢ = sup{UilﬂC}, Mf = U Mf
£<¢
Thus Ueeyyuns Mé is a limit model. Since ¢\ jyns Mg and M; are amalgamation
bases inside M, we can fix M <x M a (y,w)-limit model universal over both
Uceysuns Mg and M;. (w was an arbitrary choice, we only need that M¢ be a (u,6)-
limit for some limit 0 < p*.)

Because Uceuumé Mg is a limit model, we can apply Fact 11.7.3 to
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ga-tp(b/ Ueeurs Mé,Mg). Let £ € [JUNJ be such that

(%)1 ga-tp(b/ U M¢, M?) does not p-split over M§
¢celyuns

We chose by induction on i < § a <y-increasing and continuous chain of models
(N e K, | i e JUN(d + 1)) and an increasing and continuous sequence of K-

mappings (h; | i € JUN(0 + 1)) satisfying
(1) hy: M} — N} fori <4

(2) hiy1(a;) ¢ Nf fori,i+1elJUN(0+1)

(4) N is universal over N7 for j < i

(5) M2 C Ny fori> ¢

(6) he = idMEg,

(7) ga-tp(b/h;(M})) does not p-split over Mg for i € U N with ¢ > £ and
(8) ga-tp(hi+1(a;)/N;) does not u-split over h;(N;) for i,i+1 € (JUN(I + 1).

Fix an increasing enumeration of (JUN(d+1) = {i¢ | ¢ < a} for some a < 4. We
construct this sequence of models and sequence of mappings by induction on ( < a.
Let £* be such that § = ig-:

*, * . iC — 9 .

¢ <& Set Ni< = Mic and h;. = szzg.

¢ > & is a limit ordinal and i; = sup{i, | v < ¢}: To maintain continuity,
N = U, N; and h;. = U, hs,. Condition (7) follows from the induction
hypothesis and Fact I1.7.4.

¢ > &% is a limit ordinal with ic # sup{i, | v < (} or { = y+1 withic # i,+1: Let

N* =g N7, and M* = U, Mfg. Let N € K}, be a universal extension of N*



74

and M with N <k M. This is possible because either N* = N;, for some 3 and
is therefore a limit model by the induction hypothesis, or continuity and condition
(4) guarantee that N* is a limit model witnessed by (N7 | 8 < (). N;* will be a
first approximation for our definition of N’i*c' To get condition (7) notice that by the

induction hypothesis we have for every g < (,
ga—tp(b/hﬁ(Mfg)) does not p-split over ]\/[g
With an application of Fact I1.7.4, we can conclude that
ga-tp(b/M™) does not p-split over Mg

By Theorem I1.7.6 we can find f € Aut (M) such that

8

ga-tp(b/ f(N;")) does not p-split over Mf

Let N := f(N;") and h;. := f. Notice that we do not have to concern ourselves
with condition (8) since i¢ # i, + 1. It is routine to verify that N and h; meet the
other conditions.

¢ =v+1> ¢ withic =iy+1: Let hy, € Aut(M) extend h; . Let N** € K¥, be a
universal extension of N} , ha, (MZ;) and M with N** <x M. This will be our first
approximation to Ni*g.

We will first work towards condition (2). By Corollary I1.5.3, applied to A (MZJ),

hi, (Mff), N** and the collection of elements (M2 | J NI\, (MZJ), we can find a <jc-

mapping f such that

F R (M) = N

i¢

f T he (M) =id

; and
By

hiy (M)

o f (e, (M) O (MU N )\hi, (M]7) in particular f o by, (a;) ¢ N7, for j > i,

ic



(6]

Now that we have met condition (2), we focus on meeting condition (8) without

mapping a;, into N; . By the definition of towers, we have
ga-tp(a;, /MZ:) does not p-split over NZJ
By invariance we have that
ga-tp(f o hy (ai)/hi, (Mf:)) does not p-split over h; (NZ:)

By the extension property for non-splitting (Theorem I1.7.6), we can find g €

Aut (M) such that

hin (M)

(%)2 ga-tp(go fo ﬁiw(aiv)/N;) does not p-split over h,-v(N”).

iy
Let ¢ :=gof Of%. We need to verify that by applying ¢’ our work towards condition

(2) is not lost:
Claim I1.9.8. ¢'(a;,) & N; .

Proof. Since h; (M, Z:) is universal over hiW(NZJ), there exists a <x-mapping H :

7

N7 — hi, (M) with H [ by (N]7) = id

(2% Ty

~ viv,- By definition of ¢’ and (*2), we have
hiy (N])

ga-tp(g'(ai,)/N; ) does not p-split over hiv(N;:). Thus

(x)s  ga-tp(g'(as,)/H(N})) = ga-tp(H (g'(ai,))/H(N,)).

Suppose for the sake of contradiction that g'(a;,) € N; . Then an application of
H gives us that H(g'(a;,)) € H(N; ). Thus by the above equality of types ()3, we
have that ¢'(a;,) € H(N; ). Since rg(H) C hZW(MZJ) we get that ¢'(a; ) € hy, (Mf:)
Since a;, ¢ M;: and since ¢ | M;7 = h; , an application of ¢’ gives us g(a;,) ¢

hi (M .i”), contradicting the previous paragraph. -

Ty
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We now tackle condition (7). Fix N7 <k M such that it is universal over ¢’ (Mff),

N; and N**. By monotonicity of non-splitting (%); implies

ga—tp(b/M;”) does not p-split over Mé
By invariance we get
ga—tp(g’(b)/g’(MfJ)) does not pu-split over Mg

By the extension property for non-splitting, we can find k € Autg, M such that

(M)
ga-tp(k o g'(b)/N;;) does not -split over Mf

Set h;. :=kog | Ni. Since k fg’(M;:) = 'l'dg,(Mii’:), conditions (2) and (8) are met
by h;.. This completes the construction of our sequences (N;* | i € (JUN(d+1)) and
(h; |1 e JUN(0 4+ 1)).

We now argue that the construction of these sequences is enough to find a <
extension, (M*,a [ (6 +1),N | (6 +1)), of (M,a,N) | (6 +1) such that b € M
for some ¢ < 6. We will be defining M* to be pre-image of N*. The following claim

allows us to choose the pre-image so that M contains b for some ¢ < 9.

Claim I1.9.9. There exists h € Aut(M) extending UicUsins bi such that h(b) = b.

Proof. Notice that i, = §. Consider the increasing and continuous sequence <h5(MZ;/) |
v < a). By invariance, when i < j, hs(M?) is universal over hs(M}) and hs(M;) is

a limit model. By construction we have that for every i € [ J4NJ,
ga-tp(b/hs(M}))does not p-split oveng.
This allows us to apply Fact I11.7.4, to ga-tp(b/ Uieuuﬂé hs(M})) to conclude that

(%)4 ga-tp(b/ U hs(M})) does not p-split over Mf
e Juns
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Notice that (J;qjyns M/ is a limit model witnessed by (M]j | 7 e JUni). So we
can apply Proposition 11.2.33 and extend Uieuuma h; to an autmorphism h* of M.
We will first show that

(#)s  ga-tp(b/h*( | ) M)), M) =gatp(h*(b)/h*( | ] M), M).
e Juno eJuns

By invariance and our choice of £ we have that

ga-tp(h*(b)/h*( U M?), M) does not p-split over Mf
eyuns

We will use non-splitting to show that these two types are equal (x)5. In accor-
dance with the definition of splitting, let N! = UieUuns M}, N? = P (Uieysns M})
and p = ga-tp(b/h* (U;eyuns Mi), M). By (+)a, we have that p | N> = h*(p | N*').
In other words, ga-tp(b/n" (Ucjuns M), M) = ga-tp(h*(b)/h* (Uicurs M), M), as
desired.

From this equality of types (*)s, we can find an automorphism f of M such that
f(h*(b)) = b and f [ W*(U;cyuns M) = idh*(UieUuﬂé my)- Notice that h := f o h”
satisfies the conditions of the claim.

_|

Now that we have a automorphism A fixing b and UieUuﬂ(S M;, we can define M*
as the pre-image of N*. For each i < § define M} := h=}(N;). Let ¢ := min{i € U |
i > &+ 1}. Notice that since § = sup{Nd} and § > &, we have that ¢ < 0. Let

4 = 4UN(5 + 1).

Claim I1.9.10. (M*,a | JW* N | U*) is a <¢-eatension of (M,a, N) | JU* such

that b € ]\/[Z

Proof. By construction b € M{ C N¢. Since h(b) = b, this implies b € M. To verify

that we have a <‘-extension we need to show for 7 € {*:
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i. M} = M, or M} is universal over M;
ii. a; ¢ M} for j € 4" with j > i and
ili. ga-tp(a;/M;) does not u-split over N; whenever i, + 1 € [JU".

Item i. follows from the fact that M} is universal over M; and M; <, M;. Condition
(2) of the construction of (N | i € [JUN(d+ 1)) guarantees that for j > i, h(a;) ¢
N;. Thus for j > 1, a; ¢ M. iii follows from condition (8) of the construction and

invariance. —

Notice that (M*,a | JU*, N | JU*) witnesses that (M,a, N) | [JU* is not
reduced. This gives us a contradiction and completes the proof of the theorem.
2.10 Relatively Full Towers

We begin this section by recalling a definition of strong types from [ShVi].

Definition I1.10.1 (Definition 3.2.1 of [ShVi]). For M a (u, #)-limit model,

(1) Let
( N < M; \
N is a (i, 0) — limit model;
St(M) = ¢ (p,N) | M is universal over N;
p € ga-S(M) is non-algebraic (not realized in M) and
\ p does not p — split over V. )
and

(2) For types (pi, V;) € &t(M) (I = 1,2), we say (p1, V1) ~ (pa, Na) iff for every
M' € K™ extending M there is a ¢ € S(M') extending both p, and p, such

that ¢ does not p-split over Ny and ¢ does not p-split over NVs.




79

Notice that ~ is an equivalence relation on &t(M). ~ is not necessarily the
identity. If non-splitting were a transitive relation, then ~ would be the identity.
Not having transitivity of non-splitting is one of the difficulties of this work. For
instance, the proof of Fact 11.7.4 would be easy if we had transitivity. Even in
the first order situation, splitting is not transitive. This is one of the features of

non-forking which makes it more attractive than non-splitting.

Lemma I1.10.2. Given M € K™, and (p,N), (p', N') € &t(M). Let M’ € K"

be a universal extension of M. To show that (p, N) ~ (p'N') it suffices to find

q € ga-S(M') such that q extends p and p' and q does not p-split over N and N'.

Proof. Suppose ¢ € ga-S(M’) extends both p and p’ and does not p-split over N
and N'. Let M* € K™ be an extension of M. By universality of M’, there exists
f: M* — M’ such that f | M = idy;. Consider f~'(¢q). It extends p and p’ and

does not p-split over N and N’ by invariance. Thus (p, N) ~ (p/, N'). -

The following appears as a Fact 3.2.2(3) in [ShVi]. We provide a proof here for

completeness.
Fact 11.10.3. For M € K", |&t(M)/ ~ | < p.

Proof. Suppose for the sake of contradiction that | St(M)/ ~ | > u. Let {(p:;, N;) €
St(M) | i < pt} be pairwise non-equivalent. By stability (Fact 11.2.20) and the
pigeon-hole principle, there exist p € S(M) and I C p* such that ¢ € I implies
pi = p. Set p = ga-tp(a/M).

Let M be a (i, pt)-limit model containing M | Ja. Fix M’ € K™ a universal
extension of M inside M. We will show that there are > u* types over M’. This

will provide us with a contradiction since K is stable in pu.
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For each i € I, by the extension property for non-splitting (Theorem I1.7.6), there

exists f; € Auty; M such that
- ga-tp(f;(a)/M’) does not u-split over N; and
- ga-tp(fi(a)/M’) extends ga-tp(a/M).
Claim I1.10.4. For i # j € I we have that ga-tp(fi(a)/M') # ga-tp(f;(a)/M’)

Proof. Otherwise ga-tp(f;(a)/M’) does not p-split over N; and does not p-split over
N;. By Lemma I1.10.2, this implies that (p, N;) ~ (p, N;) contradicting our choice

of non-equivalent strong types.

This completes the proof as {ga-tp(f;(a)/M’) | i € I} is a set of ut distinct types

over M. -

We can then consider towers which are mildly saturated with respect to strong

types (from St(M)). These towers are called relatively full (see Definition 11.10.6.)

Remark I1.10.5. When « and § are ordinals, o x § with the lexicographical order-
ing (<jex), is well ordered. Recall that otp(a X d, <jer) = 9 - @ where - is ordinal

multiplication. We will identify « x § with the interval of ordinals [0, - «).

Definition I1.10.6. Let 4 = {a x §} for some limit ordinals o, § < p*. Let (M7 |
v < ) be such that M” is a sequence of limit models indexed by {4 and M g’;l is
universal over Mg ; for all (3,4) € U.

A tower (M,a,N) € *K, is said to be full relative to (M | v < ) iff for all

(6,1) e U

(1) Mg =U,cp Mg; and
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(2) for all (p, N*) € &t(Mps;) with N* = Mg, for some v < 6, thereis a j <

6 such that (ga-tp(agi1,;/Msi13), Nayrg) [ Mgi ~ (p, N¥).

Notation I1.10.7. We say that (M,a, N) € K’ is relatively full iff there exists

0
Ky

(M" | v < 6) as in Definition 11.10.6 such that (M, a, N) is full relative to (M” | v <

9).

Remark I1.10.8. A strengthening (full towers) of Definition I1.10.6 appears in [ShVi]

(see Definition 3.2.3 of their paper). Consider the equivalence
(*) VM € K™ and V(p, N), (p',N') € 6t(M) (p,N) ~ (p/, N") iff p=1p'.

(%) implies that relatively full towers are full. However we do not know that (x)
holds. We introduce relatively full towers because we cannot guarantee the existence
of full towers. The existence of relatively full towers is derived in the proof of the

uniqueness of limit models in the following section.

Notation I1.10.9. Suppose M <y, M’ are amalgamation bases of cardinality pu.
For (p, N) € &t(M’), if M is universal over N, we denote the resitriction (p, N) |
M € &t(M') to be (p | M,N).

If we write (p, N) | M, we mean that (p, N) is a strong type over M’ (ie p does

not u-split over V) and M is universal over V.
Remark I1.10.10. If (p, N) ~ (p/, N'), then necessarily p = p'.
The following proposition is immediate from the definition of relative fullness.

Proposition I1.10.11. Let a and 0 be limit ordinals < p*. Set 4 := {a x 0}. If
(M,a,N) € J’ICZil is full relative to (M7 | v < 6), then for every limit ordinal 8 < a,
we have that the restriction (M,a, N) | {8 x 8} is full relative to (MY | {8 x 0} |

v < 0), where M | {3 x 6} denotes (M; | i € 3 x 6).
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The following theorem is proved in [ShVi] for full towers (Theorem 3.2.4 of their

work). The proof here is similar to Shelah and Villaveces’ argument.

Theorem I1.10.12. Let « be an ordinal < p* such that o = p - . Suppose U =
{a x §} for some § < pt. If (M,a,N) € JFICZu is full relative to (M"Y | v < 6) and

M is continuous, then M := Uieyu Mi is a (. cf(a))-limit model over M.

Proof. Let M’ be a (u, a)-limit over M, witnessed by (M/ | i < a). Since M is an
amalgamation base, we can assume that M is a (p, p™)-limit model over My such
that M, M’ <x M. We wiill construct a <x-embedding from M into M’. For each
i < o we can identify the universe of M/ with (1 + ¢). Notice that since o = pua,
we have that ¢ € M/, for every i < a.

Now we define by induction on ¢ < a <x-mappings (h; | ¢ < a) such that
(1) h;: M; ; — M), for some j < ¢
(2) (h; | i < @) is increasing and continuous and

(3) i € rg(hit1).

For ¢ = 0 take hg = idy,. For ¢ a limit ordinal let h; = Uj<i h;.

Suppose that h; has been defined. There are two cases: either i € rg(h;) or
i ¢ rg(h;). First suppose that ¢ € rg(h;). Since M, is universal over M/, ,, it is also
universal over h;(M; ;). This allows us to extend h; to hip1 @ Mip1 9 — M.

Now consider the case when i ¢ rg(h;). Since (M;; | v < 0) witness that M; ; is a
(i, 0)-limit model, by Fact I1.7.3, there exists € < 6 such that ga-tp(i/h;(M;;)) does
not p-split over h;(M; ;). There exists ga-tp(b/M; ;) € ga-S(M;;) and ' € Aut M
extending h; such that ga-tp(h'(b)/h;(M;;)) = ga-tp(i/hi(M; ;). WLOG K (b) = i.

By relative fullness of (M, a, V), there exists j' < § such that

(ga-tp(b/M;;), M;;) ~ (ga-tp(ait1,y/Miy1,j), Nizay) [ M.
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In particular we have that

(*) ga—tp(aiﬂ,j//]\/[i,j) = ga—tp(b/Mm)

An application of A’ to () gives us

(i) ga-tp(h'(aip15) /W' (M) = ga-tp(h'(b) /1 (Mi ;) = ga-tp(i/hi(Mi;)).

By (sx), there exist M* € K™ a K-substructure of M containing M;; and K-
mappings fq : ' (Mit1541) — M* and f; : M}, , — M* such that fo(h/(aiy15)) =
fi(i) and f, [ hy(M; ;) = fi [ hi(M; ;) = idp, g, ,)- Since M, , is universal over M;,,
it is also universal over h;(M, ;). So we may assume that M* = M/, ,. Since M is a
(11, t)-limit model, we can extend f, and f, to automorphisms of M, say f. and fp.
Let hiy1 : Miy1 41 — M, be defined as f;l o f, o h'. Notice that hivi(aip1) =1t

Let h:={J._, hi. Clearly h : M — M'. To see that h is an isomorphism, notice

i<«

that g and condition (3) of the construction forces h to be surjective.

2.11 Uniqueness of Limit Models

Recall the running assumptions:
(1) K is an abstract elementary class,
(2) K has no maximal models,
(3) K is categorical in some A\ > LS(K),

(4) GCH and ®,,+(S) +) holds for every cardinal u < A and every regular 6 with

0 < put.
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Under these assumptions, we can prove the uniqueness of limit models using the
results from Sections 2.8, 2.9 and 2.10. This is a solution to a conjecture from [ShVi].
Notice that in the proof of the <“-extension property for nice towers, there is some
freedom in choosing the new ais. We will use this corollary in the inductive step of

the construction in Theorem I1.11.2 in order to produce a relatively full tower.

Corollary I1.11.1. Let U' and 4% be sets of intervals of ordinals < p* such that
U* is an interval extension of U'. Let (M' a',N') € +/C:7u1 be a nice scattered
tower. Let u\u; = {i, | v < otp(ui\u;)}. Fiz {(p,N)" | v < otp(ui\u;)} C
UjEUtl Gt(Mjl) (in our application otp(u?\u}) = p and {(p, N)? | v < otp(u?\u})} =
UjEu

Then there exists a nice scattered tower (M?,a*, N?) € YK, 2 such that (M*,a*, N') <°

1 Gt(M})). We denote (p7, N7) as (p, N)".

t

(M?,a?, N?) and for every t < o' and for every v < otp(u?\u;) we have that
- (p, N)" ~ (ga-tp(aj / dom(p?), N7 ) and
N2 = N7,

Proof. WLOG we may assume U' = {u} | t < o'} and U4* = {u? | t < o'} are as in
the proof of Theorem I1.8.8. Refer back to stage t of the construction in the proof of
Theorem I1.8.8. At stage ¢ of the construction, after we have defined (M? | i € u?),
notice that our choice of afw was arbitrary. Here we make a more selective choice.
Let v < otp(ui\uy) be given. Consider (p, N)? € Gt(M}). So M} is universal over
N7. Also notice that M7 is universal over M} because M7 is universal over M and
Mi contains M ]2 Since Mi is universal over M jl, an application of Theorem I1.7.6,
gives us p’ € ga—S(Mi) extending p” such that p’ does not p-split over N7. Since

M2

2 is universal over M?, there exists ' € M?  realizing p’. Set a? := o' and
y+1 by by

by+1

N2 .= N".
Ty
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Theorem I1.11.2 (Uniqueness of Limit Models). Let p be a cardinal 6,05 limit
ordinals such that 61,0, < ut < \. If My and My are (u,61) and (u,02) limit mod-
els over M, respectively, then there exists an isomorphism f : My = My such that

1M =idy.

Proof. Let M € K" be given. By Fact 11.2.29, it is enough to show that there exists
a 0y such that for every 6; a limit ordinal < u*, we have that a (u, 6;)-limit model
over M is isomorphic to a (p, 63)-limit model over M. Take 65 such that 0y = pfs.
Fix 6, a limit ordinal < . By Fact 11.2.30, we may assume that ¢, is regular. Using
Fact I1.2.29 again, it is enough to construct a model M* which is simultaneously a
(1, 01)-limit model over M and a (u, 02)-limit model over M.

The idea is to build a (scattered) array of models such that at some point in the
array, we will find a model which is a (ju, 6;)-limit model witnessed by its height in
the array and is a (u, f2)-limit model witnessed by its horizontal position in the array,
relative fullness and continuity. To guarantee that we have continuous towers, we
will be constructing the array with reduced towers. We will define a chain of length
wt of reduced, scattered towers while increasing the index set of the towers in order
to realize strong types as we proceed with the goal of producing many relatively full
rOwWsS.

We will consider the index set U at stage 0 < av < pu™ where
U* = {ug | g < a},

where the disjoint intervals of U are ug := {(8,4) | i < pa} with (3,7) denoting an
ordered pair (not an interval). The ordering on (J4“ is the lexicographical order.

Notice that for a < o < ™, we have UY Cypy 4. We start our construction at
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a =1 (as opposed to a = 0) in order to avoid an "empty” tower.
Define by induction on 0 < o < pt the <“increasing and continuous sequence of

scattered towers, ((M,a, N)* € +,C:7ua | @ < pt), such that
(1) M <x Mg,
(2) (M,a, N)* is reduced,
(3) (M,a,N)* := Uﬁ<a(]\_4, a, N)? for o a limit ordinal and

(4) in successor stages in new intervals of length p put in representatives of all Gt-
types from the previous stages, more formally, if (p, N) € &t(Mg,) for i < pa

and < a, there exists j € [po, p(a + 1)) such that
(p, N) ~ (ga-tp(agyr;/ Mg ), Ny) | Mg,

This construction is possible:
a = 1: We can choose M* = (M} | i < u) to be an arbitrary <y increasing sequence
of limit models of cardinality y with Mg = M. For each i < p, fix ag, € M}, \M;.
Now consider ga-tp(ag;/M;"). Since M; is a limit model, we can apply Fact I1.7.3 to
fix Ny, € Kj™ such that ga-tp(ag;/M;") does not p-split over Nj,; and M;" is universal
over Ny, Let a' := (aj, | i < p) and N* = (N§, |« < pu). By Theorem I1.9.6, there

exists a sequence of models, M*, such that (M*! a', N')
. + *
- is a member of Ku,uh
- is a <“extension of (M*,a!, N') and
- is reduced.

a a limit ordinal: Take (M, a, N)* :=Js.,(M,a, N).

a = 3+ 1: Suppose that (M,a, N)? has been defined. By Fact I1.10.3, for every
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v < B, we can enumerate |J;_,4 Gt(Mf,k) as {(p, N); | I < u}. Notice that for all

v <P
uy e = {(7,4) | B < i < p(B+ 1)}
By Corollary I1.11.1 and Theorem I1.9.6 we can find a reduced extension (M, a, N)#+1 ¢

+IC:711(B+1) of (M,a, N)? such that for every [ < p and v < 3,

(. N~ (ga-tD(as i1/ Mg ) Nostgoget) | dom(p?).

This completes the construction.

We now want to identify all the rows of the array which are relatively full.

Claim I1.11.3. For § a limit ordial < p*, we have that (M,a, N)° is full relative

to (M" | v < 6).

Proof. Let (p, N) € Gt(Mgﬂ-) be given such that N = M, for some v < §. Since our
construction is increasing and continuous, there exists &' < & such that (3,4) € 4%
and v < ¢. Notice then that ngz is universal over N. Furthermore, p | M‘;:i
does not p-split over N. Thus (p,N) | Mg’z S Gt(]\/[g:i). By condition (?7?) of the

construction, there exists j < p(5 + 1), such that
(p,N) | MZ;/Z ~ (ga—tp(aﬁ-l-l,j/Mgi_ll’j)? Nﬁ+1,j) I Mglz

Since ng:llj <k M}, ; and ga-tp(ags1,;/Mj,, ;) does not p-split over Ng.q ;, we

can replace M2 with M}

B+1,5 +1,5°

(p. N) I M5, ~ (ga-tp(ags1 /MGy ), Nowry) | M5,

Let M’ be a universal extension of Mg +1,;- By definition of ~, there exists ¢ €
ga-S(M’) such that ¢ extends p | Mg'Z = ga—tp(agﬂyj/M‘;:i) and ¢ does not u-
split over N and Ngyp;. By the uniqueness of non-splitting extensions (Theo-

rem I1.7.8), since p does not u split over N, we have that ¢ | Mg’i = p. Also,
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since ga-tp(ags1,;/Mj,, ;) does not p-split over Ngyyj, Theorem I1.7.8 gives us
q MgHJ = ga—tp(a5+17j/Mg+17j). By definition of ~ and Lemma I1.10.2, ¢ also
witnesses that (ga-tp(ags1, /M,y ), Nas1s) | M, ~ (p, N). Since (p, N) was cho-
sen arbitrarily, we have verified that (M,a, N)° satisfies the definition of relative

fullness.

Take (0 < pt | ¢ < 61) to be an increasing and continuous sequence of limit

ordinals > 6,. By Proposition 11.10.11, we have that
(M, a, N | {0y x pdc} is full velative to (M7 | {0y x pdc} | v < 0¢ -

Define

M=) U M= | M

(<01 i€02 X pud¢ 1€02 ><,u(591

We will now verify that M* is a (u, 0;)-limit over M and a (u, 65)-limit over M.

Notice that (|J Mfc | ¢ < 6y) witnesses that M* is a (u,6;) limit. Since

€00 X ud¢
M <k Mgf’o, M* is a (p, 61)-limit over M.

Notice that by our choice of &,, (M,a, N)% | {0y x udg,} is relatively full.
Furthermore, we see that (M,a, N)%: | {6, x udg, } is continuous since (M, a, N)%:

is reduced. Now we can apply Theorem I1.10.12 to conclude that M* is a (u, 02)-limit

model over M. -
The above proof implicitly shows the existence of relatively full towers:

Corollary 11.11.4. For every reqular limit ordinal 0 < u*, there exist ordinals «

and § < p and a tower (M,a, N) € +1Ci7{w5} such that (M, a, N) is relatively full.



CHAPTER III

Stable and Tame Abstract Elementary Classes

In this chapter, we explore stability results in the new context of tame abstract

elementary classes with the amalgamation property. The main result is:

Theorem II1.0.5. Let IC be a tame abstract elementary class satisfying the amal-
gamation property without maximal models. There exists a cardinal po(KC) such that
for every pn > po(KC) and every M € K+, A,I C M such that |I| > p* > |A|, if €
is Galois-stable in p, then there exists J C I of cardinality u*, Galois-indiscernible

sequence over A. Moreover J can be chosen to be a Morley sequence over A.

This result strengthens Claim 4.16 of [Sh 394] as we do not assume categoricity.
This is also an improvement of a result from [GrLel] concerning the existence of
indiscernible sequences.

A step toward this result involves proving:

Theorem II1.0.6. Suppose K is a tame AEC. If p > Hanf(K) and K is Galois

p-stable then k,(K) < Hanf(K)

This generalizes a result from [Sh3].

89
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3.1 Introduction

Already in the fifties model theorists studied non-elementary classes of struc-
tures (e.g. Jonsson [Jol], [Jo2] and Fraissé [Fr]). In [Sh 88], Shelah introduced the
framework of abstract elementary classes and embarked on the ambitious program
of developing a classification theory for Abstract Elementary Classes. While much
is known about abstract elementary classes, especially when K is an AEC under
the additional assumption that there exists a cardinal A > Hanf(K) such that K is
categorical in A, little progress has been made towards a full-fledged stability the-
ory. One of the open problems from [Sh 394] (Remark 4.10(1)) is to identify of
a good (forking-like) notion of independence for abstract elementary classes. This
is open even for classes that have the amalgamation property and are categorical
above the Hanf number. In [Sh 394], several weak notions of independence are in-
troduced under the assumption that the class is categorical. Among these notions
is the Galois-theoretic notion of non-splitting. This notion is further developed for
categorical abstract elementary classes in Chapter II with the extension property
and in [ShVi] with a powerful substitute for x(7") (listed here as Theorem I1.7.3).
Here we study the notion of non-splitting in a more general context than categorical
AEC: Tame stable classes. We plan to use Morley sequences for non-splitting as a

bootstrap to define a dividing-like concept for these classes.

3.2 Background

Much of the necessary background for this chapter has already been introduced
in the Background section of Chapter II. We begin by reviewing the definition of
Galois-type, since we will be considering variations of the underlying equivalence

relation E in this chapter.
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Definition IT1.2.1. Let § > 0 be an ordinal. For triples (a;, M;, N;) where a, €
AN, and M; <x N, € K for | = 0,1, we define a binary relation E as follows:
(@, My, No)E(ay, My, Ny) iff My = M; and there exists N € K and elementary
mappings fo, f1 such that f; : Ny — N and f; | M = idy for [ = 0,1 and fy(ag) =

fi(ar):

Ny ——N

f1
idT Tf2
M T N 2
Remark II1.2.2. E is an equivalence relation on the class of triples of the form

(@, M,N) where M <x N, a € N and both M, N € K*". When only M € K", E

may fail to be transitive, but the transitive closure of E could be used instead.

While it is standard to use the E relation to define types in abstract elementary
classes, we will discuss and make use of stronger relations between triples in section

3.4 of this paper.
Definition IT1.2.3. Let 3 be a positive ordinal (can be one).

(1) For M,N € K and a € °N. The Galois type of @ in N over M, written

ga-tp(a/M, N), is defined to be (a, M, N)/E.
(2) We abbreviate ga-tp(a/M, N) by ga-tp(a/M).

(3) For M € K™,
ga-SP (M) := {ga-tp(a/M,N) | M < N € K, a € ANY.

We write ga-S(M) for ga-S'(M).
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(4) Let p := ga-tp(a/M’, N) for M <, M’ we denote by p | M the type ga-tp(a/M, N).
The domain of p is denoted by dom p and it is by definition M’.

(5) Let p = ga-tp(a/M, N), suppose that M <x N’ <x N and let b € AN we say
that b realizes p iff ga-tp(b/M,N') =p [ M.

(6) For types p and ¢, we write p < ¢ if dom(p) C dom(q) and there exists a realizing

p in some N extending dom(p) such that (@,dom(p), N) € ¢ | dom(p).

Definition II1.2.4. We say that IC is 3-stable in ju if for every M € K7™, | ga-S?(M)| =

. The class K is Galois stable in p iff IC is 1-stable in p.

Definition ITI.2.5. We say that M € K is Galois saturated if for every N <x M

of cardinality < ||M||, and every p € ga-S(IV), we have that M realizes p.

Remark IT1.2.6. When K = Mod(7') for a first-order 7', using the compactness
theorem one can show (Theorem 2.2.3 of [Grl]) that for M € K, the model M is

Galois saturated iff M is saturated in the first-order sense.

It is interesting to mention

Theorem II1.2.7 (Shelah [Sh 300]). Let A > LS(K). Suppose that K has the

amalgamation property and N € K. The following are equivalent

(1) N is Galois staurated.

15 model-homogenous. I.e. i <k N an - of cardinality less than
2) N 1 del-h Le. if M N and M' = M dinality [ h

A then there exists a K-embedding over M from M’ into N.

Unfortunately [Sh 300] has an incomplete skeleton of a proof, a complete and
correct proof appeared in [Sh 576]. See also [Grl].
In first order logic, it is natural to consider saturated models for a stable theory.

In this context, saturated models are model homogeneous and hence unique. In ab-
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stract elementary classes, the existence of saturated models is often difficult to derive
without the amalgamation property. To combat this, Shelah introduced a replace-
ment for saturated models, namely, limit-models (Definition I1.2.26), whose existence
(Theorem I1.4.9) and uniqueness (Theorem I1.11.2) we have shown in Chapter II for
categorical AECs under some additional assumptions.

When K = Mod(T) for a first-order and stable 7" then automatically (by Theorem

I11.3.12 of [Shc]):

M e K, is saturated = M is (p,0)-limit for all o < p*

of cofinality > k(7).

When T is countable, stable but not superstable then the saturated model of
cardinality p is (i, Rq)-limit but not (u, Xg)-limit.

We have mentioned in Chapter II that the existence of universal extensions follows
from categoricity and GCH (see Theorem 11.2.22). However, all that is needed for

the existence of universal extensions is stability:

Claim III.2.8 (Claim 1.14.1 from [Sh 600]). Suppose K is an abstract elemen-
tary class with the amalgamation property. If K is Galois stable in u, then for every
M € K, there exists M' € K, such that M’ is universal over M. Moreover M' can

be chosen to be a (p,o)-limit over M for any o < pt.

The existence of limit models in stable AECs easily follows from Claim II11.2.8
and the amalgamation property. While the uniqueness of limit models is unknown

in stable AECs

3.3 Existence of Indiscernibles

Assumption II1.3.1. For the remainder of this chapter, we will fix IC, an abstract

elementary class with the amalgamation property.
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Remark II1.3.2. The focus of this paper are classes with the amalgamation prop-
erty. Several of the proofs in this section can be adjusted to the context of abstract

elementary classes with density of amalgamation bases as in [ShVi] and Chapter II.

The most obvious attempt to generalize Shelah’s argument from Lemma I[.2.5 of
[Shc]for the existence of indiscernibles in first order model theory does not apply since
the notion of type cannot be identified with a set of first order formulas. Moreover,
there is no natural notion of a type over an arbitrary set in the context of abstract
elementary classes. However we do have a notin of non-splitting at our disposal.

Recall Shelah’s definition of non-splitting from Chapter II:

Definition II1.3.3. A type p € S?(N) p-splits over M <x N if and only if ||M|| <
i, there exist Ny, Ny € K<, and h, a K-embedding such that M <x N; <x N for

l=1,2and h: Ny — Ny such that h | M = idy; and p [ Ny # h(p | Nq).

Notice that non splitting is monotonic: Le. If p € ga-S(N) does not split over M
(for some M < N) then p does not split over M’ for every M < M' < N.
Similarly to x(T") when T is first-order the following is a natural cardinal invariant

of KC:

Definition II1.3.4. Let § > 0. We define an invariant £ (K) to be the minimal

such that for every (M; € K, | i < k) which satisfies
(1) k= cf(r) < p®,
(2) (M; | i < k) is <g-increasing and continuous and
(3) for every i < K, M;yq is a (u, 0)-limit over M; for some 6 < p™,

and for every p € ga-S®(MM,,), there exists i < s such that p does not p-split over M;.

If no such x exists, we say x,(K) = oo.
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Notice that Theorem II.7.3 states that categorical abstract elementary classes
under Assumption II.1.1 satisty I{}L(/C) < w, for various .
A slight modification of the argument of Claim 3.3 from [Sh 394] can be used to

prove a related result using the weaker assumption of Galois-stability only:

Theorem II1.3.5. Let 3 > 0. Suppose that IKC is [3-stable in p. For every p €
ga—Sﬁ(N) there exists M <y N of cardinality pu such that p does not u-split over M.

Thus &)(K) < .
For the sake of completness an argument for Theorem II1.3.5 is included:

Proof. Suppose N =x M, @ € °N such that p = ga-tp(a/M, N) and p splits over
Ny, for every Ny < M of cardinality .

Let x := min{y | 2X > A}. Notice that y < A and 2<X < \.

We'll define {M, < M | o < x} C K, increasing and continuous <-chain which

will be used to construct M; € K, such that
| ga-S” (M) = 2% > X obtaining a contradiction to A-stability.

Pick My < M any model of cardinality .

For @ = 3 + 1; since p splits over Mg there are Ny, <k M of cardinality A for
¢=1,2 and there is hg : Ng1 =p, Ngo such that
hs(p | Ng1) # p | Nga. Pick Mg < M of cardinality A containing the set |Ng;| U
| Ns.al-

Now for a < x define M} € K, and for n € “2 define a K-embedding h,, such

that
1) f<a = Mg <k My,

(2) for a limit let My = ,_, M,
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B) B<anne 2 = hyg C hy,
4)ne 2 = hn:Mong;and
5) a=0+1Ane *2 = hyo(Nsg1) = hy1(Np2).

The construction is possible by using the A\-amalgamation property at a = §+ 1
several times. Given 1 € "2 let N* be of cardinality A and fy be such that the

diagram

[
Mgayq > N

d

My —— M;
commutes. Denote by N, the model fo(Ng2). Since hg : Ng1 =y, Npgo there is a

K-mapping ¢ fixing My such that g(Ng1) = Ns. Using the amalgamation property

now pick N** € IC) and a mapping f; such that the diagram

f
M,B—i—l 1 N

I

N . N,
idT Tid
Mg Mj

h"]
Finally apply the amalgamation property to find Mj,, € Ky and mappings ey, e1

such that

N** H@l MEJ’_I

4

M5 —= N
commutes. After renaming some of the elements of Mj,, and changing e; we may

assume that eqg = idy~.
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Let ]’LT]AO = fo and h?fl =€e10 fl‘
Now for n € X2 let

M =M, and H,:= ] hya.

a<y a<y

Take Ny =i M from Ky, an amalgam of N and M over M, such that

commutes.

Notice that
n#ve 2 = gatp(H,(a)/My, Ny) # ga-tp(H,(a)/ My, N;).
Thus |ga-S(My)| > 2% > A. .

In Theorem II1.5.6 below we present an improvement of Theorem II1.3.5 for tame
AECs: In case K is f-stable in u for some p above its Hanf number then /ﬁﬁ(lC) is
bounded by the Hanf number. Notice that the bound does not depend on .

The following is a new Galois-theoretic notion of indiscernible sequence.

Definition I11.3.6. (1) (a; | ¢ < i*) is a Galois indiscernible sequence over M iff
for every iy < --- <14, <i* and every j; < --- < j, <", ga-tp(a;, ...a;, /M) =

ga-tp(a;, ...a;, /M).

(2) (a; | i < i*) is a Galois-indiscernible sequence over A iff for every iy < -+ < i, <
t* and every j; < --- < j, <%, there exists M;, M;, M* € K and <x-mappings

fi, f; such that
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(b) fi: My, — M*, for Il =1i,7;

(C) fi(ai07 e 76%'") = fj(ajou ce 7C_Ljn) and

Remark II1.3.7. This is on the surface a weaker notion of indiscernible sequence
than is presented in [Sh 394]. However, this definition coincides with the first order
definition. Additionally, it is suspected that, under some reasonable assumptions,

this definition and the definition in [Sh 394] are equivalent.

The following lemma provides us with sufficient conditions to find an indiscernible

sequence.

Lemma I11.3.8. Let u > LS(K), k, A be ordinals and (3 a positive ordinal. Suppose

that (M; |1 < \) and (a; | i < \) satisfy

(1) (M; € K, |i < \) are <x-increasing;

(2) M1 is a (p, k)-limit over M;;

(3) @; € "My

(4) pi == ga-tp(a;/M;, M;y1) does not u-split over My and
(5) fori<j <A pi <pj.

Then, {(a; | i < A) is a Galois-indiscernible sequence over M.

Definition IT1.3.9. A sequence (a;, M; | i < \) satisfying conditions (1) — (6) of

Lemma II1.3.8 is called a Morley sequence.

Remark IT1.3.10. While the statement of the lemma is similar to Shelah’s Lemma

[.2.5 in [She], the proof differs, since types are not sets of formulas.
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Proof. We prove that forig < -+ < i, < Xand jo < -+ < j, < A, ga-tp(ay,, - - ., a;, /Mo, M,
ga-tp(aj,, . .., a;, /Mo, M;, ) by induction on n < w.

n = 0: Let ig, jo < A be given. Condition 5, gives us

ga~ tp(alo/M()? 10+1) = ga- tp(ajo/M()? Jo+1>

n > 0: Suppose that the claim holds for all increasing sequences 7 and j € \ of
length n. Let ip < --- <4, < Aand jy < --- < j, < A be given. Without loss of
generality, i, < j,. Define M* := M;. From condition 2 and uniqueness of (u,w)-
limits, we can find a <k-isomorphism, ¢ : M;, — M, such that g | My = idy,.
Moreover we can extend g to g : M; .1 — M, 1. Denote by b; := g(a;,) for
[ =0,...,n. Notice that b, € M;, for | < n. Since ga-tp(bj,,...,b;, /Mo, M;, 1) =
ga-tp(aj,, . . . ,a;, /Mo, Mj, 1) it suffices to prove that ga-tp(bj,, - . ., bj, /Mo, M;,+1) =
ga-tp(aiy, - - -, @i, /Mo, M, +1).

Also notice that the <x-mapping preserves some properties of p;. Namely, since
p; does not p-split over My, g(p; [ M;,) =p; | M,,.
Thus, ga-tp(b;, /M, , M;, +1) = ga-tp(a;, /M;,, M;, +1). In particular we have that
ga-tp(bj, /M;,, M;, 1) does not p-split over M.

By the induction hypothesis

ga—tp@jm . Jn 1/M0) Zn) = ga- tp(am, s 7ain71/M07 MZn)

Thus we can find h; : M;, 1 — M* and h; : M;, 11 — M* such that h;(a,, ..., a8, ,) =

hj(bjys---,bj, ,). Let us abbreviate bj,, ..., b;

i1 DY b Similarly we will write a; for

gy -+ vy Ay -
By appealing to condition 4, we derive several equalities that will be useful in

the latter portion of the proof. Since p; does not p-split over My, we have that

Z'n,+1 ) -



100
p; | hi(M;,) = hij(p; | M;,), rewritten as
(*)  ga-tp(by,/hj(My,), M;, 1) = ga-tp(h;(bj,)/h; (M), M*).

Similarly as p; does not p-split over My, we get
pi | hj(M;,) = hj(pi | M,;,) and p; [ hy(M,,) = hi(p; | M,,). These equalities

translate to
(ex);  gatp(@i, /hi(M;, ), Mi, 1) = ga-tp(h;(@i,)/h;(M;,), M) and
(x%); ga-tp(a,,/hi(M;,), M;, +1) = ga-tp(hi(a;,)/hi(M;,), M*), respectively.
Finally, from condition 5., notice that
(%) ga-tp(a,, /M, , M;, 1) = ga-tp(bs, /Mi,, M;, +1).
Applying h; to (* * %) yields
(1) gatp(hy(bs,) /i (M), M*) = ga-tp(hy(ai, ) /1y (M, ), M”).
Since h;(a;) = h;(b;) € hj(M;,), we can draw from (1) the following:
(1) ga-tp(hy(bs,) hy(by) /Mo, M™) = ga-tp(h;(ay, ) hi(az) /Mo, M").
Equality (xx); allows us to see
(2)  ga-tp(a, hi(az) /Mo, M*) = ga-tp(hi(ai,) hi(az) /Mo, M™).

Since ga-tp(h;(ai,)/h;(M;,), M*) = ga-tp(a,,/h;(M,,), M;,+1) (equality (xx);))
and h;(a;) = h;j(b;) € hj(M;,), we get that

(3)  ga-tp(hy(ai,) hi(az) /Mo, M™) = ga-tp(ai, hi(az) /Mo, M").

Combining equalities (1), (2) and (3), we get

(tt)  ga-tp(hi(as) i@, ) /Mo, M) = ga-tp(h;(b5) h;(bs,) /Mo, M").
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Recall that h; [ My = h; | My = idp,. Thus (1), witnesses that

ga-tp(aiy, - - - , @i, /Mo, Mi, 41) = ga=tp(bjy, - - ., bs,, /Mo, Mi, 11).

3.4 Tame Abstract Elementary Classes

By Lindstrom’s Theorem, one obvious feature of non-elementary abstract elemen-
tary classes is the absence of the compactness theorem. A method of combating this
is to view types as equivalences classes of triples (Definition I11.2.3) instead of sets
of formulas. While this notion of type has led to several profound results in the
study of abstract elementary classes, a stronger equivalence relation (denoted E,,)
is eventually utilized in various partial solutions to Shelah’s Categoricity Conjecture
(see [Sh 394] and [Sh 576]).

Shelah identified E, as an interesting relation in [Sh 394]. Here we recall the

defintion.

Definition III.4.1. Triples (ay, M, Ny) and (aq, M, N3) are said to be E,-related

provided that for every M’ < M with M' € K_,,
(ay, M, Ny1)E(as, M', Ny).

Notice that in first order logic, the finite character of consistency implies that two
types are equal if and only if they are E_-related.

In Main Claim 9.3 of [Sh 394], Shelah ultimately proves that, under categoricity
in some A > Hanf(K) and under the assumption that IC has the amalgamation prop-
erty, for types over saturated models, E-equivalence is the same as F,, equivalence

for some p < Hanf(K).
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We now define a context for abstract elementary classes where consistency has

small character.

Definition ITI.4.2. Let x be a cardinal number. We say the abstract elemen-
tary class K with the amalgamation property is y-tame provided that for types,
E-equivalence is the same as the E) relation. In other words, for M € K< pany(x),
p # q € ga-S(M) implies existence of N <x M of cardinality x such that p | N #
q| N.

KC is tame iff there exists such that K is x-tame for some x < Hanf(K)

Remark I1I.4.3. We actually only use that F-equivalence is the same as F,-equivalence

for types over limit models.

Notice that if K is a finite diagram (i.e. we have amalgamation not only all models
but also over subsets of models) then it is a tame AEC.

There are tame AECs with amalgamation which are not finite diagrams. In
fact Leo Marcus in [Ma] constructed an L, ., sentence which is categorical in every
cardinal but does not have an uncountable sequentially homogeneous model. Lately
Boris Zilber found a mathematically more natural example [Zi].

While we are convinced that there are examples of arbitrary level of tameness at

the moment we don’t don’t any.

Question I11.4.4. For py < pe < 3,,, find an AEC which is us-tame but not

p1-tame.

In fact we suspect that the question is easy to answer.
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3.5 The Order Property

The order property, defined next, is an analog of the first order definition of

order property using formulas. The order property for non-elementary classes was

introduced by Shelah in [Sh 394].

Definition III1.5.1. £ is said to have the k-order property provided that for every «,

there exists (d; | i < a) and where d; € *€ such that if iy < jo < @ and i; < j; < a,
(*) then for no f € Aut(€) do we have f(d;,"d;,) = dj,"d;,.

Remark IT1.5.2 (Trivial monotonicity). Notice that for k1 < ko if a class has

the ri-order property then it has the ko-order property.

Claim III.5.3 (Claim 4.6.3 of [Sh 394]). We may replace the phrase every « in

Definition I11.5.1 with every a < :(2n+LS(}C))+ and get an equivalent definition.

Theorem II1.5.4 (Claim 4.8.2 of [Sh 394]). If K has the k-order property and
p > K, then for some M € K, we have that | ga-S"(M)/E,| > p*. Moreover, we can

conclude that K is not Galois stable in p.

Question 111.5.5. Can we get a version of the stability spectrum theorem for tame

stable classes?

The following is a generaliztion of a old theorem of Shelah from [Sh3] (it is The-

orem 4.17 in [GrLe2])

Theorem II1.5.6. Let 3 > 0. Suppose that K is a k-tame abstract elementary class.
If K is B-stable in pu with Dppesrseeyy+ < pr, then 5 (K) < Digrrrseoys -
Proof. Let x := :(2K+LS(K))+. Suppose that the conclusion of the theorem does not

hold. Let (M; € K, | i < x) and p € ga-S”(M,) witness the failure. Namely, the

following hold:
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(1) (M; |i < x) is <x-increasing and continuous,
(2) for every i < x, M;,1 is a (u, #)-limit over M; for some 6 < put and
(3) for every i < u™, p p-splits over M;.

For every i < x let f;, N} and N? witness that p p-splits over M;. Namely,

M; <x N} N? < M,
fi: N} = N2 with f; | M; = idyy,
and fi(p | N}) #p | N}.

By k-tameness, there exist B; and A; := f; 1(BZ-) of size < x such that

filp T Ai) #p | Bi.
By renumbering our chain of models, we may assume that
(4) A;, B; C M.
Since M;,; is a limit model over M;, we can additionally conclude that
(5) ¢ € My, realizes p [ M,;.
For each i < p, let d; == A;"B;"G;.
Claim IIL1.5.7. (d; | i < x) witnesses the k-order property.

Proof. Suppose for the sake of contradiction that there exist g € Aut(€), ig < jo < X
and 7; < J; < x such that
g(diy d;,) = dj, "d;,.
Notice that since ip < jo < a we have that ¢;, € M,,. So fj,(¢,) = ¢,. Recall

that f;,(Aj,) = Bj,- Thus, f;, witnesses that

(*) ga'tp(éioAAjo/w) = ga'tp(éioABjo/(b)'
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Applying g to (x) we get

(**) ga—tp<6j1AAi1 /Q)) - ga'tp(éjd ABil /Q))

Applying f;, to the RHS of (*x), we notice that

(ﬁ) ga"tp(fil (6j1)ABil /@) - ga"tp(éleBil/(b)‘

Because i1 < ji, we have that ¢;, realizes p [ M;,. Thus, () implies

(tm)fll(p rAu) =p f Biu

which contradicts our choice of f;, 4;, and B;,.

By Claim III.5.3 and Theorem II1.5.4, we have that K is unstable in pu, contra-

dicting our hypothesis.

3.6 Morley sequences

Hypothesis IT11.6.1. For the rest of the chapter we make the following assumption:
IC is a tame abstract elementary class, has no maximal models and satisfies the

amalgamation property.

Theorem II1.6.2. Suppose j1 > :(2Hanf(16))+. Let M € K, A, I C M be given such
that |I| > pt > |A|. If K is Galois stable in p, then there exists J C I of cardinality
wh, Galois indiscernible over A. Moreover J can be chosen to be a Morley sequence

over A.

Proof. Fix k = cf(p). Let {a; | i < p*} C I be given. Define (M; € K, | i < p*)

<x-increasing and continuous satisfying
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(1) AC M|
(2) M;i1is a (u, k)-limit over M;
(3) a; € M4

Let p; := ga-tp(a;/M;, M;,,) for every i < u*. Define f: S*" — ut by
f(@) == min{j < p" | p; does not p- split over M;}.

By Theorem II1.5.6, f is regressive. Thus by Fodor’s Lemma, there are a stationary

set S C S#" and jy € I such that for every i € S,
(1) p: does not p-split over Mj,.

By stability and the pigeon-hole principle there exists p* € ga-S(M;,) and S* C S of
cardinality p* such that for every ¢ € S*, p* = p; | M,. Enumerate and rename S*.
Let M* := M;. Again, by stability we can find S** C S* of cardinality u* such that

for every ¢ € ™, p™* = p; | M*. Enumerate and rename S**.

Subclaim II1.6.3. Fori < je€ S™, p; =p; | M;.

Proof. Let 0 < i < j € S be given. Since M,y and M;;; are (u, x)-limits over
M;, there exists an isomorphism g : M;; — M;;; such that g | M; = idy;. Let
b; := g(a;). Since the type p; does not p-split over Mj,, ¢g cannot witness the
splitting. Therefore, it must be the case that ga-tp(b;/M;, M;11) = p; | M;. Then,
it suffices to show that ga—tp(Bj/Mi, M;q) = p;.

Since p; | My = p; | My, we can find <x-mappings witnessing the equality.
Furthermore since M* is universal over M,, we can find h; : M;,; — M* such that

h,l r MO = Z’dMO for [ = Z,j and hZ(C_LZ) = hJ(BJ)
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We will use () to derive several inequalities. Consider the following possible
witness to splitting. Let Ny := M; and Ny := h;(M;). Since p; does not p-split over

My, we have that p; | No = h;(p; | N1), rewritten as
() ga-tp(ai/hi(M;), Mi1) = ga-tp(hi(a:)/hi(M;), M7).
Similarly we can conclude that
(kx)  gartp(by/h;(M;), Mis1) = ga-tp(hy(bs) /by (M), M”).
By choice of S**, we know that

(x*x)  ga-tp(b;/M*) = ga-tp(a;/M*).
Now let us consider another potential witness of splitting. N; := h;(M;) and

Ny := h;j(M;) with H* := h; o h;' : Ny — Nj. Since p; | M; does not u-split over

Moy, p; | N5y = H*(p; [ Ny). Thus by (**) we have
(8) H*(p; I NT) = gartp(h;(by)/hy(M;), M”).

Now let us translate H*(p; [ Nf). By monotonicity and ( * %), we have that
p;j | Ni = ga-tp(b;/hi(M;), M; 1) = ga-tp(a;/hi(M;), M;y1). We can then conclude
by (%) that p; [ Ny = ga-tp(hi(a;)/hi(M;), M;1+1). Applying H* to this equality
yields

(#1)  H*(p; | NT) = ga-tp(h;(a:)/h;(M;), M7).

By combining the equalities from (£) and (£f) and applying hj_1 we get that

ga-tp(b;/M;, M;11) = ga-tp(a;/M;, Mi+1).
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Notice that by Subclaim II1.6.3 and our choice of S**, (M; | ¢ € S*) and (a; |
i € J) satisfy the conditions of Lemma II1.3.8. Applying Lemma I11.3.8, we get that
(a; | i € S*) is a morley sequence over M. In particular, since A C M,, we have

that (a; | i € S**) is a Morley sequence over A.

3.7 Exercise on Dividing

With the existence of Morley sequences a natural extension is to study the fol-
lowing dependence relation to determine whether or not it satisfies properties such

as transitivity, symmetry or extension. Here we derive the existence property.

Definition ITI.7.1. Let p € ga-S(M) and N <x M. We say that p divides over
N iff there are a € M non-algebraic over N and a Morley sequence, {a, | n < w}
for the ga-tp(a/N, M) such that for every collection {f, € Auty€ | n < w} with
fn(a) = a, we have

{fa(p) | n < w} is inconsistent.

Theorem II1.7.2 (Existence). Suppose that K is stable in p and k-tame for some
K < p. For every p € ga-S(M) with M € KCs,, there exists N <x M of cardinality p

such that p does not divide over N.

Proof. Suppose that p and M form a counter-example. WLOG we may assume that
M = €. Through the proof of Claim 3.3.1 of [Sh 394], in order to contradict stability

in p, it suffices to find N;, N}, N? h; for i < p satisfying
(1) (N; € K, | i < p) is a <-increasing and continuous sequence of models;

(2) N; <x N! <x Niyy fori < pandl=1,2;
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(3) for i < p, h; : N} & N? and h; | N; = idy, and

4) pl Ni2 # hi(p | Nil)'

Suppose that N; has been defined. Since p divides over every substructure of
cardinality p, we may find a, {a, | n < w} and {f, | » < w} witnessing that p
divides over N;. Namely, we have that {f,(p) | n < w} is inconsistent. Let n < w
be such that fo(p) # fu(p). Then p # f;' o fu(p). By k-tameness, we can find
N* <k € of cardinality p containing N such that p [ N* # (f;' o fu(p)) | N*.
WLOG fy'o f, € AutyN*.

Let h; == fy 'of,, N} := N* and N? := N*. Choose N;;; <x € to be an extension

of N* of cardinality pu. .
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