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CHAPTER I

Introduction

The purpose of this introduction is to describe the program of classification the-
ory of non-elementary classes with respect to categoricity and stability. This thesis
tackles the classification theory of non-elementary classes from two perspectives. In
Chapter II we work towards a categoricity transfer theorem, while Chapter III fo-
cuses on the development of a stability theory for abstract elementary classes. At
the end of this chapter we provide a brief outline of the thesis.

Early work in model theory was closely tied to other areas of mathematics. Led
by Robinson, Malcev and Tarski, model theorists worked on generalizing known
theorems about fields to arbitrary first order theories. In the sixties, James Ax
and Simon Kochen found far reaching applications of model theory to the theory of
valued fields. Their work on Hensel fields and p-adic numbers was used to refute a
conjecture of Artin [CK]. Current work in model theory can be classified as either
stemming from theorems and conjectures in algebra or motivated by pure model-
theoretic questions which may someday shed light on open questions in algebra.

The origins of much of pure model theory can be traced back to Los” Conjecture,
one of the most influential conjectures in model theory, motivated by an algebraic

result of Steinitz from 1915. Steinitz’s Theorem states that for every uncountable



cardinal, A, there is exactly one algebraically closed field of characteristic p of car-
dinality A (up to isomorphism). In 1954, Los conjectured that elementary classes

mimic the behavior of algebraically closed fields:

Conjecture 1.0.1. IfT is a countable first order theory and there exists a cardinal
A > Ny such that T has ezactly one model of cardinality A (up to isomorphism), then

for every p > RNg, T has exactly one model of cardinality .

This conjecture was resolved by Michael Morley in his Ph.D. thesis in 1962 [Mo].
Morley then questioned the status of the conjecture for uncountable theories. Build-
ing on work of W. Marsh, F. Rowbottom and J.P. Ressayr, S. Shelah proved the
statement for uncountable theories in 1970 [Sh31].

The theorem which affirmitavely resolves Los’ Conjecture is often referred to as

Morley’s Categorcity Theorem, which motivates the following terminology:

Definition 1.0.2. A theory T is said to be categorical in A if and only if there is

exactly one model of T of cardinality A up to isomorphism.

Out of Morley and Shelah’s proofs, fundamental techniques and concepts such
as prime models, rank functions, superstable theories, stable theories and minimal
types surfaced. Present day research in first order model theory, particularly stability
theory or classification theory, would be unrecognizable without these techniques and
concepts. Model theorists have used the techniques and concepts of stability theory
to answer open questions in algebraic geometry.

While first order logic has far reaching applications in other fields of mathematics,
there are several interesting frameworks which cannot be captured by first order logic.
For example, non-archimedian fields, Noetherian rings, locally finite groups and finite

structures cannot be axiomatized by first order logic. Building on the work of Erdos-



Tarski, Hanf, D. Scott, Lopez-Escobar and C. Karp, model theorists C.C. Chang
and H.J. Kiesler made much progress in the study of non-first order logics including
L(Q) and L, ., [CK],[Kel], [Ke2]. L(Q) is an extension of first order logic with
the addition of a quantifier Q, where Q is interpretted as there exists at least N;.
L, ., is also an extension of first order logic allowing for countable disjunctions and
conjunctions.

A major breakthrough in non-first-order model theory occured in 1974 when She-
lah answered John Baldwin’s question (which was made in the early 1970s and re-

produced on Harvey Friedman’s list of open problems):

Problem 1.0.3. Does there exists a countable similarity type and a countable 7' C
L(Q) (in the Xy interpretation) such that 7" has a unique uncountable model (up to

isomorphism)?

Shelah’s solution to this problem in the mid-seventies indicated a strong link
between categorical theories and the existence of models in uncountable cardinals
[Sh 48]. The solution prompted Shelah to pose a generalization of Los’ Conjecture

to L., . as a test question to measure progress in non-first-order model theory.

Conjecture 1.0.4. If ¢ is an L, . theory categorical in some X > Hanf(p) then

@ 1is categorical in every > Hanf(p).

Definition 1.0.5. Hanf(y) is called the Hanf number of ¢ and is defined to be
the minimal cardinality g such that if ¢ has a model of cardinality u, then ¢ has

arbitrarilary large models.

In the late seventies Shelah identified the notion of abstract elementary class
(AEC) to capture many non-first-order logics [Sh 88] including L, .,(Q). An ab-

stract elementary class is a class of structures of the same similarity type endowed



with a morphism satisfying natural properties such as closure under directed limits.

Definition 1.0.6. K is an abstract elementary class (AEC) iff KC is a class of models
for some vocabulary 7 and is equipped with a binary relation, <y satisfying the

following;:

(1) Closure under isomorphisms.

(2) =k refines the submodel relation.

(3) =k is a partial order on K.

(4) If (M; | i < ) is a <g-increasing and chain of models in K
() Uses M; € K.

(b) for every j < d, M; <x |J,_s M; and

<8

(c) if M; <k N for every i < 6, then (J,_s M; <x N.
(5) If My, M7 < N and M, is a submodel of My, then My <x M;.

(6) (Downard Lowenheim-Skolem Axiom) There is a Lowenheim-Skolem number of
IC, denoted LS(K) which is the minimal x such that for every N € K and every

A C N, there exists M with A C M <, N of cardinality x + |A].
This has led Shelah to restate his conjecture in the following form:

Conjecture 1.0.7 (Shelah’s Categoricity Conjecture). Let KC be an abstract el-
ementary class. If K is categorical in some X > Hanf(K), then for every u >

Hanf(K), K is categorical in p.

Despite the existence of over 500 published pages of partial results towards this
conjecture, it remains very open. Similar to the solution to Los’ conjecture, a solution

of Shelah’s categoricity conjecture is expected to provide the basic conceptual tools



necessary for a stability theory for non-first order logic. This enhances the potential
for further applications of model theory to other areas of mathematics.

Since the mid-eighties, model theorists have approached Shelah’s conjecture from
two different directions. Shelah, M. Makkai and O. Kolman attacked the conjecture
with set theoretic assumptions [MaSh], [KoSh], [Sh 472]. On the other hand, Shelah
also looked at the conjecture under additional model theoretic assumptions [Sh 394],
[Sh 600]. More recent work of Shelah and A. Villaveces [ShVi] profits from both
model theoretic and set theoretic assumptions, however these assumptions are weaker
than the hypothesis made in [MaSh], [KoSh], [Sh 472], [Sh 394], and [Sh 600]. Shelah

and Villaveces make the following assumptions:

Assumption I1.0.8. (1) K is an AEC with no mazimal models with respect to the

relation <,
(2) GCH holds and

3) a form of the weak diamond holds, namely ® ,+ S holds for every regular 6
pt P

with 0 < p.

A central emphasis of Chapter II is to resolve problems from [ShVi] and to work
towards a solution to Shelah’s conjecture in this framework.

Let us recall some definitions in AECs which differ from the first-order counter-
parts. Because of the category-theoretic definition of abstract elementary classes, the
first order notion of formulas and types cannot be applied. To overcome this bar-
rier, Shelah has suggested identifying types, not with formulas, but with the orbit
of an element under the group of automorphisms fixing a given structure. In order
to carry out a sensible definition of type, the following binary relation £ must be an

equivalence relation on triples (a, M, N). In order to avoid confusing this new notion



of “type” with the conventional one (i.e. set of formulas) we will follow [Grl] and
[Gr2] and introduce it below under the name of Galois type.

Definition 1.0.9. For triples (a;, M;, N;) where a; € Ny, M;, N, € K for [ = 0,1, we

define a binary relation E as follows:
<d07 M07 N(])E(ah M17 Nl) iff

M = My = M, and there exists N € I and <x-mappings fo, f1 such that for l = 0,1
fi: N — N, fi | M =idy and fo(ao) = fi(ar).

NOHN

fo
idT Tfl

M d Ny
To prove that E is an equivalence relation (more specifically, that F is transitive),

we need to restrict ourselves to amalgamation bases.

Definition 1.0.10. Let K be an AEC. A model M € K is said to be an (uq, pt1)-
amalgamation base if and only if for every N; € K of cardinality p; with M <x N;
for © = 0,1, there exists a model N € K and <) -mappings fo : Ng — N and

f1 : N1 — N such that the following diagram commutes:

N0*>N

fo
idT Tfl

MTNl

When po = g = ||M||, we say that M is an amalgamation base.
We can now define types in terms of this equivalence relation:

Definition 1.0.11. For M, N € K with M, N amalgamation bases and a, a finite
sequence in N, the (Galois-)type of @ in N over M, written ga-tp(a/M, N), is defined

to be (a, M,N)/E.



Remark 1.0.12. Unlike the first-order definition of type, this definition depends on
not only M and N, but also the class K. Subtlities such as this commonly arise
when generalizing first-order notions to the context of AECs. With this in mind,
consequences which may seem trivial in the first order context, will have far deeper

proofs in the context of AECs.
In 1985 Rami Grossberg made the following conjecture:

Conjecture 1.0.13. If K is an AEC, categorical above the Hanf number of IC, then

every M € K is an amalgamation base.

This conjecture encouraged Shelah to produce a partial solution to the categoricity
conjecture under the assumption that every model M € K is an amalgamation
base [Sh 394]. This result directs future work towards the categoricity conjecture
to solving Conjecture 1.0.13. The underlying goal of [ShVi] was to make progress
towards Conjecture 1.0.13 under Assumptions 1.0.8. Not knowing that every model
is an amalgamation base presents several obstacles in applying known notions and
techniques. For instance, there may exist some models over which we cannot even
define the most basic notion of a type. New approaches have been identified and
explored in [ShVi] and in Chapter II of this thesis.

One approach to Conjecture 1.0.13 is to see if arguments from [KoSh| can be
carried out in this more general context. Shelah and Kolman prove Conjecture
1.0.13 for L, theories where x is a measurable cardinal. They first introduce limit
models as a substitute for saturated models, and then prove the uniqueness of limit
models. A major objective of [ShVi] was to show the uniqueness of limit models.

In the Fall of 1999, I identified a gap in Shelah and Villaveces’ proof of uniqueness

of limit models. As of the Fall of 2001, Shelah and Villaveces could not resolve the



problem. The goal of Chapter II is to prove the uniqueness of limit models.

The main attraction to solving Shelah’s Conjecture is to harvest the proof in
order to develop stability theory for abstract elementary classes. It is with the
stability theory in first order logic that model theoretic proofs are applied to other
mathematical fields. Thus having a stability theory for abstract elementary classes
provides the potential for further applications of model theory to other areas.

By investigating work towards Shelah’s Conjecture, one may eliminate the as-
sumption of categoricity and develop a stability theory. The notion of splitting that
appears in [Sh 394] can be studied in stable AECs. Rami Grossberg and I identi-
fied a nicely behaved, yet general class of AECs (tame AECs see Definition 111.4.2)
in which non-splitting can be exploited. We begin developing a stability theory by
proving the existence of Morley sequences in tame, stable AECs. This is the subject
of Chapter III.

The structure of the remainder of the thesis follows. Each chapter begins with a

brief introduction and an outline of the chapter.

Chapter IT We solve a conjecture of [ShVi] by proving the uniqueness of limit mod-
els in a categorical AEC with no maximal models under some mild set theoretic
assumptions. The uniqueness of limit models suggests that limit models are the
right substitute for saturation when considering Shelah’s Categoricity Conjec-
ture. In this chapter, we provide an exposition of results from [ShVi| featuring

proofs of

- Limit models are amalgamation bases using a version of Devlin-Shelah’s

weak diamond,

- Weak Disjoint Amalgamation and



- Stability implies a bounded number of strong types.

We introduce the notion of nice towers to resolve a problem from [ShVi| in
proving the extension property for towers. In order to prove the uniqueness
of limit models, we prove the extension property for non-splitting types. This
result does not rely on categoricity and will be used in Chapter III to prove the
existence of Morley sequences. This chapter includes two other new theorems:

the union of full towers is full and reduced towers are continuous.

Chapter III Some background on AECs required for this chapter is included in
Section 2.2 of Chapter II. Chapter III focuses on developing a stability theory
for AECs. We introduce a nicely behaved class of AECs, tame AECs, in which
consistency has small character. Showing that a categorical AEC is tame is a
common step in partial solutions to Shelah’s Categoricity Conjecture. In this
chapter, we prove the existence of Morley Sequences for tame, stable AECs. Up
until this point the only known proofs of existence of indiscernible sequences in
general AECs has been under the assumption of categoricity using Ehrenfreucht-
Mostowski models. Our proof does not use categoricity. The existence of Morley
sequences suggests a notion of dividing which may be used to prove a stability

spectrum theorem for tame AECs.



CHAPTER II

Towards a Categoricity Theorem for Abstract Elementary
Classes

2.1 Introduction

Shelah’s paper, [Sh 702] is based on a series of lectures given at Rutgers University.
In the lectures, Shelah elaborates on open problems in model theory which he has
attempted but which have not yet been solved. There Shelah refers to the subject
of Section 13, “Classification of Non-elementary Classes,” as the major problem of
model theory. He points out that one of the main steps in classifying non-elementary
classes is the development of stability theory. In first order logic, solutions to Los’
Conjecture produced machinery that advanced the study of stability theory. It is
natural, then, to consider a generalization of this conjecture as a test question for a
proposed stability theory for AECs (Conjecture 1.0.7)

Despite the existence of over 500 published pages of partial results towards this
conjecture, it remains very open. Since the mid-eighties, model theorists have ap-
proached Shelah’s conjecture from two different directions. Shelah, M. Makkai and O.
Kolman attacked the conjecture with set theoretic assumptions (see [MaSh], [KoSh]
and [Sh 472]). On the other hand, Shelah also looked at the conjecture under ad-

ditional model theoretic assumptions in [Sh 394] and [Sh 600]. More recent work of

10
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Shelah and A. Villaveces [ShVi] profits from both model theoretic and set theoretic
assumptions, however these assumptions are weaker than the hypotheses made in
[MaSh], [KoSh], [Sh 472], [Sh 394], and [Sh 600]. A main feature of their context is
that they work in AECs where the amalgamation property is not known to hold.
This chapter focuses on resolving problems from [ShVi|. Here we recall the context

of [ShVi] (AssumptionsII.1.1.(1) through I1.1.1.(5)).

Assumption II.1.1. We make the following assumptions for the remainder of this

chapter:

(1) K is an abstract elementary class,

(2) K has no mazximal models,

(3) K is categorical in some X\ > LS(K),

(4) GCH holds and

(5) CIDM(Sgﬁ) holds for every cardinal ;v < X and every reqular 6 with 6 < u*.

Assumption II.1.1.(5) is not explicitly made in [ShVi]. We believe this version
of weak diamond is needed to carry out Shelah and Villaveces’ suggestion for the
proof that limit models are amalgamation bases. We provide a complete proof of the
theorem which uses Assumption I1.1.1.(5) (see Theorem I1.4.3) and give an exposition
of the strength of Assumption I1.1.1.5 in Section 2.4.

In light of Conjecture 1.0.13 and the downward solution to Conjecture 1.0.7 un-
der the assumption of the amalgamation property, work towards Conjecture 1.0.7 is
directed towards deriving the amalgamation property from categoricity. The under-
lying goal of [ShVi] was to make progress towards Conjecture 1.0.13 under Assump-

tion II.1.1. Not knowing that every model is an amalgamation base presents several
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obstacles in applying known notions and techniques. For instance, there may exist
some models over which we cannot even define the most basic notion of a type.
One approach to Conjecture 1.0.13 is to see if arguments from [KoSh] can be
carried out in this more general context. Shelah and Kolman prove Conjecture
1.0.13 for L, theories where x is a measurable cardinal. They first introduce limit
models as a substitute for saturated models, and then prove the uniqueness of limit

models. A major objective of [ShVi] was to show the uniqueness of limit models:

Conjecture I1.1.2 (Uniqueness of Limit Models). Suppose Assumption I1.1.1
holds. For 01,0y < ut < A, if My and My and (u,64)-, (u, 62)-limit models over M,

respectively, then M is isomorphic to M.

While limit models were used to prove that every model is an amalgamation base
in [KoSh], limit models played a behind-the-scenes role in Shelah’s downward solution
to the categoricity conjecture in [Sh 394]. Furthermore, there is evidence that the
uniqueness of limit models provides a basis for the development of a notion of non-
forking and a stability theory for abstract elementary classes. Limit models are used
in Chapter III to produce Morley sequences in tame and stable AECs. They also
appear in [Sh 600] as an axiom for frames.

In all of these applications, limit models provide a substitute for saturation. With-
out the amalgamation property, it is unknown how to prove the uniqueness of satu-
rated models. This may seem strange, because the proof is so straight-forward in the
first order case. However, since we only have types over amalgamation bases (not
arbitrary sets), the usual back-n-forth argument cannot be carried out. Even with
the amalgamation property, the back-n-forth consrtuction is non-trivial (see [Gr] for
details). Since we are working in a context without the luxury of the amalgamation

property, in order for limit models to provide a reasonable substitute for saturated
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models, there must be a uniqueness theorem. This is the main result of this chapter.

Here we outline the structure of this chapter:

Section 2.1 We connect the uniqueness of limit models with its role in understand-
ing Shelah’s Categoricity Conjecture for AECs, the amalagamation property
and stability theory for AECs. An outline of the remainder of the chapter is

given.

Section 2.2 In this section we provide some of the necessary definitions for AECs
including the amalgamation property and limit models. This background is also

used in Chapter III.

Section 2.3 We provide a description of an index set used to prove the existence
of universal models and to prove weak disjoint amalgamation. We summarize
a few properties of EM reducts constructed with this index set. Because of

categoricity, we can view every model of I as a KC-substructure of an EM reduct.

Section 2.4 Using a version of the weak diamond, we provide a complete proof of
a fact from [ShVi| that limit models are amalgamation bases. This allows us to

show the existence of limit models.

Section 2.5 We provide a complete proof of Shelah and Villaveces’ Weak Disjoint
Amalgamation Theorem. This theorem will be used in constructing extensions

of towers. The proof uses the EM models which were described in Section 2.3.

Section 2.6 In the next few sections we will be introducing classes of towers. Ulti-
mately, we will only use scattered towers to prove the uniqueness of limit models.
However, to make the proof of the extension property for scattered towers more

manageable, we begin with naked towers and slowly modify them.
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We will show that every tower (M,a) € K, , can be properly extended (with

respect to the ordering <Z,a) to a larger tower in K, ,. This closes one of the
gaps from [ShVi]. The proof utilizes directed systems and direct limits. The

reader is suggested to refer to Section 2.2 for a discussion of these concepts in

AECs.

Section 2.7 We define the notion of splitting for AECs and prove the extension
property for non-splitting. This result does not rely on the categoricity assump-
tion. We will use the extension property for non-splitting in Chapter III as
well. We also recall Shelah and Villaveces’ result concerning splitting chains
(Theorem 11.7.3). After analyzing their proof we are able to read out a very
useful corollary which serves as a substitute for £(7") for non-splitting (Theorem
[1.7.4). We then augment the towers from Section 2.6 with non-splitting types.
We prove the extension property for this class of towers as well. The proof relies

on understanding the <Zja—extension property from Section 2.6.

Section 2.8 We begin this section with a description of the structure of the proof of
the uniqueness of limit models. We now make the final modification for towers
by adjusting the index set from an ordinal to a collection of intervals of ordinals
and prove an extension property for this class. This is a new theorem. The
proof relies on the proofs from Section 2.6 and Section 2.7 and on the results

about non-splitting.

Section 2.9 One of the problems with our chains of towers is that <“-extensions
are often discontinuous. We provide a complete proof that reduced towers are
continuous. This solves another problem from [ShVi]. The proof relies on the

non-splitting results from Section 2.7. We then conclude that every scattered
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tower has a continuous <‘¢-extension.

Section 2.10 Here we define strong types and prove that stability gives us a bound
to the number of strong types over a given model. In this section we also
introduce full towers which are towers which realize many strong types. We
then show that the top of a full continuous tower is a limit model. We also

prove a new result, that the union of full towers is full.

Section 2.11 Here we prove Conjecture I1.1.2. The proof uses the extension prop-

erty for scattered towers and the results on reduced and full towers.

2.2 Background

Recall the definition of an abstract elementary class from the introduction (Def-

inition 1.0.6.)

Notation I1.2.1. If A is a cardinal and K is an abstract elementary class, Iy

is the collection of elements of I with cardinality A.

Definition I1.2.2. For models M, N in an AEC, K, the mapping f : M — N
is an <x-embedding iff f is an injective L(K)-homomorphism and

fIM] =k N.

Using the axioms of AEC, one can show that Axiom 4 of the definition of AEC

has an alternative formulation (see [Sh 88] or Chapter 13 of [Gr]):

Definition I1.2.3. A partially ordered set (I, <) is directed iff for every a,b € I,

there exists ¢ € I such that a < cand b < c.

Proposition 11.2.4 (P.M. Cohn 1965). Let (I, <) be a directed set. If (M, |

tel) and {h, |t <rel} are such that
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(1) fort eI, My € K
(2) fort <rel, hy, : My — M, is a <x-embedding and

(3) fOT tl S tQ S t3 c _[, ht17t3 = h/tg,tg 9 htl,tg and ht,t = ith,

then, whenever s = limye t, there exist My € IC and <x-mappings {h,s |t € I}
such that

ht,s . Mt — MS, Ms = U ht,f,’(Mt) and
t<s
fOT t1 <ty <s, ht1,s = th,S o htl,tg and hs,s = ZdMs

Definition I1.2.5. (1) ((M; |t € I),{his |t < s € I}) from Proposition 11.2.4
is called a directed system.
(2) We say that M, together with (h,, | ¢ < s) satisfying the conclusion of

Proposition 11.2.4 is a direct limit of ((M; |t < s),{he, |t <7 < s}).

In fact we can conclude more about direct limits (Lemma I1.2.6). We will use

this lemma in our proofs of the extension property for towers.

Lemma I1.2.6. Suppose that (M; <x Ny |t € I) and (fis |t < s € 1) isa
directed system with f,s : Ny — Ny and f;s | My : My — M,. Then we can
find a direct limit (N*, (frsupqry |t € 1)) of ((Ne |t € 1), (fes |t < s€1)) and
(M*(Grsupqry | t € 1)) a direct limit of (M |t € I),(fes | My |t < s € 1))

such that M* <x N* and fisupiry | My = i sup(1}-

The proof of Lemma I1.2.6 is straight-forward using the following proposition:

Proposition I1.2.7 ([Sh 88] or see [Gr]). K™* .= {(N,M) | M,N € K, M <x

N} ois an abstract elementary class with L(K™*) = L(K)U{P} where P is a

unary predicate and <<k s defined by

(N, M) <x=<x (N',M') < (N < N" and M <, M').
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We will use Lemma I1.2.6 as well as the trivial observation (Claim I1.2.8) in the

proof of the Conjecture I1.1.2.

Claim IL1.2.8. If (N; |t <s) and (f.. | r <t <s) form a directed system and
for every r <t < s we have that Ny = N, = N and f,; € Aut(N). Then a
direct limit (Ns, (fes | t < s)) of this system is such that f, s : Ny = Ny for every

t < s. Moreover we can choose a direct limit such that Ny = N.

The following gives a characterization of AECs as PC-classes. Theorem I1.2.10

is often referred to as Shelah’s Presentation Theorem.

Definition I1.2.9. A class C of structures is called a PC'— class if there exists
a language L1, a first order theory, T, in the language, L, and a collection of

types without parameters, I', such that L, is an expansion of L(K) and
K=PC(T\,I'L):={M | L: M T, and M omits all types from I'}.

When |T7| + |L1]| + |T'| + Xo = p, we say that K is PC),.

Theorem I1.2.10 (Lemma 1.8 of [Sh 88] or [Gr]). If (K, <k) is an AEC,

then there exists p < LS such that K is PC,.

In Section 2.3 we will see that this presentation of AECs as PC-classes allows

us to construct Ehrenfuecht-Mostowski models.
Definition I1.2.11. Let K be an abstract elementary class.

(1) Let p,k1 and ko be cardinals with g < k1, k2. We say that M € K, is
a (K1, ke)-amalgamation base if for every Ny € K., and Ny € K., and
gi : M — N; for (i = 1,2), there are <-embeddings f;, (i = 1,2) and a

model N such that the following diagram commutes:
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N1*>N

f
QIT sz

M ? N2
(2) We say that a model M € K, is an amalgamation base if M is a (u, p)-

amalgamation base.
(3) We write K" for the class of amalgamation bases which are in K.

(4) We say K satisfies the amalgamation property iff for every M € K, M is an

amalgamation base.

Remark 11.2.12. We get an equivalent definition of amalgamation base, if we
additionally require that g; | M = id; for © = 1,2, in the definition above. See

[Gr] for details.

Amalgamation bases are central in the definition of types. Since we are not
working in a fixed logic, we will not define types as collections of formulas.
Instead, we will define types as equivalence classes with respect to images under

<jc-mappings:

Definition I1.2.13. For triples (a;, M;, N;) where a; € N, and M; <x N; € K
for I = 0,1, we define a binary relation E as follows: (ag, My, No)E (a1, My, Ny)
ifft My = M; and there exists N € K and <x-mappings fo, fi such that f; :

N, — N and f; | M =idy for | = 0,1 and fo(ag) = fi(a1):

Ny —N

fi
idT TfQ

MTNQ
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Remark I1.2.14. F is an equivalence relation on the set of triples of the form

(a, M,N) where M Zx N, a € N and M, N € K" for fixed > LS(K).

In AECs with the amalgamation property, we are often limited to speak of types
only over models. Here we are further restricted to deal with types only over

models which are amalgamation bases.

Definition I1.2.15. Let ¢ > LS(K) be given.

(1) For M, N € K" and a € “ZN, the Galois-type of @ in N over M, written
ga-tp(a/M, N), is defined to be (a, M,N)/E.

(2) For M € K™, ga-S' (M) := {ga-tp(a/M,N) | M < N € K{"",a € N}.

(3) We say p € ga-S(M) is realized in M’ whenever M <y M’ and there exist
a € M’" and N' € K" such that p = (a, M, N')/E.

(4) For M" € K™ with M <x M' and ¢ = ga-tp(a/M’, N) € ga-S(M’), we
define the restriction of ¢ to M as q | M := ga-tp(a/M, N).

(5) For M" € K™ with M <x M', we say that q € ga-S(M’) extends p € S(M)

iff q | M =p.

Remark I1.2.16. We refer to these types as Galois-types to distinguish them

from notions of types defined as a collection of formulas.

Notation I1.2.17. We will often abbreviate a Galois-type ga-tp(a/M, N) as
ga-tp(a/M) when the role of N is not crucial or is clear. This occurs mostly

when we are working inside of a fixed structure M.

Proposition 11.2.18 (see [Gr]). When K = Mod(T") for T' a complete first
order theory, the above definition of ga-tp(a/M, N) coincides with the classical

first order defintion where ¢ and a have the same type over M iff for every first
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order formula o(z,b) with parameters from M,

= ¢(c,b) == ¢l(a,b).
Proof. By Robinson’s Consistency Theorem. -

Definition II.2.19. We say that K is stable in p if for every M € K7™,

| ga-S'(M)] = p.

Fact 11.2.20 (Fact 2.1.3 of [ShVi]). Since K is categorical in N, for every

1< A, we have that IC is stable in p.

Definition I1.2.21. (1) Let s be a cardinal. We say N is k-universal over
M iff for every M' € K, with M <x M’ there exists a <-embedding

g : M' — N such that g [ M = idyy;:

M/

/N

(2) We say N is universal over M iff N is ||M||-universal over M.

The existence of universal extensions follows from categoricity and GCH:

Lemma I1.2.22 (Theorem 1.3.1 from [ShVi]). For every p with LS(K) <
p <A, if M € K™, then there exists M' € K™ such that M’ is universal over

M.

Notice that the following proposition asserts that it is unreasonable to prove a
stronger existence statement than Lemma I1.2.22, without having proved the

amalgamation property.
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Proposition I1.2.23. If M’ is universal over M, then M is an amalgamation

base.

We can now define the central concept of this chapter:

Definition I1.2.24. For M’, M € K, and ¢ a limit ordinal with o < p*, we say

that M’ is a (u, o)-limit over M iff there exists a <x-increasing and continuous

sequence of models (M; € IC,, | i < o) such that

(1) M = My,

(2) M'=U;, M

(3) for i < o, M; is an amalgamation base and

(4) M, is universal over M;.

Remark I1.2.25. (1) Notice that in Definition 11.2.24, for i < ¢ and 7 a limit
ordinal, M; is a (j,)-limit model.

(2) Notice that Condition (4) implies Condition (3) of Definition I11.2.24.

Definition I1.2.26. We say that M’ is a (u, o)-limit iff there is some M € K

such that M’ is a (i, 0)-limit over M.

Notation I1.2.27. (1) For u a cardinal and o a limit ordinal with o < p*, we

write K, for the collection of (y, o)-limit models of K.

(2) We define
K :={M € K| M is a (u,§)—limit model for some limit ordinal 6 < p*}.
as the collection of limit models of K.

Limit models also exist in certain abstract elementary classes. By repeated ap-

plications of Lemma I1.2.22, the existence of (u, w)-limit models can be proved:
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Proposition 11.2.28 (Theorem 1.3.1 from [ShVi|). Let p be a cardinal such
that p < \. For every M € K", there exists M' € K such that M <x M' and

M’ is a (p,w)-limit over M.

In order to extend this argument further to yield the existence of (u,o)-limits
for arbitrary limit ordinals o < u™, we need to be able to verify that limit

models are in fact amalgamation bases. We will examine this in Section 2.4.

While the existence of certain limit models is relatively easy to derive from the
categoricity assumption, the uniqueness of limit models is more difficult. Here
we recall two easy uniqueness facts which state that limit models of the same

length are isomorphic:

Proposition 11.2.29 (Fact 1.3.6 from [ShVi]). Let p > LS(K) and o <
pt. If My and My are (u,o0)-limits over M, then there exists an isomorphism
g : My — My such that g | M = idy;. Moreover if My is a (u, o)-limit over My;
Ny is a (u,0)-limit over Ny and g : My = Ny, then there exists a <x-mapping,

g, extending g such that g : My = Nj.

Proposition 11.2.30 (Fact 1.3.7 from [ShVi]). Let p be a cardinal and o a
limit ordinal with o < pu™ < A. If M is a (p,0)-limit model, then M is a

(i, cf (0))-limit model.

A more challenging uniqueness question is to prove that two limit models of
different lengths (o # 03) are isomorphic (Conjecture I1.1.2). A main result of

this chapter, Theorem II.11.1, is a solution to this conjecture.

We will need one more notion of limit model, which will appear implicitly in the
proofs of Theorem I1.6.10, Theorem I1.7.13, Theorem I1.8.7 and Theorem I1.9.7.

This notion is a mild extension of the notion of limit models already defined:
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Definition I1.2.31. Let x be a cardinal < A, we say that M is a (u, ut) limit
over M iff there exists a <x-increasing and continuous chain of models (M; €
K™ i < p') satistying

(1) My=M

(2) Uicr Mi = M and

(3) for ¢ < p*, M;yq is universal over M;

Remark I1.2.32. While it is known that (u, #)-limit models are amalgamation
bases when 6§ < u™, it is open as to whether or not (u, u*)-limits are amalga-
mation bases. To avoid confusion between these two concepts of limit models,

we will always denote (u, u*)-limit models with a”above the model’s name (ie.

).

The existence of (u, ut)-limit models follows from the fact that (u, #)-limit mod-
els are amalgamation bases when 6 < ™, see Corollary 11.4.9. The uniqueness
of (4, p¥)-limit models (Proposition 11.2.33) can be shown using an easy back

and forth construction as in the proof of Proposition I1.2.29.

Proposition I1.2.33. Suppose M, and My are (p, put)-limits over My and Mo,
respectively. If there exists an isomorphism h : My = M, then h can be extended

to an isomorphism g : M1 = Mg.

(g, pt)-limit models turn to be useful as replacement for monster models as
Proposition 11.2.33 and the following proposition provide some level of homo-

geneity:
Proposition I1.2.34. If M is a (pu, u*)-limit, then for every N <x M with
N € K™, we have that M is universal over N. Moreover, M is a (e, ) -limit

over N.
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2.3 Ehrenfeucht-Mostowski Models

Since K has no maximal models, K has models of cardinality Hanf(K). Then

by Theorem I1.3.1, we can construct Ehrenfeucht-Mostowski models.

Theorem I1.3.1 (Claim 0.6 of [Sh 394] or see [Gr]). Assume that K is an
AFEC that contains a model of cardinality > :(ZLS(}C))J,-. Then, there is a ®, proper

for linear orders, such that for linear orders I C J we have that

(1) EM(1,9) | L(IK) < EM(J,®) | L(K) and

(2) |EM(L, @) [ LIK)|| = ] + LS(K).

We describe an index set which appears often in work toward the categoricity

conjecture. This index set was used in [KoSh], [Sh 394] and [ShVi].

Notation I1.3.2. Let a < X be given. We define

[aiz{nEwa:{n<w|n[n]5£O}isﬁnite}

Associate with I, the lexicographical ordering <. If X C «, we write Ix =
{ne “X:{n <w|nln] # 0} is finite} }.

The following proposition is proved in several papers e.g. [ShVi].
Proposition 11.3.3. If M <x EM(I,®) | L(K) is a model of cardinality pu*
with pt < X, then there exists a <x-mapping f: M — EM(I,+,®) | L(K).

A variant of this universality property is (implicit in Lemma 3.7 of [KoSh]):

Proposition 11.3.4. Suppose k is a reqular cardinal. If M <x EM(I., ®) |

L(K) is a model of cardinality < k and N < EM(I,®) | L(K) is an ex-
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tension of M of cardinality || M]||, then there exists a <yi-embedding f : N —

EM(I,,®) | L(K) such that f | M = idy.

2.4 Amalgamation Bases

Since the amalgamation property for abstract elementary classes is inherent in
the definition of types, most work towards understanding AECs has been under
the assumption that the class K has the amalgamation property. In [ShVi],
Shelah and Villaveces begin to tackle the categoricity problem with an approach
that does not require the amalgamation property as an assumption. Shelah and
Villaveces, however, prove a weak amalgamation property, which they refer to

as density of amalgamation bases, summarized here:

Theorem I1.4.1 (Theorem 1.2.4 from [ShVi]). For every M € K_,, there

ezists N € K|y with M <x N.

We can now improve Lemma I1.2.22 slightly. This improvement is used through-

out this paper.

Lemma I1.4.2. For every p with LS(K) < p < A, if M € K", N € K and
a € "">N are such that M <x N, then there exists M? € K™ such that M*® is

universal over M and M |Ja C M.

Proof. By Axiom 6 of AEC, we can find M’ <x N of cardinality p containing
M Ja. Applying Theorem I1.4.1, there exists an amalgamation base of car-
dinality u, say M"”, extending M’. By Lemma I1.2.22 we can find a universal

extension of M" of cardinality p, say M.
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Notice that M? is also universal over M. Why? Suppose M* is an extension
of M of cardinality p. Since M is an amalgamation base we can amalgamate
M" and M* over M. WLOG we may assume that the amalgam, M**, is an

extension of M” of cardinality p and f*: M* — M** with f* [ M = idy,.

M* S M**

f**
d

V)
M—=M
Now, since M® is universal over M”, there exists a <x-mapping ¢ such that

g: M* — M® with g | M"” = idy». Notice that g o f* gives us the desired

mapping of M* into M. —|

While Theorem I1.4.1 asserts the existence of amalgamation bases, it is unknown
(in this context) what characterizes amalgamation bases. Shelah and Villaveces
have claimed that every limit model is an amalgamation base (Fact 1.3.10 of
[ShVi]), using O+ . Notice this is more than the asssumption of GCH that

cf(p)

they make throughout their paper. We believe that ¢ gt 18 n0t sufficient to
cf (p)

carry out the argument that they suggest. A stronger set theoretic assumption

(namely the weak form of diamond listed as Assumption II.1.1.(5)) is needed.

We provide a proof that every (u, 6)-limit model with 6 < u* is an amalgamation

base under this additional assumption:

Theorem 11.4.3. Under Assumption I1.1.1 (specifically under the set theoretic
assumption of CDM+(55+) for every reqular 6 < p*), if M is a (u,0)-limit for

some 0 with 0 < p* <\, then M is an amalgamation base.

Let us first recall some set theoretic definitions and facts concerning the weak
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diamond.
Definition I1.4.4. Let 6 be a regular ordinal < u*. We denote
ST = o < it | of (@) = 6}

Definition I1.4.5. For p a cardinal and S C p* a stationary set, ®,+(S5) is
said to hold iff for all F : *"™>2 — 2 there exists g : AT — 2 so that for every

f AT — 2 the set
{6 €S| F(f]0)=g(0)} is stationary.

We will be using a consequence of ®,+(.5), called ©,+(S) (see [Gr]).

Definition I1.4.6. For p a cardinal S C pt a stationary set, ©,+(S) is said to

hold if and only if for all families of functions
{fy - me "2 where f, : p* — "}

and for every club C' C u™, there exist n # v € #"9 and there exists a § € C'NS

such that

The following implications (Fact I11.4.7) are a consequence of work of Devlin and

Shelah [DS]. For an exposition of Fact 11.4.7 see [Gr].

Fact IL4.7. 20 < 20" — &, (51 ) = 0,4 (S4").

Before we begin the proof of Theorem I1.4.3, notice that:
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Remark I1.4.8 (Invariance). By Axiom 1 of AEC, if M is an amalgamation

base and f is an <-embedding, then f(M) is an amalgamation base.

Proof of Theorem II.4.3. Given pu, suppose that 6 is the minimal infinite ordinal
< wt such that there exists a model M which is a (u,0)-limit and not an

amalgamation base. Notice that by Proposition I1.2.30, we may assume that

cf(9) = 0.

Now we define by induction on the length of n € H">9 a tree of structures,
(M, |ne #'>9)  satisfying:

(1) forn <v e *>2, M, <x M,

(2) for I(n) a limit ordinal with cf(i(n)) <0, M, =J M0

a<l(n)
(3) for n € *2 with a € Sg+,

(a) M, is a (p, 6)-limit model

(b) M,-o, M, cannot be amalgamated over M,

(c) M, and M, are amalgamation bases of cardinality p
(4) for n € *2 with a ¢ Sgﬁ,

(a) M, is an amalgamation base

(b) M., M, are universal over M, and

(c) M, and M, are amalgamation bases of cardinality x (it may be that

M,-o = M, in this case).

This construction is possible:

n = (): By Theorem IL.4.1, we can find M’ € K such that M <x M’. Define

My = M'.
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I(n) is a limit ordinal: When cf(I(n)) > 0, let M} := U,y Mya- M, is not
necessarily an amalgamation base, but for the purposes of this construction,
continuity at such limits is not important. Thus we can find an extension of

My, say M,, of cardinality y where M, is an amalgamation base.

For n with cf(l(n)) < 0, we require continuity. Define M, :=J,_,) Myta. We

a<l(n
need to verify that if I(n) ¢ Sg+, then M, is an amalgamation base. In fact,
we will show that such a M, will be a (u,cf(l(n)))-limit model. Let (o | i <
cf(I(n))) be an increasing and continuous sequence of ordinals converging to [(n)
such that cf(q;) < @ for every i < cf(l(n)). Condition (4b) guarantees that for
i < cf(l(n)), Myja,,, is universal over M,,. Additionally, condition (2) ensures
us that (M, | © < cf(I(n))) is continuous. This sequence of models witnesses

that M, is a (p, cf(I(n)))-limit model. By our minimal choice of #, we have that

(i, cf(1(n)))-limit models are amalgamation bases.

n"i where l(n) € Sg”+ : We first notice that M, := ) Mo is a (p, 0)-limit

a<l(n
model. Why? Since I(n) € S} " and 0 is regular, we can find an increasing and
continuous sequence of ordinals, (a; | i < ) converging to [(n) such that for each
i < 6 we have that cf(a;) < 0. Condition (4b) of the construction guarantees

that for each i < 6, M, is universal over M,,,. Thus (M, | i < 6)

it
witnesses that M, is a (u, #)-limit model.

Since M, is a (p, #)-limit, we can fix an isomorphism f : M = M,. By Remark
I1.4.8, M, is not an amalgamation base. Thus there exist M,y and M, ex-
tensions of M, which cannot be amalgamated over M,. WLOG we can choose,

Mo and M, to be elements of K7™

ni where l(n) ¢ Sg‘+ : Since M, is an amalgamation base, we can choose M, -y
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and M, to be extensions of M, such that M, € K™ and M, is universal

over M, for [ =0, 1.

This completes the construction. For every n € “+2, define M, :=J, <t Mija-
By categoricity in A and Proposition I1.3.3, we can fix a <x-mapping g, : M, —
EM(1,+,®) | L(K) for each n € "2, Now apply @,ﬁ(Sgﬁ) to find n,v € *'2

and o € Sgﬁ such that

By Axiom 6 (the Lowenheim-Skolem property) of AEC, there exists N <

EM(I,+,®) | L(K) of cardinality p such that the following diagram commutes:

My ———
v FMpAl

)

M, ——> My

N
Tgn FMp"O

Notice that g, [ My, g, | M, and N witness that M, and M, can be
amalgamated over M,. Since l(p) = o € Sy ", we contradict condition (3b) of

the construction.

Corollary I1.4.9 (Existence of limit models and (p, x)-limit models).
For every cardinal p and limit ordinal 0 with 0 < u*t < X\, if M is an amalga-
mation base of cardinality j1, then there exists M' € K™ which is a (u, 0)-limit

over M.
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Proof. By repeated applications of Lemma I1.2.22 and Theorem 11.4.3. .

2.5 Weak Disjoint Amalgamation

Shelah and Villaveces prove a version of weak disjoint amalgamation in an at-
tempt to prove an extension property for towers. We will be using weak disjoint
amalgamation to build extensions of towers. We provide a proof of weak disjoint

amalgamation here for completeness.

Theorem II.5.1 (Weak Disjoint Amalgamation [ShVi]). Given A > pu >
LS(K) and o, 0y < p with 6y regular. If My is a (p, 0p)-limit and My, My € K,
are <i-extensions of My, then for every b € “( M\ My), there exist Ms, a
model, and h, a <x-embedding, such that

(1) h: My — Ms;

(2) h | My =1idy, and

(3) h(Msy) Nb =10 (equivalently h(My) N My = My).

Shelah and Villaveces provide a proof of this theorem in [ShVi]. It has been
suggested that I elaborate on the proof here. John Baldwin may have a simpli-

fication of this proof.

Proof. Suppose that My, My, M, and b € M, form a counter-example. Since
My is a p amalgamation base, we may assume that there exists M* € K, with
My, My <x M*. Let 6 be regular and < pt such that My is a (u, 6)-limit.
We define a <i-increasing and continuous sequence of models (N; | i < p')

satisfying:

(1) N; € Ko™
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(2) Njyq is universal over NN; and
(3) when cf(i) = 6, we additionally define N}, N?, N} and b; € N} such that
there exists an isomorphism f; : M* = N with f;(My) = N;, fi(M;) = N},

fi(My) = N2 and f;(b) = b;.

The construction is possible by Lemma [1.2.22, Theorem I1.4.3 and Proposition

I1.2.29.

Let N+ :=J,_,+ IVi. Since K is categorical in A, Proposition II.3.3 allows us to

1<p

find a <x-mapping g : N+ — EM (I}, ®) [ L(K). So WLOG, we may assume

that N+ <x EM(L}, ®) | L(K).

Let £ C u* be a club such that

§ € E = Ny < EM(I5,®) | L(K).

. + .
For each i € S, choose a Skolem-term 7; and a sequence of indices o g, . . ., @ p;—1

such that b; = Ti(Q0, ..., 0in,—1). Let m; < n; be such
k< m; < o,k € I;.

Set i em, 1= (i | 0 <k <my) and o >m, = (auip | mi <k < ny).
Let 6 € ENSY".

For every d;, with 9 < d6; < pu'. Define gs;, to be the <x-mapping from
EM(Is,,®) | L(K) to EM(I,+,®) | L(K) induced by the mapping from p* to

put defined by
J lf] < (50

J—

51+] 1f(50§j<51

Let 6 € C' with 9y < §.
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Subclaim I1.5.2. Then g5, (N}) N bs, = 0.

Proof. Suppose the claim fails. Then there exist b € bs,, a Skolem term o5 and

a sequence of elements of I

55,07 cee aﬁ(s,m(s—l) ﬁ&m,;a cee 76(5,715—1

such that
k < mg @ﬁg}k - ]50
and b = 05(350, - - -, Bsns—1)-
Let Bscmy = (Bo | 0 < k <mg) and Bs>m, = (Bsi | ms < k < ny).

Notice that
EM(I,LL"W (I)) [ L(IC) ): b= os, (65,<m5; ﬁé,zma) = Tso (O‘507<m50; O‘5072m50>'

Since all our indices are finite sequences and ¢y is a limit ordinal, there exists
0* < ¢y and such that a507<m50,657<m5 € I5. This allows us to find a sequence
a*"3* € Is, which has the same type over Is« (with respect to the lexicographical

ordering) as agy, >ms, 35,>ms- S0 by indiscernibility

(*) EM(IM+> (I)) r L(’C) |: 060 (ﬁ57<m5; 6*) = T5o <a507<m50; Oé*).

By our definition of g5, we have that
(x)s k>ms e Bsi € Is\s,us-

In other words when k£ > my, every term from the sequence 35 which is larger
than dy is also larger than d;. Thus, for £ > my, the ordinals in 35 above d

are all greater than the ordinals above dy appearing in the sequences Ay >miy »
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a* and B5<m;. Thus the type (with respect to the lexicographical ordering) of
Bs>ms and B* are the same over s, <ms, "o 35,<m,- Indiscernibility applied to

(%) yields:

EM(IIPL? (I)) [ LUC) ): 05 (66,<m5§ ﬁ&zm&) = Ts (a507<m50;04*)'

Notice that os,(8s5,<ms; B5,>ms) = b. Thus we have found a way to construct b
from I5, (by 7s,(c,<ms,: @")). This contradicts our choice of b ¢ EM(I5,) |

L(K).

Let 6; be as in Subclaim I1.5.2. There exists an ordinal oy < p* such that
gs, : 01 — ao. Let g be the <-mapping induced by gs, such that g : N5, —
EM(1,,,®) [ L(K). Notice that by our choice of d;, we have that g and
EM(I,,®) | L(K) witnesses that Ng,, N\, NZ and bs, can be weakly disjointly

amalgamated.

Let us state an easy corollary of Theorem I1.5.1 that will simplify future con-

structions:

Corollary I1.5.3. Suppose pu, My, My, My and b are as in the statement of
Theorem II.5.1. If M is universal over My, then there exists a <,-mapping h
such that

(1) h: My — M,

(2) h | My =idy, and

(3) h(My) Nb= My (equivalently h(My) N M; = ().
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Proof. By Theorem I1.5.1, there exists a <-mapping g and a model M3 of
cardinality g such that

c g My — M

g | Mo = tda

- g(M3) b= My and

- My <x Ms.
Since M is universal over M, we can fix a <x-mapping f such that

- f: My — M and

- f I My = idyy,

Notice that h := g o f is the desired mapping from M, into M.

b : *
2.6 <, ,-extension property for K

Shelah introduced towers in [Sh 48] and [Sh 87b] as a tool to build a model of
cardinality p* from models of cardinality p. Here we will use the towers to prove
the uniqueness of limit models by producing a model which is simultaneously a
(1, 01)-limit model and a (g, f2)-limit model. The construction of such a model

is sufficient to prove the uniqueness of limit models by Proposition I1.2.29.

Definition I1.6.1 (Towers Definition 3.1.1 of [ShVi]). Let u > LS(K) and

a0 < pt
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( 3

(M,a) = (M, |7 < a),{ay [ v < a));
M is <y —increasing;

for every v < a, a, € M, 1\ M,;

for every v < o, M, € K,
(2) ICfW = {(M,a) € K, | for every v < a, M, is a (1, 6)-limit}
(3) ’C:,a = U9<#+ Ice,a

Fact 11.6.2 (Fact 3.1.7 from [ShVi]). Suppose K is categorical in \. Given
A>p > LSK), a<pt and 6 a reqular cardinal with < p*, we have that

Ko #0.

Roughly speaking, in order to prove the uniqueness of limit models, we will
construct an array of models of width o; and height o5 in such a way that the
union will simultaneously be a (u,07)-limit model and a (u, 09)-limit model.
Each row in our array will be a tower from K, . We define the array by
induction on the heigth (o3) by finding an "increasing” and continuous chain
of towers from K} 5 . We need to make explicit what we mean by ”increasing.”
One property that the ordering on towers should have is that the union of an
“increasing” chain of towers from K should also be a member of K7 ;. In
particular we need to guarantee that the models that appear in the union be

limit models. This motivates the following ordering on towers:

Definition I1.6.3 (Definition 3.1.3 of [ShVi]). For (M,a), (N,b) € K}, , we

say that

(1) (M,a) <b, (N,b) if and only if

— K,
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(a) @a=1b;
(b) for every v < a, M, <x N, and

(c) whenever M, <x N, then N, is universal over M.,.

(2) (M,a) <5, (N,b) if and only if (M,a) <’ , (N,b) and for every v < a,

M, # N,

Remark I1.6.4. If ((M,a), € K}, , | 0 <) is a <), ,-increasing and continu-
ous chain with v < p*, then UUQ(]\Z, a)s € K}, - Why? Notice that for i < a,

M;y =, Mi, is a limit model, witnessed by (M;, | o < 7).

Notation I1.6.5. We will often be looking at extension of an initial segment of
a tower. We introduce the following notation for this. Suppose (M,a) € Ko
Let 8 < a. We write (M, a) | 3 for the tower ((M; | i < 3),{(a; | i < 8)) € K}, 5

We also abbreviate (a; | ¢ < 8) by a [ .

In order to construct a non-trivial chain of towers, we need to be able to take

proper <Z ,-€xtensions.

Definition I1.6.6. We say the <Z7a—6xtension property holds iff for every (M, a) €

* : v — * Vi b Vi
K}, o there exists (M',a) € K}, , such that (M,a) <}, , (M, a).

Remark I1.6.7. Shelah and Villaveces claim the <Z’a—extension property as
Fact 3.19(1) in [ShVi]. Their proof does not converge. As of the Fall of 2001,

they were unable to produce a proof of this claim.

. b . . .
We will prove the <j, ,-extension property for a particular class of towers:

Definition I1.6.8. ((M; | i < «),a) € K}, , is nice provided that for every

limit ordinal ¢ < «, we have that |J,_, M; is an amalgamation base.

j<t

Remark I1.6.9. If (M, a) is continuous, then (M, a) is nice.
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Notice that in the definition of towers, we do not require continuity at limit
ordinals 7 of the sequence of models. This allows for towers in which M; #
U i< M;. Since we only require that M; is an amalgamation base, there are
towers which are not necessarily nice. Moreover, the union of a <’-increasing

chain of < p* nice towers, is not necessarily nice.

Theorem I1.6.10 (The <Zya-extension property for nice towers). For ev-

ery nice (M,a) € K

nos there exists a nice tower (M',a) € K, such that

(M,a) <b,, (M',a). Moreover, if ;_, M; is an amalgamation base and \J;_,, M; <x

M, for some (u, p*)-limit, M, then we can find a nice extension (M',a) such

that U MZ/ <x M.

i<«

It is natural to attempt to define (M | i < a) to form an extension (M’ a)
of (M,a) by induction on i < a (as Shelah and Villaveces suggest). Theorem
I1.5.1 makes the base case possible. The limits could be taken care of by taking
limits. The problem arises in the successor step. We would have defined M/
extending M; such that M/ N{a; | i < j < a} = 0. Theorem IL5.1 is too weak
to find an extension of both M! and M;, which avoids {a; | i+ 1 < j < a}.
We can only find M/ ; which contains an image of M; and M;,, and avoids
{a; | i+ 1 < j < a} by applying Theorem II.5.1 to M,,;, some extension of
M UM/, M, and {a; | i+1<j < a}.

*

Alternatively, one might try defining approximations (M’,a’)! € K.

a < -
extension of (M,a) by induction. In this construction, we have no problem
with the successor stages (because we do not require the approximations to be

increasing). However, we will get stuck at the limit stages, because we can no

longer take unions.
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Since Thoerem II.5.1 gives us a mapping from M; to M/, we have decided to

look at a directed system of models ((M; | i < o), (fi; i <j <))

Before beginning the proof of Theorem I1.6.10, we prove the following lemma

which will be used in the successor stage of the construction.

Lemma I1.6.11. Suppose (M,a) € K.« lies inside a (u, pu™)-limit model, M,

that is \J,_ M; <x M. If (M', @) € K., 41 for some j+1 < a is a partial ex-

<o
tension of (M, a) (ie (M,a) | B <}, ;.o (M',d')), then there exists a K-mapping
f: Mg — M such that f | M; = idy; and there exists Mi,, € K}, so that

((fM]) [0 <) (M) ,a ] (542) is a partial <b, ;,, extension of (M, a).

Proof. Since M} and M;, are both <x-substructures of M, we can get MY, (a
first approximation to the desired M7, ) such that M7, , € K, is universal over
M and universal over M;,. How? By the Downward Léwenheim Skolem Ax-
iom (Axiom 6) of AEC and the density of amalgamation bases (Theorem 11.4.1),

we can find an amalgamation base L of cardinality p such that M}, Mj, 1 <k L.

By Lemma I1.2.22 and Corollary I1.4.9, there exists M}, a (y,w)-limit over L.

Subclaim I1.6.12. M}, is universal over M and is universal over Mj, .

Proof. Tt suffices to show that when Ly <x L <x L are amalgamation bases of
cardinality u, if L is universal over L, then L is universal over Ly. Let L’ be
an extension of Ly of cardinality p. Since L, is an amalgamation base, we can

find an amalgam L” such that the following diagram commmutes:

L/ > L//

a T

LOTLl
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Since L is universal over Ly, there exists g : L” — L with ¢g [ Ly = idy,. Notice

that goh: L' — L with go h [ Ly = idy,. -

M, may serve us well if it does not contain any a; for j +1 < [ < «, but
this is not guaranteed. So we need to make an adjustment. Notice that M is
universal over M;;. Thus we can apply Corollary 11.5.3 to M1, Ma, M7,

and (a; | 7 +1 <1 < «). This yields a <-mapping f such that
- f ]\4]’3r1 — M
. f | Mjsy = idyy,,, and
S fMP )N {a | jH1<I<a}=0.

Proof of Theorem I1.6.10. Let u be a cardinal and « a limit ordinal such that
a < pt < X Let a nice tower (M,a) € Kj, , be given. Denote by M, a model

in K™ extending | J;_, M;. As discussed above, we have decided to look at a

i<a
directed system of models ((M] | i < a),(f;; | i < j < a)), as opposed to an

increasing sequence, such that at each stage ¢ < a:

(1) ((f(M]) | j <i),a|i)is a <! -extension of (M,a) | i

JANTT]
(2) M/ is universal over M;,

(3) M, is universal over f;,,,(M;) and

(4) f1, 1 My = id,,

Jst
It may be useful at this point to refer to Section 2.2 concerning directed systems

and direct limits. In order to carry out the construction at limit stages, we need

to work inside of a fixed structure. Fix M to be a (u, u*)-limit model over M,,.
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We will simultaneously define a directed system ((M; | i < a), (fi; |i <j < a))
extending ((M] | i < ), (f;; |1 < j <)) such that:

(5) Mj < M,
6) f!. can be extended to an automorphism of M, f;;, for j < i and
(6) fii ji» for j

(7) ((M; = M | j <), {fr; | k <j<i)) forms a directed system.

Notice that the M/’s will not necessarily form an extension of the tower (M, a).
Rather, for each ¢ < «, we find some image of (M; | j < i) which will extend

the initial segment of length i of (M, a) (see condition (1) of the construction).
The construction is possible:

i = 0: Since M is an amalgamation base, we can find Mg € K7, (a first approx-
imation of the desired M) such that M{ is universal over M,. By Corollary
11.5.3 (applied to My, M,, M} and a), we can find a <x-mapping h : M — M
such that h [ My = idy, and h(Mg) Na = 0. Set My := h(My), foo = idug
and fo,o = id,y.

i =j+1: Let h and M, be as in Lemma I1.6.11. Set M}, := h(M},,),
1 = idars, fit1j01 = idy and fijs1 == h 1 Mj. Since M is a (p, pt)-
limit over both M} and f;;,,(Mj), by Proposition I1.2.33 we can extend f; .,
to an automorphism of M, denoted by fmﬂ.

To guarantee that we have a directed system, for k£ < j, define f,'w.Jrl = fij410

fl/f,j and flw'ﬂ . ]Ej,j+1 o fk]

1 1S a limit ordinal: Suppose that ((M]’ | § < i), <f"” | k < j < i) and
(<M | j <), <.fk’j | k < j <)) have been defined. Since they are both directed
systems, we can take direct limits, but we want to chose the representations of

the direct limits carefully:
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Claim I1.6.13. We can choose direct limits (M}, (f;; | j <)) and (M, <f]*l |
§<a) of (M) | § <), {fiy |k <i<i)) and ((M|j<i),(frs | k<j<i)
respectively such that

(a) M} <k Mi*

(b) f]*l is an automorphism of M} for every j < i

(c) Mj = M

(d) fi: | M; =idy; for every j < i.

Proof. We will first find direct limits which satisfy the first 3 conditions ((a)-
(c)). Then we will make adjustments to them in order to find direct limits which
satisfy conditions (a)-(d) in the claim.

7 7

By Lemma I1.2.6 we may choose direct limits (M;*, (f57 | j < i) and (M;*, (f77 |
<1,

§ <)) such that M;* <x M;*. By Claim I1.2.8 we have that for every j

fi is an automorphism and M;* = M. Notice that (M;*,(f;7 | j < 4)) and

Iyt i

(M, { fj*j | j < i)) form a direct limits satisfying the first three properties.

1

However, condition (d) may not hold. However we do know that:
Subclaim I1.6.14. (f;7 [ M; | j < i) is increasing.
Proof. Let j < k < i be given. By construction
fin T M =idyy,.
An application of f;} yields
w0 fin T My = fi5 T M;.
By the definition of directed limits, we have

f;; fMj = f;v’;o j/k er = f:; fMj-
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This completes the proof of Subclaim 11.6.14

We still have not finished the proof of Claim I1.6.13. By the subclaim, we

have that g := (J;_; fi7 | M; is a partial autmorphism of M from Uj<1; M;

7<t

onto |J “(M;). Since M is a (u, u*)-limit model and since | J

i [ M; is an

j<i
amalgamation base we can extend g to G € Aut(M) by Proposition 11.2.33.
Notice this is the point of the proof where we use the assumption of niceness

when we observe that | J._, M; is an amalgamation base.

j<i
Now consider the direct limit defined by M; := G~'(M;*) with (f;; == G~ o
I | 7 <i)and fii= idMi* and the direct limit MZ-* = M with ( V;"i =G o vj*;‘ |
j <) and f;; := idy-. Notice that fi; | M; = G o fir | M; = idyy, for j < i.

This completes the proof of Claim I1.6.13

Our choice of (M;,(f; | j < 14)) and (M, <f]*l | 7 < i)) from Claim I1.6.13
may not be enough to complete the limit step since M; may contain a; for
some ¢ < 7 < a. So we need to apply weak disjoint amalgamation and find
isomorphic copies of theses systems. By Condition (4) of the construction,
notice that M is a (y1,4)-limit model witnessed by (f7;(M;) | j < i). Hence M;
is an amalgamation base. Since M; and M; both live inside of M, we can find
M;" € K, which is universal over M; and universal over M. By Corollary I1.5.3
applied to M;, M,, M/ and (a; | | <4 < ) we can find h : M} — M such that
h | M; =idy, and h(M])N{a; |i <1< a} =0.

Set M] := h(M}'), fi; = ida,,, fiz = idy and for j < i, fi, == ho f;,. We

need to verify that for j < i, fi,(Mj)(Wa | j <1 < a} = 0. Clearly by

3t
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our application of weak disjoint amalgamation, we have that for every [ with
i <l <aandevery j <i,a ¢ fi;(M)since M 2 f;,(M;). Suppose that j < i
and [ is such that j <1 <. By construction a; ¢ f},,,(M;) and f}, ;(a1) = a.
So f]/z(M]/) = fl/+1,i © fj{,l+1(Mj/') implies that a; ¢ f],l(M_]/)

Notice that for every j < i, M is a (, u*)-limit over both M and f},;(M;). Thus
by the uniqueness of (1, p*)-limit models, we can extend [} to an automorphism

of M, denoted by fﬂ This completes the limit stage of the construction.

The construction is enough: Let M/ and (fi | ¢ < «) be a direct limit of
(M} |1 < a),(fji]Jj<i<a)). By Subclaim I1.6.14 we may assume that
Uica Mi <k M{,. Tt is routine to verify that ((f;o(M/) | i < a),a) is a <) -

extension of (M, a).

If |J;., M; is an amalgamation base we can find a K-mapping as in the limit

stage to choose |J,_, f'(M]) <x M.

Remark I1.6.15. Notice that the extension (M’,a) in Theorem I1.6.10 is not
continuous. Continuity of towers will be desired in the proof of the uniqueness
of limit models. Taking an arbitrary <’-extension will not give us a continuous
tower. In fact, at this point, it is not apparent that any continuous extensions
exist. However, in Section 2.9 we will show that reduced towers are contin-
uous and reduced towers are dense. Thereby, allowing us to take continuous

extensions.
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2.7 <. Extension Property for * K

Unfortunately, it seems that working with the relatively simple IC:‘W towers is
not sufficient to carry out the proof for the uniqueness of limit models. Shelah
and Villaveces have idenitified a more elaborate tower. The extension proprerty

for these towers is also missing from [ShVi]. We provide a partial solution to this

*

..o 0 the previous section.

extension property, analagous to the solution for K
In fact, we will have to further adjust our definition of towers to scattered towers
in the following section. We introduce the scaled down towers of Sections 2.6

and 2.7 to break down the proof of the desired extension property into more

manageable constructions.

We augment our towers with a dependence relation. The following variant of
the first-order notion of splitting is often used in AECs. Most results relying
on this notion are proved under the assumption of categoricity. Just recently
progress has been made by considering p-splitting in Galois-stable AECs see

Chapter III.

Definition II1.7.1. Let pu be a cardinal with p < A\. For M € K" and p €
ga-S(M), we say that p u-splits over N iff N <, M and there exist Ny, Ny € IC,,

and a <j-mapping h : N7 = N, such that

(1) h(p I N1) #p [ Na,

(2) N <k Ny, Ny < M and

(3) h [ N =idy.

Remark I1.7.2 (Monotonicity). If N <x M <, M’ are all amalgamation
bases of cardinality p and ga-tp(a/M") does not u-split over N, then ga-tp(a/M)

does not pu-split over V.
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Shelah and Villaveces draw a connection between categoricity and superstability-
like properties by showing that under the assumption of categoricity there are

no long splitting chains:

Theorem I1.7.3 (Theorem 2.2.1 from [ShVi]). Under Assumption II.1.1.(1)
through I1.1.1.(4), suppose that

(1) (M; | i < o) is <x-increasing and continuous,

(2) for alli < o, M; € K",

(8) for alli < o, My, is universal over M;

(4) cf(o) =0 < put <\ and

(5) p € ga-S(M,).

Then there exists i < o such that p does not u-split over M;.

Implicit in their proof of Theorem I1.7.3 (case (a) in Theorem 2.2.1 from [ShVi])
is a statement which in the superstable first order case is an implication of x(7")

being finite.

Theorem I1.7.4. Under Assumption I1.1.1.(1) through I1.1.1.(4), suppose that
(1) (M; |1 < o) is <x-increasing and continuous,

(2) for alli <o, M; € K},

(3) for alli < o, M;\1 is universal over M;,

(4) cf(o) =0 < p™ <A,

(5) p € ga-S(M,) and

(6) p | M; does not p-split over My for all i < o.

Then p does not p-split over M.
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? Note to Baldwin, Blum, Cummings and Schimmerling: The proof of Theorem
I1.7.3 in [ShVi] is surprisingly clear and well-written. There are 3 cases for the
proof. Case (a) is exactly Theorem I1.7.4 (although they do not state this as
a separate result and it does not follow from the statement of Theorem I1.7.3).
But, there is nothing to change in the what is written to get the proof of Theorem
I1.7.4. In case you would still like me to include an exposition of the proof, let

me know and I'll add it.

Remark I1.7.5. The proofs of Theorem I1.7.3 and Theorem I1.7.4 utilize the
full power of the categoricity assumption. In particular, Shelah and Villaveces
use the fact that every model can be embedded into a reduct of an Ehrenfreucht-
Monstowski model. It is open as to whether or not similar theorems can be
proven under the assumption of Galois-stability in every cardinality (Galois-

superstablity).

We now derive the extension property for non-splitting types (Theorem I1.7.6).
This result does not rely on the categoricity assumption. We will use it to find
extensions of towers, but it is also useful for developing a stability theory for

tame abstract elementary classes in Chapter III.

Theorem 11.7.6 (Extension of non-splitting types). Let M be a (u, ut)-

limit containing a|J M. Suppose that M € KC,, is universal over N and ga-tp(a/M, M)

does not p-split over N.

Let M" € K™ be an extension of M with M' <k M. Then there exists a
<ic-mapping g € Auty M such that ga-tp(a/g(M')) does not p-split over N.
Alternatively, g~ € Auty (M) is such that ga-tp(g~'(a)/M’) does not p-split

over N.

7l
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Proof. Since M is universal over N, there exists a <, mapping h' : M’ — M
with &’ [ N = idy. By Proposition 11.2.33, we can extend A’ to an automorphism
h of M. Notice that by monotonicity, ga-tp(a/h(M’)) does not u-split over N.

By invariance,
(*) ga-tp(h*(a)/M") does not p-split over N.
Subclaim I1.7.7. ga-tp(h~'(a)/M) = ga-tp(a/M).

Proof. We will use the notion of u-splitting to prove this subclaim. So let
us rename the models in such a way that our application of the definition u-
splitting will become transparent. Let Ny := h™'(M) and Ny = M. Let p :=
ga-tp(h~(a)/h~Y(M)). Consider the mapping h : N; = N,. Since p does not

p-split over N, h(p [ N1) = p [ Na. Let us calculate this

hp | N1) = ga-tp(h(h™"(a)) /h(h™"(M))) = ga-tp(a/M).

While,
p | Na = ga-tp(h™"(a)/M).

Thus ga-tp(h™'(a)/M) = ga-tp(a/M) as required. .

From the subclaim, we can find a <g-mapping ¢ € Auty M such that g o
h~'(a) = a. Notice that ga-tp(a/g(M'), M) does not p-split over M. By (*)

and invariance we also have ga-tp(g~'(a)/M’, M) does not u-split over N.

Theorem I1.7.8 (Uniqueness of non-splitting extensions). Let N, M, M’ €
K™ be such that M’ is universal over M and M is universal over N. If
p € ga-S(M) does not p-split over N, then there is a unique p' € ga-S(M’)

such that p' extends p and p’' does not p split over N.
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Proof. By Theorem I1.7.6, there exists p’ € ga-S(M’) extending p such that p’
does not p-split over N. Suppose for the sake of contradiction that there exists
q # p € ga-S(M') extending p and not p-splitting over N. Let a,b be such
that p’ = ga-tp(a/M’) and ¢ = ga-tp(b/M"). Since M is universal over N, there
exists a <y-mapping f : M’ — M with f [ N = idy. Since p’ and ¢ do not

pu-split over N we have
(x)a  ga-tp(a/f(M')) = ga-tp(f(a)/f(M')) and
(<)o ga-tp(b/f(M")) = ga-tp(f(b)/f(M")).

On the otherhand, since p # ¢, we have that

(+)  ga-tp(f(a)/f(M")) # ga-tp(f(b)/f(M")).

Combining ()4, (), and (%), we get

ga-tp(a/f(M')) # ga-tp(b/ f(M)).

Since f(M') <x M, this inequality witness that

ga-tp(a/M) # ga-tp(b/M),

contradicting our choice of p’ and ¢ extending p. -

Now we incorporate p-splitting into our definition of towers.

Definition I1.7.9.

(M,a) € K*

e

N=(N;|i+1<a);
+]Cz,a =< (M,a,N) for every i +1 < a, N; < M;,;

M; is universal over N; and;

ga-tp(a;, M;, M;11) does not p-split over N;.
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Similar to the case of K}, , we define an ordering,

Definition I1.7.10. For (M,a, N)and (M',a’,N') € *K*

a0

we say (M, a, N) <fa
(M',a', N') iff

(1) (M,a) <, (M, &)

(2) N = N'and

(3) for every i < a, ga-tp(a;/M;, M/, ) does not p-split over N;.

Remark I1.7.11. Notice that in Definition I1.7.10, condition (3) follows from

(2). We list it as a separate condition to emphasize the role of p-splitting.

Notation I1.7.12. We say that (M, a, N) is nice iff when i is a limit ordinal

U, M; is an amalgamation base.

The following theorem is a partial solution to a problem from [ShVi]:

Theorem I1.7.13 (The < ,-extension property for nice towers). If(M,a,N) €
T ICr, , is nice, then there exists a nice (M',a, N') € * K, , such that (M,a, N) <¢,

(M',a,N"). Moreover if Ui<o Mi is an amalgamation base such that | J,_, M; <x

M for some (p, u*)-limit, M, then we can find (M', @', N') such that|J,_, M! <x

<o

M.

Proof. Let u be a cardinal and « a limit ordinal such that o < put < A. Let
(M,a,N) e * K. o be given. Denote by M, a model in Kj™ extending | J;_, M;.
Fix M to be a (u, ut)-limit model over M,.

Similar to the proof of Theorem I1.6.10, we will define by induction on 7 < « a
sequence of models (M | i < a) and sequences of <x-mappings, (fj; | j <i <

o) and (f;,; | j <i < a) such that for i < o
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(1) ((fj.(M}) [ j <i),ald N [i)isa <{ ;-extension of (M,a, N) [,
(2) (M |7 <i),(f;; | j<1i)) forms a directed system,

(3) M/ is universal over M;,

(4) Mj,, is universal over f;, (M),

7

(5) ],1 I M; = ide’
(6) M! =<k M,

(7) f;; can be extended to an automorphism of M, iji, for j <i and

(8) ({M | j < i), {fr; | k <j<i)) forms a directed system.

The construction is enough: We can take M, and (f;, | < a) to be a direct
limit of ((M] | i < a),(fj; | j < i < «@)). Since f}; [ M; = idy;, for every
J <1 < a, we may assume that f;, [ M; = idyy, for every i < a. Notice that
((fla(M]) | i < a),a) is a <¢, ,-extension of (M,a). For the moreover part,
simply continue the construction one more step for i = a.

The construction is possible:

i = 0: Since M is an amalgamation base, we can find My € K, (a first
approximation of the desired M{) such that M[ is universal over M,. By The-
orem I1.7.6, we may assume that ga-tp(ao/M[/) does not p-split over Ny and
Mj <k M. Since ag ¢ M, and ga-tp(ag/My) does not p-split over Ny, we
know that ay ¢ M{. But, we might have that for some | > 0, a; € M[/. We
use weak disjoint amalgamation to avoid {a; | 0 < [ < a}. By the Downward
Loweneim-Skolem Axiom for AECs (Axiom 6) we can choose M? € K, such

that M(l)/, My <k M? <K M.

By Corollary 11.5.3 (applied to My, M,, M? and (a; | 0 < I < «)), we can find

a <i-mapping f such that
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S fiM?— M
T My =iday,
fMY) N {a | 0<l<a} =10

Define M| := f(M}/). Notice that ay ¢ M| because ag ¢ M| and f(ag) =
ap. Clearly M{N{a; | 0 <1 < a} = 0, since M <x M? and f(M?) N
{a; | 0 < Il < a} = 0. We need only verify that ga-tp(ag/M]) does not u-
split over Ny. By invariance, ga-tp(ag/M[/) does not p-split over Ny implies
that ga-tp(f(ao)/f(M{)) does not p-split over Ny. But recall f(ag) = ag and

f(MJ) = M. Thus ga-tp(ag/M]) does not p-split over Nj.
Set foo :=idy and ff o = idyg.

t = j 4+ 1: Suppose that we have completed the construction for all k& < 7.
Since M}, M1 <k M, we can apply the Downward-Lowenheim Axiom for
AECs to find M}}, (a first approximation to M} ;) a model of cardinality u
extending both M} and M;,,. WLOG by Subclaim I1.6.12 we may assume that

/,

mo o o mo i
M7}, is a limit model of cardinality g and M, is universal over M;,; and

M;. By Theorem IL1.7.6, we can find a <x mapping f : M}, — M such that

[ 1 My = idy,,, and ga-tp(aji1/f(ML,)) does not p-split over Nj,;. Set

MY, = FOM).

J+1

Subclaim 11.7.14. a;,, ¢ M},

Proof. Suppose that a;;1 € M,,. Since M, is universal over Nj,;, there
exists a <x-mapping, g : M}, — M, such that g [ Nj;; = idy,,,. Since

ga-tp(a;;1/Mj, ) does not p-split over Nj i, we have that

ga-tp(a;41/9(Mj,,) = ga-tp(g(a;1)/9(Mjy,)).
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Notice that because g(a;ji1) € g(Mj,,), we have that a;,1 = g(a;;1). Thus
aj1 € g(M7,,) <x Mji1. This contradicts the definition of towers: a;,; ¢

M.

M., may serve us well if it does not contain any a; for j +1 < [ < a, but
this is not guaranteed. So we need to make an adjustment. Let M? be a
model of cardinality y such that Mj o, M| <x M? <k M. Notice that M is
universal over M;,». Thus we can apply Corollary I1.5.3 to Mo, M,, M? and

(a; | j+2 <1< ). This yields a <c-mapping h such that
- h:M?— M
~h | Mo =1idy, , and
ch(M) N {a | j+2<l<a}=0.

Set Mj,, := h(M},,). Notice that by invariance, ga-tp(a;;1/MJ,,) does not
p-split over Nj,; implies that ga-tp(h(a;y1)/h(M],)) does not p-split over
h(Njy1). Recalling that i | Mjo = idy,,, we have that ga-tp(a;,1/M}, ;) does
not p-split over N;, 1. We need to verify that a;,1 ¢ M7, ,. This holds because
aj+1 ¢ My and h(aji1) = ajia.

Set fliy i1 = idar,y ey and fiije1 = idy and fi, o= ho f | M. Since
M is a (p, put)-limit over both M and f7 ., (M), we can extend f; ., to an
automorphism of M, denoted by fj,jﬂ.

To guarantee that we have a directed system, for k < j, define f; ;.| = fi . 0
fryand fij = figro fi.

i s a limit ordinal: Suppose that ((M; | j < @), (fr; | ¥ < j < i)) and
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((M | j < i),(fe; | K < j < i) have been defined. Since they are both
directed systems, we can take direct limits. By niceness we can apply Claim

I1.6.13, so that we may assume that (M7, (f;, | 7 <)) and (M, (f},; | j <))

are the respective direct limits such that M} <x M and |J._, M; < M;.

j<i
By Condition (4) of the construction, notice that M} is a (u,4)-limit model
witnessed by (ff;(M;) | j < i). Hence M; is an amalgamation base. Since M;

and M; both live inside of M, we can find M]" € K}, which is universal over M;

and universal over M.

By Theorem I1.7.6 we can find a <x-mapping f : M/ — M such that f [ M; =
idyg, and ga-tp(a;/f(M]")) does not u-split over N;. Set M/ := f(M!"). By a
similar argument to Subclaim I1.7.14, we can see that a; ¢ M.

M!" may contain some a; when i < [ < . We need to make an adjustment
using weak disjoint amalgamtion. Let M? be a model of cardinality p such
that M/, My, <x M? <x M. By Corollary 11.5.3 applied to M;, M,, M? and
{a; | i <1< a) we can find h : M/ — M such that h | M\, = idy,,, and
h(M?)N{a; | i <l<a}=0.

Set M] := h(M]). We need to verify that a; ¢ M and ga-tp(a;/M]) does not
p-split over N;. Since a; ¢ M/ and h(a;) = a;, we have that a; ¢ h(M]') = M].
By invariance of non-splitting, ga-tp(a;/M]") not p-splitting over N; implies that
ga-tp(h(a;)/h(M]")) does not p-split over h(N;). Recalling our definition of h

and M/. This yields ga-tp(a;/M]) does not u-split over NV;.
Set fi; == idy f” :=idy; and for j <, fi,:=ho fo fi.
Notice that for every j < i, M is a (u, u)-limit over both M and f;,(M}). Thus

by the uniqueness of (p, u™)-limit models, we can extend [} i to an automorphism
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of M, denoted by fjl

2.8 Extension Property for Scattered Towers

We now make the final modification to the towers and prove an extension the-

orem for these scattered towers. Let’s recall the general strategy for proving

the

uniqueness of limit models. Our goal is to construct an array of mod-

els (M; | j < 61,1 < 0s) of width 6; and height 6, such that the union will

be simultaneously a (i, 6;)-limit model (witnessed by (Mje2 | j < 61)) and a

(11, 02)-limit model (witnessed by (Mj | i < 65)). In spirit our construction will

behave this way. However, such a construction is too much to hope for because:

(1)

We would like to have (J,_, M; would be a (j, a)-limit model. One way to

accomplish this would be to focus on towers (M,a, N) € * K7, . such that
(%) My is universal over M.

While these towers are easy to construct individually, if we were to construct
a <{, ,-increasing and continuous chain of such towers, ((M,a,N)? | § <
a), we would not necessarily know at limit stages, § < «, that the tower
(M,a, N)? satisfies (*).

While our ordering on towers is enough to get that M is a (y, 65)-limit
for i < 6, (witnessed by (M7 | j < 6,)), we cannot say anything about
the model Mgf. Unfortunately it is not reasonable to ”fix” our definition
of ordering to guarantee that Mgf is a limit model, since we would then be
unable (at least we see no way of doing it directly) to prove the extension

property for towers.
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In Sections 2.9 and 2.10, we address problem (1) by identifying some properties
of towers (full and reduced) that guarantee that the top of the tower (MJ?) is

in fact a (u, o1)-limit model.

To remedy (2) we define scattered towers. Since we know that M is a (u, 62)-
limit for i < 6, (witnessed by (M7 | j < 65)), the idea is to construct a very wide
array of towers (of width p*) and then focus in on some o < u of cofinality 6.
Then M?% won’t be in the last column of the array, so the ordering will guarantee
us that M?% is a (u,6y)-limit (witnessed by (MJ | j < 6,)). However, we have
not proved an extension property for towers of width p. Our arguments won’t
generalize to K, ,+ because Theorem I1.5.1 (Weak Disjoint Amalgamation) isn’t
strong enough since we would have x4 many elements to avoid ({a; | i < p*}).
So we will construct the tower in K, ,+ in p"-many stages by shorter towers
(in KT}, for o < p*). To do this we introduce the notion of scattered towers,
which will allow us to extend a tower in K7, , to a longer tower in K, 5 when

a<f<ut.

Notation I1.8.1. Let o be an ordinal. We say that 4 C P(«) is a set of

disjoint intervals of o of which one contains 0 provided that
-0e Uy,
- for uy #uy € YU, up Nug = 0 and
- for u € U, if By < By € u, then for every v with 8; < v < 2, we have v € u.

Since we will not be looking at any other sets of intervals, we abbreviate a set

of disjoint intervals of o of which one contains 0 as a set of intervals.

Definition I1.8.2 (Definition 3.3.1 of [ShVi]). For il a set of intervals of
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ordinals < u™, let

( 3

M = (M; | i € u for some interval u € l);
M is <j increasing, but not

necessarily continuous;

- ]CZ,ZJ. = (M7 a, N) a; € Mi—l—l\Mi when Z,Z +1€ USJ,
N =(N; |ieJw);
M is universal over N; when 7,7+ 1 € [J4 and

ga-tp(a;, M;, M;,1) does not u — split over N;

\
Notice that these scattered towers are in some sense subtowers of the towers

T K, o Hence we can consider the restriction of <¢, | to the class * K7, :
Definition I1.8.3 (Definition 3.3.2 of [ShVi]). Let (M',a',N') € *K
for { =1,2. (M' a', N') <¢ (M?, a2, N?) iff for i € |J4,

(1) M} = M?, aj = a? and N} = N? and

(2) if M} # M?, then M? is universal over M.

We say that (M!,a', N') <¢ (M? a% N?) provided that for every i € (JU,

M} # M2

Actually we can extend the ordering to compare towers from classes * K,  and

+ lCZ,212 when 4, is an interval-extension of ;. By interval-extension we mean:

Definition I1.8.4. il is an interval-extension of U, iff for every u; € i, there
is uy € Uy such that u; C us. We write ' i 42 when 42 is an interval

extension of U*.

Definition I1.8.5. Let $* be an interval extension of {4'. Let (M' @', N') €

Ky, forl=1,2. (M*,a*, NY) <¢ (M? a% N?)iff fori € |J4,
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(1) M}! < M?, al = a? and N! = N? and

(2) if M} # M?, then M? is universal over M}.

)

Now we can generalize the notion of niceness and prove an extension property

for the class of all scattered towers.

Definition I1.8.6. A scattered tower (M,a, N) € *K  is said to be nice
provided that whenever a limit ordinal ¢ is a limit of some sequence of elements

from (J4, then | M; is an amalgamation base.

jelUy, j<i
Theorem I1.8.7 (<°~-Extension Property for Nice Scattered Towers). Let
U and U be sets of intervals of ordinals < pt such that U* is an interval ex-
tension of U'. Let (M',a',N') € TIC, 1 be a mice scattered tower. There
exists a nice scattered tower (M?,a%, N?) € T K, g such that (MY at, Nty <
(V12,32 N?),

Moreover, if UieUuMi 1s an amalgamation base and Uz‘euuMi <x M for some

(p, w)-limit M, then we can find (M’,a', N') such that UieuuMi <x M.

Proof. WLOG we can rewrite 4 as a collection of disjoint intervals such that
for every u? € U?, there exists at most one u! € ' such that u' C w2 Let
us enumerate U' as (u! | t € a!) in increasing order (in other words when
t <t € o' we have that max(u;) < min(uj,).)

For bookkeeping purposes, we will enumerate U* as (u? | t € o') as

{i e U | min{u}} <i<min{ul, }} ift+1<al
u; =

{i e U | min{u}} < i} otherwise

Remark I1.8.8. The second part of the definition of u? is used only to define

1

uil when o' is a successor ordinal.
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Since 0 € [JU', this enumeration of 4> can be carried out.

Given (M',a',N') € TKC;, o a nice tower, we will find a <“extension in
+ICZAIQ by using direct limits inside a (p, u*)-limit model as we have done
in the proofs of Theorem II1.6.10 and Theorem II.7.13. As before, fix M a
(1, p*)-limit model containing ;e js0 M. We will define approximations to
a tower in +IC;7112 with towers in +IC;’L@ extending towers in +IC;7L%1 where
U ={ul|s <t} forl=1,2.

These partial extensions will be defined by constructing sequences of models
(M? i e JU?) and (N? | i,i+1 € [JU?), a sequence of elements (a? | i,i+1 €
UU?) and <x-mappings {f.; | s <t < a'} (or {fs; | s <t < a'} for ' a

sucessor) satisfying
(1) ((fsx(M?) i € u? and s < t),a, N') is a <, g -extension of (M',a', N') |
Uy where @' = (a? | 4,5+ 1 € UF) and N' = (N? | 4,5+ 1 € U),

M?.

ieu? *i

(2) ((M?® | s <t),(fst]|s <t)) forms a directed system where M* = |

(3) M? is universal over M} for all i € |JUZ,

(4) M? is universal over f,;(M?) for every i < j and s <t such that i € u?
and j € u? (consequently, M**! is universal over f,1(M?")),

(5) for | Mj = idy for all j € u?,

(6) M? <x M,

(7) fs+ can be extended to an automorphism of M, fs,t, for s <t < ol and

(8) ({M | s <t),{fss|s<t)) forms a directed system.

The construction is enough:

Let a := a! if a! is a limit, otherwise a := a! + 1. We can take M/, and

(fra | t < @) to be a direct limit of ((M" |t < &), (fs+ | s <t < «)). Since fq; |
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M} = idyu, for every i € u?, we may assume that f;, | M’ = idy: for every

t < . Notice that ({fio(M!) | i€ u?, t <a),{a?|iec|JU?), (N?|iec|Ju?)
is a <, ,-extension of (M,a, N)*. For the moreover part, simply continue the
construction one more limit step.

The construction:

t = 0: First notice that by Theorem I1.7.13, we can find (M] | i € u}) such that

(M',a* [ ul, N* [ ul) is a <{y-extension of (M*,a', N') | 45 and M’ avoids a'

above u} (specifically (Uz’eu}) M) | j € U4 \ud} = 0.) Moreover the proof

of Theorem 7.10 gives us an extension such that | J,.,. M/ is a limit model.

; 1
’LEUO

We can choose MT € K, such that (J,.. M/, M} < MT < M and M?t

i€ud min{ul}

is a (s, 70)-limit over J

icuy M{ Where v is otp(u?) if w2 is infinite, otherwise

yd = w. This is possible since UiEu(l) M] is an amalgamation base. Let (M |

v < 4d) witness that M1 is a (1, 4¢)-limit over | J,_.1 M. Since limit models are

; 1
lEUO

amalgamation bases, we may choose MVT 41 to be a (u,w)-limit over M.

By weak disjoint amlagamation (Corollary I1.5.3) applied to (Ui@é MU, M, MT)

; 1
ZEUO

and {a} | j e ' \ 43}, there exists an automorphism ¢ of M such that

+ 9 [ Ujeuy M = idy,_, rp and
k2 ’U,D 1
- g(MY) N {aj | j € Ut \ug} = 0.

Denote by (i, | v € otp(u3\ug)) the increasing enumeration of u3\uj. Define

g(M!) fori € u}

(2

1

g(MI)  fori =i, € ug\ug
Since M is an limit model witnessed by the MI’s, we can choose a; € M7, |\ M}

for all 4,4+ 1 € u\ul. Since M? is a limit model for each i,i + 1 € u\ug, we
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can apply Theorem I11.7.3 to find N? <, M? such that ga-tp(a;/M?) does not

p-split over N? and M? is universal over N?.

All that remains is to define fy := z'dU_E L and f070 = id,y.
K2 UO K

t = s+ 1 : By condition (4) of the construction, we have that (J,c,. M7 is
a limit model witnessed by (f.,(M?) | i € u? andr < s). Thus [J,c,. M}

is an amalgamation base. Now we can choose a model M’ € K, such that

2 1
Uieug M7, M

min{ué_H}

<k M’ and M" is a (, |u 4| + Ro)-limit over (J,,» M?.

7

By identical arguments to the successor case in Theorem I1.7.13, we can find

M ={(M!|ie ilg Uwu.,,) and an automorphism h of M such that
- (M',@,N') is a nice scattered tower, where @’ = (a? | i € U2(Jul,,) and
N' = (N} |i e 2 Uulyy)
(MY at, NY) Ul <e (M a, N')

' Uieuguu;H Min{a;|j€ U\ Uy} = 0.

-hrM”:M”gM/' 1 and
min{u/, ,}
. 1 — )
h r Mmin{ui+1} o ZerLin{ug_'_l}.
Let MT be a (u, ’Ylﬂ)—limit model over UieﬂiU%ﬁﬂ M; such that Méﬁn{u?“} e

M <x M, where 4!, is otp(u2,,) if u2,, is infinite, otherwise 4/, , = w. Let
(MI ]~ < o +1) witness that MT is a limit model. Since limit models are
amalgamation bases, we may choose ]\/[7T 41 to be a (u, w)-limit over MWT

Applying Corollary 11.5.3 to (Uieu;+1 Mil’Uieu§Uu§+1 M}, M%) and {aj | j €

UU'\ UL}, there exists an automorphism of M, g, such that

1 o
gl Uieu§+1 M, = zduieu§+1 m and

Cg(MY) N {aj | j € YW\ U} =0
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Denote by (i, | v € otp(uZ,;\ut,,)) the increasing enumeration of u?,  \ul,,.

Define

M2 g(Mj)  fori € ug,

7

g(MI)  fori =iy €ul,\uly,
Since M is a limit model witnessed by the M’s, we can choose a; € M7, |\ M}
foralli,i+1 € uZ,,\u,,,. Since M? is a limit model for each i,i+1 € w2, \ul,,
we can apply Theorem 7.2 to find N? < M? such that ga-tp(a;/M?) does not

p-split over N2 and M? is universal over N?.

Define fy 441 := goh | U,c,2 M7 and f&sﬂ := goh. To complete the definition of
a directed system, for every r < s, set f, 11 1= fss410frs and fns = f575+1 ofm.

t is a limit ordinal: Suppose that ({({J,c,o MZ(= M*) | s <t),{frs |7 < s <))

i€u?
and ((M | s < t),{f.s | » < s < t)) have been defined. Since these are both
directed systems, we can take direct limits. By niceness, we can apply Claim
I1.6.13, so that we may assume that (M*, (f7, | s <t)) and (M, (f'jt | s <t)) are
respective direct limits such that M* <x M, f;‘jt D foyand U,y Ui M} <x
M.

By condition (4) of the construction, notice that M* is a (u,t)-limit model
witnessed by (f7,(M?) [ s <t). Hence M; is an amalgamation base. As in the

successor case of the construction in the proof of Theorem I1.7.13, we can find

M =(M!|ie Us<t $2Ju}) and an automorphism h of M such that

- (M',a', N') is a nice scattered tower, where @’ = (a? | i € |J,_, 42 Ju}) and
N' = (N7 i€ U, 2 Unf)

(MY a', NY T <¢ (M @', N")
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Uiey,_, eyut Mi0 {aj | j e \W} = 0.

-h | M*:M*=M . . and
min{u; }
1 s
- h r Mmln{u%} = ZdMi]in{u%}.

Let M1 be a (1, ] )-limit model over Uieu 2 Ul M! such that M*

min{u?_H}

=K
M* <y M, where ~{ is otp(u?) if u is infinite, otherwise 7/ = w. Let (M | y <
|u? Jrl\%T ) witness that M7 is a limit model. Since limit models are amalgamation
bases, we may choose Mi+1 to be a (p,w)-limit over M.

Applying Corollary I11.5.3 to (e, Mil’UiGUKtﬂ?UU% M}, M) and {a} | j €

UU\ &'}, there exists an automorphism of M, g, such that

9 T Uiear M} = idUieutl mp and

oM {al | j € Us\ 1L} = 0.

Denote by (i, | v € otp(u?\u;)) the increasing enumeration of u?\u;. Define

g(M}) forieu}

(2

M? =

)

g(MI)  fori=i,€uf\u;
Since M1 is a limit model witnessed by the MI’s, we can choose a; € M7, \ M}
for all i,i + 1 € u?\u;. Since M? is a limit model for each i,i +1 € u?\u},
we can apply Theorem 7.2 to find N? <, M? such that ga-tp(a;/M?) does not

p-split over N2 and M? is universal over N?.

Define f,; :=goho fI; | Uicy M? and fs,t :=goho f; forall s <t

Notice that in the proof of the <“extension property for nice towers, we have

actually shown that there is some freedom in choosing the new a;s:
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Corollary I1.8.9. Let U' and 4 be sets of intervals of ordinals < pt such
that 4% is an interval extension of U'. Let (M',a*, N') € TIC, o be a nice
scattered tower. There exists a nice scattered tower (M? a? N?) € K e
such that (M*,a*, N') <¢ (M? a% N?). Moreover for everyi € |Ju*\|JU" and
every j < i with j € U, if (p,N) € Gt(Mjl), then we can choose a; such that

(p7 N) ~ (ga_tp(a’?/MzQ)? Nz2) f Mjl
If we isolate the induction step, we get the following useful fact:

Corollary I1.8.10. Suppose (M,a, N) € K}, lies inside a (p, p)-limit model,

M, that is U, M; <k M. If for some ' Ci Y, (M',a',N') € ICZ,u’ 18

1<a
a partial extension of (M,a,N) (ie (M,a,N) | UN3 <¢ (M',a’,N")), then

and N’ and an ele-

there exist a <x-mapping f, models M sup{U 4} +1

up{J W }+1
ment aéup{Uﬂ'} such that f : ;e M — M, f| M; = idy, for j € Y and
there exists M, o yy1 € Kp s0 that ((f(M]) | i € UMW) (M0 aya)s (@ |
(S Uu/>A<a;up{Uu’}+1>v<f(Ni/) | S Uu/>A<N;up{Uu’}+1>a) is a partial <Z7j+2

extension of (M, a, N).

2.9 Reduced Towers are Continuous

In Section 2.10 we identify a property (full and continuous) which will guarantee

that for a tower (M,a, N) € K}, o with this property, we have that {J,_, M; is a
(i, )-limit model over My (see Theorem I1.10.7). This addresses problem (1)
in our construction of an array of models described at the beginning of Section
2.8. The first point that (1) breaks down is that (M | i < 6;) need not be

a continuous chain of models, since we do not require towers to be continuous.

Shelah and Villaveces introduced the concept of reduced towers in an attempt to
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capture some continuous towers. Unfortunately, their proof that reduced towers
are continuous does not converge. Here we solve this problem. We introduce a

strengthening of reduced towers, completely reduced towers, for easier reading.

Definition I1.9.1. A tower (M,a, N) €* K.,y is said to be reduced provided
that for every (M',a’, N') € T K, with (M,a,N) <¢(M',a’, N') we have that
for every ¢ € [JU,

(+)i M0 ] M; =M,
jeyu

If we slightly modify the proof of Theorem I1.8.7 by using the full power of
Theorem 11.5.1, we can conlude that given (M,a, N) € T IC,, 4 we can always
find an extension (M’,a’, N') such that (*); holds for every i € 4. The definition
of reduced isolates towers in which every <®-extension of (M, a, N) satisfies (x);

for i e YLl

The following seems to be a strengthening of reduced, but by Proposition 11.9.3
it turns out to be equivalent to reduced. We introduce it primarily for expository
reasons as it breaks down the proof of Theorem I1.9.7. The formal difference
between completely reduced and reduced, is that for a tower to be reduced we
require every partial extension (M’ @', N') € * K. of (M,a, N) to satisfy (*);

for i € Ju'.

Definition I1.9.2. A tower (M,a, N) €t K, is said to be completely reduced
provided that for every ¢ < sup{JU} and every (M’,a’,N') € * Ky~ with
(M,a, N) [ 4n¢ < (M',a’, N') we have that for every i € (JUNC,
Mn |J M=M
jeyung

Proposition 11.9.3. If (M, a, N) is reduced, then it is completely reduced.
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Proof. Suppose that (M,a, N) is not completely reduced, then there exist a
¢ < sup{U}, a tower (M',a’,N') € * K}, ¢, i € JUN( and an element b such

that
- (M,a,N) | (&4 ]¢) < (M a',N") and
~be (M n Ujeuumc M;)\ M.

By Lemma I1.8.10, there exists a <x-mapping f and a tower (M*, a*, N*) €

*KC,.4 such that

(2) f: U]EUHHC i Ugeumc Mg,
(3) f [U]euum( ZdU jey unc M;s

(4) for every j € UUNC, f(M]) = M;

J

Notice that by (3) and the fact that b € | M;, we have that f(b) = b.

jeyunc
Since b € M}, we have b € f(M]) = M;. Thus (M* a*, N*) witnesses that

(M,a,N) is not reduced.

Corollary I1.9.4. If (M,a,N) € T K;, is reduced, then for every ¢ < sup{{J},

(M,a,N) | ¢ is also reduced.

ol

Proof. Immediate from the definitions and Proposition 11.9.3. o

If we take a <“-increasing and continuous chain of reduced towers with increasing
index sets, the union will be reduced. The following proposition appears in
[ShVi] for the special case when 4 = {a} for some limit ordinal o (Theorem

3.1.14 of [ShVi].) We provide the proof here for completeness.
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Proposition I1.9.5. Let (4, | v < B) be an increasing and continuous sequence
of sets of intervals (L,11 is an interval-extension of I, and if v is a limit ordinal
U, = Us, Uts.) If (M,a,N)" € T u, | v < B) is <C-increasing and

continuous sequence of reduced towers, then the union of these towers is reduced.

Proof. Denote by (M,a, N)? the limit of the sequence of towers and 45 the
limit of the intervals. More specifically, {z is a fixed set of intervals such that
Uls = U,.sUL, and for every v < 3, i is an interval extension of iL,.
MP = (M | i € Uls) where M = Uy, gucyuy M- NP = (Njn0leUs
i€ Utlg) and @ = (@0 e )

Suppose that it is not reduced. Let (M’,a, N) € " K.y, witness this. Then

there exists an i € |Js and an element a such that a € (M/N{Y Mf)\]\/[f

jEﬂg
There exists v < 3 such that 7 € Y, and there exists j € L, such that a € M ] )
Now consider the tower in ’C;,zw (M’,a, N) | 4k,. Notice that (M’,a, N) | 4,

witnesses that (M, a, N)7 is not reduced. -

The following proposition will be used in conjunction with Theorem I1.9.7 to
show that every tower can be properly extended to a continuous tower. It
appears in [ShVi| (Theorem 3.1.13) for the particular case of & = {«a} for limit
ordinals av. John Baldwin has asked for us to elaborate on their proof here. We
provide a proof of the more general result with 4 an arbitrary set of intervals

ona < u'.

Proposition I1.9.6 (Density of reduced towers). Let (M,a,N) €t K
be mice. Fix M a (u,u*)-limit model containing \J,cq M;. Then there exists

(M',a,N) et K},  such that

. (M,a,N) <¢ (M',a,N),



68

- (M',a, N) is reduced and

Proof. We first observe that it suffices to find a <‘-extension, (M’,a’, N’), of
(M, a, N) that is reduced. If (M’, @', N') does not lie inside of M, since (M, a, N)
is nice, we can apply Proposition 11.2.34 to find a <x-mapping f : UieUu M! —

M such that f | Uicyu Mi- Notice that fl(M’,a’', N")] is as required.

Suppose for the sake of contradiction that no <“-extension of (M, a, N) in * K.
is reduced. This allows us to construct a <®increasing and continuous sequence
of towers ((M¢,a¢,N¢) €™ K}, | ¢ < p*) such that (M<H! a¢tt Nt wit-

nesses that (M¢,a%, N¢) is not reduced for ¢ > 0.

The construction: Since (M, a, N) is nice, we can apply Theorem I1.8.7 to find
(M,a, N)' a <¢ extension of (M,a, N). By our assumption on (M,a, N), we
know that (M,a, N)* is not reduced.

Suppose that (M, a, N)¢ has been defined. Since it is a <®-extension of (M, a, N),
we know it is not reduced. By the definition of reduced towers, there must exist a
(M,a, N)$tt e+ K7, 4 a <‘-extension of (M,a, N)S, witnessing that (M, a, N )¢
is not reduced.

For ¢ a limit ordinal, let (M,a, N)* = |J,_.(M,a, N)?. This completes the

r<¢

construction.

For each b € UC<M¢€UL1MZ‘C define

i(b) :=min {i € Uil |be U U Mf} and
>

C(b) :=min{¢ <p"|be Mib)}.
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¢(-) can be viewed as a function from p* to pt. Thus there exists a club
E={<ut|Ve Uz‘eUuMi(S? ¢(b) < d}. Actually, all we need is for E to be
non-empty.

Fix § € E. By construction (M°*+!, a’+1) No+1) witnesses the fact that (M?, a®, N%)
is not reduced. So we may fix i € J4 and b € M N UjeuuM;‘S such that

b ¢ M?. Since b € M?™ we have that i(b) < 4. Since § € E, we know that
there exists ( < 0 such that b € M&b). Because ¢ < § and i(b) < i, this implies

that b € M? as well. This contradicts our choice of i and b witnessing the failure

of (M?,a’, N°) to be reduced. =

The following theorem was claimed in [ShVi]. Unfortunately, their proof does

not converge. We resolve their problems here.

Theorem I1.9.7 (Reduced towers are continuous). For every o < u* <
A and every set of intervals 4 on «, if (M,a, N) €+ K}, is reduced, then M is

continuous.

Proof. Let p be given. Suppose the claim fails for g and § is the minimal limit

ordinal for which it fails. More precisely, ¢ is the minimal element of
(

0 is a limit ordinal

there exist 4 a set of intervals

and a reduced tower (M,a, N) €™ K7, such that
sup{UU} Nd =4,

Je U and

M;s # Uz‘e(uu)md M;

\ Vs

Let 4 be a set of intervals and (M,a,N) €t K7 witness § € S. Let b €

M;\ Uie(u wns Mi be given. Our goal is to arrive to a contradiction by showing
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that (M,a, N) is not completely reduced. By Corollary 11.9.4, it is enough
to show that (M,a, N) | (§ + 1) is not reduced. We will find a <°-extension
(M*,a | (641),N | (6+1))of (M,a,N) | (§+1) such that b € M for some

¢ <.

Fix M a (p, pt)-limit over Ms. We begin by defining by induction on ¢ < § a <°-
increasing and continuous sequence of reduced towers, ((M,a, N)¢ € K% 5 |
¢ < 6), such that (M,a, N)° | 6 = (M,a, N) and M < M for all ¢ < § and
for all i € [JUNS. Why is this possible? By the minimality of § and Corollary
11.9.4, (M,a, N)° | 6 is continuous. Therefore, it is nice. This allows us to apply
Proposition 11.9.6 to get a reduced extension (M,a, N)! of length ¢ inside M.
Similarly we can find reduced extensions at successor stages. When ( is a limit

ordinal, we take unions which will be reduced by Proposition 11.9.5.

Consider the diagonal sequence (Mg | ¢ € JU and ¢ < §). Notice that this
is a <j-increasing sequence of amalgamation bases and Mg is universal over
]\4¢C whenever ¢ < ¢’ € [JUN(0). By minimality of d, the sequence <.MCC | ¢ €
UY and ¢ < 0) is continuous:
for ¢ € | J4ns with ¢ = sup{_Junc}, Mg = [ J M¢.
£<¢

Thus Ug“euumé MCC is a limit model. Since Ug“euumd MCC and M; are amalgama-
tion bases inside M, we can fix MY <, M a (p,w)-limit model universal over

both Ueejsuns Mf and Ms. (w was an arbitrary choice, we only need that M?

be a (p, 0)-limit for some limit § < pt.)

Because Ugeuumé MCC is a limit model, we can apply Theorem I1.7.3 to
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ga-tp(b/ Ueeyyurs Mg, M?). Let £ € |J4N4 be such that
(%)1  ga-tp(b/ U M¢, M?) does not p-split over Mg
ceJuns
We chose by induction on i < § a <g-increasing and continuous chain of models

(Ny e K, | i e JUN(d + 1)) and an increasing and continuous sequence of
K-mappings (h; | i € JUN(6 + 1)) satistying

(1) hi: M} — N for i <6

(2) hiy1(a;) ¢ Nf fori,i+1elJUN(+1)

(3) Nf <x M

(4) N; is universal over N7 for j < i

(5) M C Ny fori> ¢

(6) he = idMg,

(7) ga-tp(b/h;(M})) does not u-split over Mf for i € [JUNJ with i > £ and

(8) ga-tp(his1(a;)/N}) does not u-split over h;(N;) for i,i+1 € | JUN(I + 1).

Fix an increasing enumeration of [ JUN(d + 1) = {i¢ | ¢ < a} for some a < 6.
We construct this sequence of models and sequence of mappings by induction

on ¢ < a. Let £ be such that § = 4,-:

* . * L i¢ . 4 )
¢ < &% Set Nj := M;: and h;. = szZCC.

¢ > & is a limit ordinal and i; = sup{i, | v < (}: To maintain continuity,

¢ hi,- Condition (7) follows from the induction

Ny = Uﬂy<< N; and h;, = U
hypothesis and Theorem II.7.4.
¢ > & is a limit ordinal with i # sup{iy | v < (} or ¢ = v+ 1 with i¢ # i, + 1:

Let N* = Uz N7, and M* = Uz, M;g. Let Ni7 € K, be a universal
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extension of N* and M} with N <k M. This is possible because either
N* = N;;; for some (3 and is therefore a limit model by the induction hypothesis,
or continuity and condition (4) guarantee that N* is a limit model witnessed
by <Nz~*ﬁ | B < (). N;r will be a first approximation for our definition of N7 .
To get condition (7) notice that by the induction hypothesis we have for every
G <¢,

ga—tp(b/hg(Miig)) does not p-split over Mg

With an application of Theorem I1.7.4, we can conclude that

ga-tp(b/M™*) does not p-split over Mf

By Theorem I1.7.6 we can find f € Aut (M) such that

i
B
Uﬁ<§ hig (MiB )

ga-tp(b/ f(N;")) does not p-split over Mf

Let N := f(N;) and ;. := f. Notice that we do not have to concern ourselves
with condition (8) since i¢ # i, + 1. It is routine to verify that N;, and h;. meet

the other conditions.

(=7+1>( withic =i, +1: Let by, € Aut(M) extend hy . Let N** € K,
be a universal extension of N; , ﬁh(M;f) and M{ with N** <x M. This will be
our first approximation to NZ»*C.

We will first work towards condition (2). By Corollary I1.5.3, applied to A, (MZ:),

hiw(MZf% N** and the collection of elements (M} | J NZ’:)\hM(MZ), we can find

a <i-mapping f such that

- f ﬁh(MZC) — N**
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- f(h (Mjg))m(MgUN; )\hi, (M]7) in particular foh; (a;) & Nj, for j > i,.

~

Now that we have met condition (2), we focus on meeting condition (8) without

mapping a;, into N; . By the definition of towers, we have
ga-tp(a;, /M;:) does not p-split over N;j
By invariance we have that
ga-tp(f o ﬁiv(aiv)/hiw(Mf;’)) does not pu-split over hiW(NZ:).

By the extension property for non-splitting (Theorem I1.7.6), we can find g €

Aut (M) such that

hiW(M:ﬂj)
(%)2 ga-tp(go fo hiv(ai’y)/Ni:) does not u-split over hiW(NZJ).

Let ¢ :=go fo hi«/' We need to verify that by applying ¢’ our work towards

condition (2) is not lost:

Claim II1.9.8. ¢'(a;,) ¢ N; .

Proof. Since h;, (MZ;) is universal over hiv(wa”), there exists a <x-mapping

H : Nj — hi (M;7) with H | hy (N;?) = id, o

x By definition of ¢’ and

(*2), we have ga-tp(g'(a;,)/N; ) does not p-split over hiv(NZj). Thus
(x)s  ga-tp(g'(as,)/H(N})) = ga-tp(H (g'(as,))/H(N,))-

Suppose for the sake of contradiction that ¢'(a; ) € N; . Then an application

of H gives us that H(g'(a;,)) € H(N; ). Thus by the above equality of types

7

(*)3, we have that ¢'(a;,) € H(N;). Since rg(H) C hiy(]\/[?) we get that
g/(ai'y) e hl'y<M’L;/)

Since a;., ¢ M;” and since ¢’ | ij = h;, an application of ¢ gives us g(a;,) ¢

h (M -i”), contradicting the previous paragraph. .

Ty
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We now tackle condition (7). Fix Ni <k M such that it is universal over

q (M;f), N} and N**. By monotonicity of non-splitting (x); implies
i : 3
ga-tp(b/M;) does not p-split over M.
By invariance we get
/ / z . 13
ga-tp(g'(b)/g'(M;)) does not y-split over M.

By the extension property for non-splitting, we can find k € Autg/ (

MZ) M such
that

ga-tp(k o ¢'(b)/N;;) does not p-split over ME

Set h;. := kog | N;. Since k | g(M) = id, conditions (2) and (8)

by g (M)

are met by h;.. This completes the construction of our sequences (N; | i €
UUN(+1)) and (h; [i e JUN(5+ 1)).

We now argue that the construction of these sequences is enough to find a <¢-
extension, (M*,a | (6+1), N | (§+1)), of (M,a,N) | (6+1) such that b € M
for some ¢ < §. We will be defining M* to be pre-image of N*. The following

claim allows us to choose the pre-image so that M contains b for some ¢ < 9.

Claim I1.9.9. There exists h € Aut(M) extending UicUsns i such that h(b) =

b.

Proof. Notice that i, = 0. Consider the increasing and continuous sequence
(h(;(MZ:) | ¥ < «). By invariance, when i < j, hg(Mf) is universal over hs(M})

and hs(M}) is a limit model. By construction we have that for every i € [JN4,

ga-tp(b/hs(M}))does not p-split oveng.
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This allows us to apply Theorem I1.7.4, to ga-tp(b/ ;¢\ jurs hs(M})) to conclude
that

(¥)4  ga-tp(b/ U hs(M})) does not p-split over ]\/[g
eyuns

Notice that e jyns M7 is a limit model witnessed by (MJJ | j € JUni). So
we can apply Proposition I1.2.33 and extend UiEUSJO s hi to an autmorphism h*
of M. We will first show that
(+)s gatp(b/h*( | M), M) =ga-tp(h*(0)/h"( |J M), M).
e JuUnd e JUunsd
By invariance and our choice of £ we have that
ga-tp(h*(b)/h*( U M), M) does not p-split over Mé
eyuns

We will use non-splitting to show that these two types are equal (x)5. In accor-
dance with the definition of splitting, let N! = UieUuns M} N? = P (Uiey sns M}

and p = ga—tp(b/h*(UieuumS M?), M). By ()4, we have that p [ N> = h*(p |

N'). In other words, ga-tp(b/h* (U, juns M), M) = ga-tp(h* (0) /1" (Use s Mi
as desired.

From this equality of types (x)s, we can find an automorphism f of M such that
f(R*(b)) = band f I 2" (Uicyuns M} = idh*(UieUumé )~ Notice that h:= foh”

satisfies the conditions of the claim.

Now that we have a automorphism h fixing b and Uz‘eU ans Mi, we can define
M* as the pre-image of N*. For each i < § define M} := h™Y(N;). Let
¢:=min{i € 4| 7> &+ 1}. Notice that since 6 = sup{tyNd} and & > &, we

have that ¢ < d. Let " =UN(J + 1).
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Claim I11.9.10. (M*,a | JU*, N | 4*) is a <-extension of (M,a, N) | |JU*

such that b € Mz‘

Proof. By construction b € M¢ C N¢. Since h(b) = b, this implies b € M. To
verify that we have a <‘-extension we need to show for i € {*:

i. M} = M; or M is universal over M,

ii. a; ¢ M; for j € " with j > ¢ and

iii. ga-tp(a;/M;) does not p-split over N; whenever 7,7+ 1 € [ J4U*.
Item i. follows from the fact that M/ is universal over M; and M} < M.
Condition (2) of the construction of (N; |i € [JUN(d + 1)) guarantees that for
Jj >, h(a;) ¢ N}. Thus for j > i, a; ¢ M. iii follows from condition (8) of

the construction and invariance. =
Notice that (M*,a | JU*, N | JU*) witnesses that (M,a, N) | [JU" is not

reduced. This gives us a contradiction and completes the proof of the theorem.

_|

2.10 Full towers

We begin this section by recalling a definition of strong types from [ShVi].

Definition I1.10.1 (Definition 3.2.1 of [ShVi]). For M a (u, #)-limit model,

(1) Let
N < M;
N is a (p,0) — limit model;

M 1is universal over N and

p € ga-S(M) does not p — split over N. |
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and

(2) For types (p;, Ni) € Gt(M) (I = 1,2), we say (p1,N1) ~ (p2, N2) iff for
every M' € K™ extending M there is a ¢ € S(M’) extending both p; and

po such that ¢ does not u-split over Ny and ¢ does not p-split over Ns.

Notice that ~ is an equivalence relation on Gt(M). ~ is not necessarily the
identity. If non-splitting were a transitive relation, then ~ would be the identity.
Not having transitivity of non-splitting is one of the difficulties of this work. For
instance, the proof of Theorem I1.7.4 would be easy if we had transitivity. Even
in the first order situation, splitting is not transitive. This is one of the features

of non-forking which makes it more attractive than non-splitting.

Lemma I1.10.2. Given M € K", and (p, N),(p', N') € &t(M). Let M’ €
K™ be a universal extension of M. To show that (p, N) ~ (p'N') it suffices to
find q € ga-S(M') such that q extends p and p' and q does not p-split over N

and N'.

Proof. Suppose q € ga-S(M') extends both p and p’ and does not pu-split over
N and N'. Let M* € K" be an extension of M. By universality of M’, there
exists f : M* — M’ such that f | M =idy;. Consider f~!(q). It extends p and

p’ and does not p-split over N and N’ by invariance. Thus (p, N) ~ (p/, N’). -

The following appears as a Fact 3.2.2(3) in [ShVi]. We provide a proof here for
completeness.
Fact 11.10.3. For M € K", |&t(M)/ ~ | < p.

Proof. Suppose for the sake of contradiction that |&t(M)/ ~ | > p. Let

{(pi, N;) € 6t(M) | i < put} be pairwise non-equivalent. By stability (Fact
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I1.2.20) and the pigeon-hole principle, there exist p € S(M) and I C p* such
that ¢ € I implies p; = p. Set p := ga-tp(a/M).

Let M be a (u, pF)-limit model containing M |Ja. Fix M’ € K™ a universal
extension of M inside M. We will show that there are > ut types over M’

This will provide us with a contradiction since K is stable in p.

For each ¢ € I, by the extension property for non-splitting (Theorem I11.7.6),

there exists f; € Auty; M such that

- ga-tp(fi(a)/M’) does not u-split over NV; and

- ga-tp(fi(a)/M’) extends ga-tp(a/M).
Claim I1.10.4. Fori # j € I we have that ga-tp(f;(a)/M") # ga-tp(f;(a)/M’)
Proof. Otherwise ga-tp(f;(a)/M’) does not u-split over N; and does not p-split

over N;. By Lemma I1.10.2, this implies that (p, N;) ~ (p, N;) contradicting

our choice of non-equivalent strong types.

This completes the proof as {ga-tp(f;(a)/M’') | i € I} is a set of u™ distinct
types over M'. .
We can then consider towers which are saturated with respect to &t(M):
Definition I1.10.5. A tower (M,a, N) €t K ( is said to be full iff

(1) p divides sup{{J 4} if p is regular, otherwise p divides sup{|J#} and

(2) if g € YU and (p, N*) € &t(Mp), then for some i < p with §+1i € JU,

we have that (ga-tp(agri, Mpri, Mprir1), Ngvi) ~ (p, N¥),
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by p dividing a@ we mean there exists v such that o = v -y where - is ordinal

multiplication.

Remark I1.10.6. (1) Definition I1.10.5 appears in [ShVi] for the special case
when 4 = {[0,a)} for o a limit ordinal < p* (see Definition 3.2.3 of their
paper).

(2) Condition (1) of Definition I1.10.5 is used in the proof of Theorem I1.10.7

as a bookkeeping device.

The following theorem is proved in [ShVi| under the particular instance of 4 =
{[0, @)} for o a limit ordinal < p* (Theorem 3.2.4 of their work). We require the
more general result, but the proof is similar to Shelah and Villaveces’ argument.
If (M, a, N) is full and continuous, it may not have M, universal over M; for
all i. But, we can fix a (u, sup{{J})-limit model M’ witnessed by (M/ | i <
sup{J#}). Then we build a K-mapping from M into M’ using the definition
of fullness to extend the mapping at successor stages. The construction will
produce an isomorphism if we are careful with our bookkeeping and use the fact

that p divides sup{{JU} (or pu divides sup{|J U} in the case that p is singular).

Theorem I1.10.7. Suppose U is a sequence of intervals such that | JU has no
mazimal element. If (M,a,N) €* K is full and M is continuous, then

UieUuMi is a (p, sup{|JU})-limit model over M.

In addition, we need the following new theorem which is an analog to the state-
ment that the union of x(7")-many saturated models is saturated in first order
stable theories. We are not implying that fullness is equivalent to saturation,
but that the spirit of the results is similar. The following theorem was not

stated in [ShVi] and is new:
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Theorem I1.10.8 (Union of Full Towers is Full). Let o be a limit ordinal
< pt and let 3 be set of intervals such that ||JU| < pt and if p is reqular p
divides sup{{JU} otherwise p* divides sup{JU}. If (MP,a,N) ™ K} | B <
a) is a <C-increasing and continuous chain of full towers for a < u*, then the

union is a full tower.

Proof. Let ((MP,a,N) €t Ky | 8 < a) be a <“increasing and contin-
uous chain of towers. We need to verify that for i € JU and (p,N) €
St(Us<a M?P), that there exists j < g such that i +j € [J4 and (p, N) ~
(ga-tp(@itj, Upeq M 5)s Niss).

By the definition of <¢, we have that (J,_, M? is a (u, @)-limit witnessed by
(M | 8 < a). By Theorem I1.7.3, there exists 3 < a such that p does not
p-split over MP. Thus (p | M, MP) e &t(M*!). By the assumption of

fullness of the 3 + 1% tower, there exists a j < u such that

(*) (p] M7 M) ~ (ga-tp(am/Mf;;l)a Niyj)-

Recalling the definition of ~, we know that there exists ¢ € ga-S({J M?H)

<o
such that

pl M C g

- gartp(ai; /M5 Cq

- q does not u-split over Mf and

- q does not p-split over Ny ;.
Notice that it suffices to show

Subclaim I1.10.9. (p, N) ~ (ga-tp(ai+;/ U, <o Mi};)s Nij)-
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Proof of Subclaim I1.10.9. By definition of ~, we have that
(p I M7, M) ~ (p, N).

Recalling that ga-tp(aii;/ U, M;,;) does not p-split over Ny ;, we see that

<o 1

(ga-tp(aiss/MEED), Nigy) ~ (ga-tp(aies/ | ) M), Nivy)-

<o

By (%), transitivity of ~ gives us (p, N) ~ (ga-tp(a+;/ U’y<a M]ﬂ.), Nitj). A
_|

Proposition 11.10.10. If (M,a,N) € * I}, y( satisfies condition (2) of the def-
inition of fullness, then for ao < sup{|JH} such that p divides o (or p* divides

o when u is singular), we have that (M,a, N) | 4Na is a full tower.

2.11 Uniqueness of Limit Models

Recall the running assumptions:

(1) K is an abstract elementary class,

(2) K has no maximal models,

(3) K is categorical in some A > LS(K),

(4) GCH and ®,+ (S} +) holds for every cardinal p < A and every regular 6 with

0 <put.

Under these assumptions, we can prove the uniqueness of limit models using the
results from Sections 2.8,2.9 and 2.10. This is a solution to a conjecture from

[ShVil.
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Theorem I1.11.1 (Uniqueness of Limit Models). Let u be a cardinal 6,0,
limit ordinals such that 61,0y < p™ < \. If My and My are (u,61) and (u,6s)
limit models over M, respectively, then there exists an isomorphism f : My = M,

such that f [ M = idy,.

Proof. Let M € K™ be given. By Proposition I1.2.30 wlog we may assume that
0, is regular. By Proposition 11.2.28 it suffices to construct a model which is
simultaneously a (u, 61)-limit model and a (p, 02)-limit model over M. Also by
Proposition I1.2.28 we may assume that if p is regular p divides 6y otherwise
p* divides 6. The idea is to build a (scattered) array of models such that at
some point in the array, we will find a model which is a (u, 6;)-limit model
witnessed by its height in the array and is a (p, 63)-limit model witnessed by its
horizontal position in the array, fullness and continuity. To guarantee that we
have continuous towers, we will be constructing the array with reduced towers.
We will define a chain of length u™ x 6, of scattered towers while increasing the

index set of the towers as we proceed.

We will consider the index set U*9 at stage (o, ¢) € ut x 6, where
4 = | N[Bp, Buby + u¢) | B < a}.

Define by induction on the lexicographical order of u* x 6 the <“increasing and

continuous sequence of scattered towers, ((M,a, N)(*9 e+ K ) | (o, Q) €

put x 6q), such that
(1) M < M{™,
(2) (M, a, N)@9 is reduced,

(3) (M,a, N)™O :=U,_, Ucep, (M,a, N)PO and
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(4) in successor stages in new intervals of length p put in representatives of
all Gt-types from the previous stages, more specifically, if there exists an
interval u of length g in YU**TH\ Y%, then for every i € |JU™C with i <

min{u} and every (p, N) € &t(M;) there exists j € u such that (p, N) ~

(ga-tp(a;/Mj), Nj).

This construction is possible:

(0,0): We can choose (M | i € 4®9) to be an arbitrary <, increasing sequence
of limit models of cardinality p with M = M. For each i € 4% whenever
i+1 €U0 fix aEO’O) € M; \M;. Now consider ga—tp(ago’o)/Mi*). Since Mi(o,o)
is a limit model, we can apply Theorem I1.7.3 to fix Ni(o’o) € K™ such that
ga-tp(a”” /M) does not. p-split over N\”% and M7 is universal over N\*”. By

Theorem 11.9.6, there exists M9 such that (M9 g0 N©0))

. + %
- is a member of /C%u(o,o),
- is a <®extension of (M*,a®? N(©9) and

- is reduced.

(o, 0): Take (M,a, N)(@0 : UB<aU§<9 (M,a, N)#0

(o, ¢ + 1): Suppose that (M, a, N)@9 has been defined. If 4(*9 contains no

new intervals of length g, then by Theorem I1.9.6, we may take (M, a, N)(®¢+D

to be a reduced, <®-extension of (M,a, N)(*¢ in + K, -

@+ contains new intervals {u’ | § < B’ < p} each of length

Suppose that 4@
. Let v? = {u) | I < p} be an enumeration of u?. By Theorem 11.9.6 we can
f (M,a, N)@9,

find a reduced extension (M,a, N)' € IC (0.0 (g} ©

By Fact I1.10.3, we can enumerate (J;_inu6y jeueo ©H(M;) as {(p, N N 1<

u}. By Corollary 11.8.9 and Theorem I1.9.6 we can find a reduced extension
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(M,a, N)e<t) ¢ + ICZAL(Q,CH) of (M, a, N)' such that for every | < pand 3 < /3,
(p, N2 ~ ga—tp(auf /Muf’ Nuf)- This completes the construction.

Consider the mapping f : p* — pt defined by

(

for every § < o, ¢ < 6y, i € JUPY and
for every (p,N) € Gt(Mi(ﬁ’C)) there

f(a) :==min{¢ «
exists 3’ < o' and j < p such that

(ga—tp(aerj/Mz(f] ), Nivj) | M7 ~ (p, N)

\ Vs

By condition (4) of the construction, f can be defined. Then there exists a club

C of limit ordinals such that

§€C=f16:6—0.

Claim I1.11.2. For § € C, we have that (M,a, N)®Y satisfies condition (2)

of the definition of fullness.

Proof. Let (p, N) € &t(M?>°). Since § is a limit ordinal, there exists 3 < § and
( < 61 such that i € Uﬂ(ﬁ’o. By definition of f and C', we have that there

exists j < p and ' < ¢ such that
(p, N) I M9 ~ (ga-tpai; /MEL), Niyy) | M)

Since Mz(fj 0) MZ(H), we can replace [ with §:

(p,N) | Mi(ﬁ 9) ~ (ga-tp(a;y;/ z+]) Nigj) | Mi(ﬁ,c)_

Let M’ be a universal extension of MY

irj - By definition of ~, there exists

q € ga-S(M’) such that ¢ extends p | Mi(ﬁ’o, g extends ga—tp(aiﬂ-/Mi(ﬁ’O)
and ¢ does not p-split over N and N;;;. By the uniqueness of non-splitting

extensions (Theorem I1.7.8), since p does not u split over N, we have that
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ql Mi(‘;’o) = p. Also, since ga-tp(a;; /Mz»(é’o)) does not p-split over N, ;, we have
that ¢ | M(‘S 0 _ ga—tp(ai+j/Mi(5’0)). By defintiion of ~ and Lemma I1.10.2, ¢
also witnesses that (p, N) ~ (ga—tp(aHl/MljjO ), Nixj) | M©ODi Since (p, N)
was chosen arbitrarily, we have verified that (M, a, N)®% satisfies condition (2)

of the definition of fullness.

Then by Proposition 11.10.10, we have for 6 € C with 6, < 9,

(¥)s (M,a, N)©®O | g, is full.

Take (d¢ < p* | ¢ < 6;) to be an increasing and continuous sequence of ordinals

> @, from C. By (%)s, we have that (M, a, N)%% | 6, is full.

Define

“U U 0= e

C<b1 e Ju®0 iey u®0
M is a (p, 61)-limit over M witnessed by (U, jye0 Mi((sg’o) | ¢ < 6y).
Notice that by our choice of dg,, (M, a, N )(591’0) [ 05 is full. Furthermore, we see
that (M, a, N)©%:0 | 0, is continuous since (M, a, N)19 is reduced. Now we

can apply Theorem I1.10.7 to conclude that M* is a (u, 62)-limit model. .

The above proof implicitly shows the existence of full towers:

Corollary 11.11.3. There exists an interval 4 and a tower (M, a, N) € © K ¢

such that (M,a, N) is full.



CHAPTER III

Stable and Tame Abstract Elementary Classes

In this chapter, we explore stability results in the new context of tame abstract

elementary classes with the amalgamation property. The main result is:

Theorem I11.0.4. Let IC be a tame abstract elementary class satisfying the
amalgamation property without maximal models. There exists a cardinal po(K)
such that for every p > puo(KC) and every M € Ks,, A,I C M such that
|I| > u* > |A|, if K is Galois-stable in p, then there exists J C I of cardinality
wt, Galois-indiscernible sequence over A. Moreover J can be chosen to be a

Morley sequence over A.

This result strengthens Claim 4.16 of [Sh 394] as we do not assume categoricity.
This is also an improvement of a result from [GrLel] concerning the existence

of indiscernible sequences.

A step toward this result involves proving:

Theorem II1.0.5. Suppose K is a tame AEC. If p > Han f(K) and K is Galois

p-stable then k,(K) < Hanf(K)

This is generalizes a result from [Sh3].

86
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3.1 Introduction

Already in the fifties model theorists studied non-elementary classes of struc-
tures (e.g. Jénsson [Jol], [Jo2] and Fraissé [Fr]). In [Sh 88], Shelah introduced
the framework of abstract elementary classes and embarked on the ambitious
program of developing a classification theory for Abstract Elementary Classes.
While much is known about abstract elementary classes, especially when K is an
AEC under the additional assumption that there exists a cardinal A > Han f(K)
such that I is categorical in A, little progress has been made towards a full-
fledged stability theory. Ome of the open problems from [Sh 394] (Remark
4.10(1)) is to identify of a good (forking-like) notion of independence for abstract
elementary classes. This is open even for classes that have the amalgamation
property and are categorical above the Hanf number. In [Sh 394], several weak
notions of independence are introduced under the assumption that the class is
categorical. Among these notions is the Galois-theoretic notion of non-splitting.
This notion is further developed for categorical abstract elementary classes in
Chapter IT with the extension property and in [ShVi] with a powerful substitute
for k(T') (listed here as Theorem I1.7.3). Here we study the notion of non-
splitting in a more general context than categorical AEC: Tame stable classes.
We plan to use Morley sequences for non-splitting as a bootstrap to define a

dividing-like concept for these classes.

3.2 Background

Much of the necessary background for this chapter has already been introduced

in the Background section of Chapter II. We begin by reviewing the definition of
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Galois-type, since we will be considering variations of the underlying equivalence

relation E in this chapter.

Definition II1.2.1. Let 8 > 0 be an ordinal. For triples (a;, M;, N;) where
a, € PN, and M, <¢ N, € K for | = 0,1, we define a binary relation F as
follows: (ag, My, No)E(ay, My, Ny) iff My = M; and there exists N € K and
elementary mappings fy, f1 such that f; : N; — N and f; | M = idy; for [ = 0,1

and fo(ao) = f1(a1):

Ny —N

f1
idT sz

M T NQ
Remark II1.2.2. E is an equivalence relation on the class of triples of the form

(@, M, N) where M <x N,a € N and both M, N € K*". When only M € K",

E may fail to be transitive, but the transitive closure of E could be used instead.

While it is standard to use the FE relation to define types in abstract elementary
classes, we will discuss and make use of stronger relations between triples in

section 3.4 of this paper.

Definition I11.2.3. Let 3 be a positive ordinal (can be one).

(1) For M,N € K*™ and @ € °N. The Galois type of a in N over M, written
(@a/M, N), is defined to be (a, M,N)/E.
(2) We abbreviate (a/M, N) by (a/M).
(3) For M € K*™,
ga-S’(M) := {(a/M,N) | M < N € K{;,a € °N}.

We write ga-S(M) for ga-S'(M).
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(4) Let p := (a/M’',N) for M <, M’ we denote by p | M the type (a/M, N).
The domain of p is denoted by dom p and it is by definition M’.
(5) Let p = (a/M, N), suppose that M <x N’ <¢ N and let b € *N’ we say
that b realizes p iff (b/M,N') =p | M.

(6) For types p and ¢, we write p < ¢ if dom(p) C dom(g) and there exists
a realizing p in some N extending dom(p) such that (a,dom(p),N) € ¢ |

dom(p).

Definition III.2.4. We say that K is [(-stable in p if for every M € K™,

| ga-SP(M)| = p. The class K is Galois stable in p iff K is 1-stable in p.

Definition II1.2.5. We say that M € IC is Galois saturated if for every N <x

M of cardinality < ||M||, and every p € ga-S(N), we have that M realizes p.

Remark I11.2.6. When K = Mod(T') for a first-order T, using the compact-
ness theorem one can show (Theorem 2.2.3 of [Grl]) that for M € K, the model

M is Galois saturated iff M is saturated in the first-order sense.

It is interesting to mention

Theorem II1.2.7 (Shelah [Sh 300]). Let A > LS(K). Suppose that K has
the amalgamation property and N € KCx. The following are equivalent
(1) N is Galois staurated.

s model-homogenous. Ie. i <k N an - of cardinality less
2) N 1 del-h Le. if M N and M" - M dinality

than X then there exists a KC-embedding over M from M’ into N.

Unfortunately [Sh 300] has an incomplete skeleton of a proof, a complete and

correct proof appeared in [Sh 576]. See also [Grl].
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In first order logic, it is natural to consider saturated models for a stable theory.
In this context, saturated models are model homogeneous and hence unique. In
abstract elementary classes, the existence of saturated models is often difficult to
derive without the amalgamation property. To combat this, Shelah introduced
a replacement for saturated models, namely, limit-models (Definition 11.2.26),
whose existence (Theorem I1.4.9) and uniqueness (Theorem I1.11.1) we have

shown in Chapter II for categorical AECs under some additional assumptions.

When K = Mod(T') for a first-order and stable 7" then automatically (by The-

orem II1.3.12 of [Shc]):

M € K, is saturated = M is (u,0)-limit for all o < p™*

of cofinality > k(7).

When T is countable, stable but not superstable then the saturated model of

cardinality p is (p, Np)-limit but not (u, Xg)-limit.

We have mentioned in Chapter II that the existence of universal extensions
follows from categoricity and GCH (see Theorem 11.2.22). However, all that is

needed for the existence of universal extensions is stability:

Claim II1.2.8 (Claim 1.14.1 from [Sh 600]). Suppose K is an abstract el-
ementary class with the amalgamation property. If IC is Galois stable in i, then
for every M € K,, there exists M' € K, such that M’ is universal over M.

Moreover M’ can be chosen to be a (u,o)-limit over M for any o < u™.

The existence of limit models in stable AECs easily follows from Claim IT1.2.8
and the amalgamation property. While the uniqueness of limit models is un-

known in stable AECs
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3.3 Existence of Indiscernibles

Assumption I11.3.1. For the remainder of this chapter, we will fix IC, an

abstract elementary class with the amalgamation property.

Remark II1.3.2. The focus of this paper are classes with the amalgamation
property. Several of the proofs in this section can be adjusted to the context
of abstract elementary classes with density of amalgamation bases as in [ShVi]

and Chapter II.

The most obvious attempt to generalize Shelah’s argument from Lemma 1.2.5
of [She]for the existence of indiscernibles in first order model theory does not
apply since the notion of type cannot be identified with a set of first order
formulas. Moreover, there is no natural notion of a type over an arbitrary set
in the context of abstract elementary classes. However we do have a notin of
non-splitting at our disposal. Recall Shelah’s definition of non-splitting from

Chapter II:

Definition III1.3.3. A type p € S?(N) pu-splits over M <x N if and only if
|M]| < p, there exist Ny, Ny € K<, and h, a K-embedding such that M <
N; <x N for [ =1,2 and h: Ny — N, such that h | M = idy; and p [ Ny #

h(P fN1)~

Notice that non splitting is monotonic: Le. If p € ga-S(INV) does not split over

M (for some M <y N) then p does not split over M’ for every M <y M’ <, N.

Similarly to x(7") when T is first-order the following is a natural cardinal in-

variant of IC:

Definition IIL.3.4. Let § > 0. We define an invariant x/(K) to be the minimal
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r such that for every (M; € IC,, | ¢ < k) which satisfies
(1) Kk =cf(k) < u™,
(2) (M; | i < k) is <g-increasing and continuous and
(3) for every i < K, M;yq is a (u, 0)-limit over M; for some 6 < u™,

and for every p € ga-SP(M,,), there exists i < & such that p does not p-split

over M;. If no such « exists, we say i (K) = co.

Notice that Theorem I1.7.3 states that categorical abstract elementary classes

under Assumption II.1.1 satisfy ,(K) < w, for various p.
A slight modification of the argument of Claim 3.3 from [Sh 394] can be used

to prove a related result using the weaker assumption of Galois-stability only:

Theorem II1.3.5. Let § > 0. Suppose that K is (B-stable in p. For every
pE ga—Sﬁ(N) there exists M <x N of cardinality i such that p does not p-split

over M. Thus k5(K) < p.
For the sake of completness an argument for Theorem II1.3.5 is included:

Proof. Suppose N =x M, @ € "N such that p = (a/M, N) and p splits over Ny,
for every Ny <x M of cardinality .
Let x := min{y | 2¥ > A}. Notice that y < X and 2<X < A.

We'll define {M, < M | o < x} C K, increasing and continuous —<y-chain

which will be used to construct M; € Ky such that
| ga-S” (M) = 2% > X obtaining a contradiction to A-stability.

Pick My < M any model of cardinality .
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For o = 3 + 1; since p splits over My there are Ng, <x M of cardinality A for
¢ =1,2 and there is hg : Ng; M, Np2 such that

hg(p | Ng1) # p [ Ngo. Pick Mz <x M of cardinality A\ containing the set
[Noal U [Npal-

Now for o < x define M} € K, and for n € *2 define a K-embedding h,, such

that

(1) B<a = Mj=<x M,

(2) for o limit let My = U4, M,

B) B<anne 2 = hyp C hy,

(4) n € °2 = hy: My <> M* and

(5) a=0B+1Ane *2 = hyo(Ng1) = hy1(Npa).

The construction is possible by using the A-amalgamation property at a = §+1

several times. Given n € #2 let N* be of cardinality A and f, be such that the

diagram

commutes. Denote by N, the model fy(Ng2). Since hg : Ng1 =y, Ngo there
is a C-mapping g fixing Mj such that g(Ng;) = No. Using the amalgamation

property now pick N** € IC) and a mapping f; such that the diagram

f
MB—H L N**

| |

T

Mg Mg
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Finally apply the amalgamation property to find Mj,, € K\ and mappings

€o, €1 such that

€ *
N** _ o Mﬁ—i—l

s

commutes. After renaming some of the elements of Mj,, and changing e; we

may assume that eg =p=«.
Let hnAO = f() and hnAl =e€e10 fl-

Now for n € *2 let

M = U M; and H,:= U Pt

a<y a<y

Take Ny =i M from Ky, an amalgam of N and M over M, such that

comimutes.

Notice that

n#ve 2 = (Hy(a)/Mg, Ny) # (H,(a)/ My, Ny).
Thus | ga-S(M})| > 2% > A. .
In Theorem III.5.6 below we present an improvement of Theorem II1.3.5 for
tame AECs: In case IC is 3-stable in p for some p above its Hanf number then
lﬁﬁ (K) is bounded by the Hanf number. Notice that the bound does not depend
on .

The following is a new Galois-theoretic notion of indiscernible sequence.
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Definition II1.3.6. (1) (a; | i < *) is a Galois indiscernible sequence over
M iff for every iy < --- < 4, < ¢F and every j; < --- < g, < 1%,
(@i, - .. a;, /M) = (a, ...a,;, /M).

(2) (a; | i < *) is a Galois-indiscernible sequence over A iff for every i; < --- <
in < 1* and every j; < --- < j, < %, there exists M;, M;, M* € K and
=<-mappings f;, f; such that
(a) A C M;, Mj;

(b) fi: Mj — M*, for | =i, 7;
(¢) fi(aiy,...,a;,) = fi(@j,...,a;,) and
(d) and fi [ A= f; [ A=ida.

Remark II11.3.7. This is on the surface a weaker notion of indiscernible se-

quence than is presented in [Sh 394]. However, this definition coincides with

the first order definition. Additionally, it is suspected that, under some reason-

able assumptions, this definition and the definition in [Sh 394] are equivalent.

The following lemma provides us with sufficient conditions to find an indis-

cernible sequence.

Lemma I11.3.8. Let p > LS(K), k,\ be ordinals and (3 a positive ordinal.
Suppose that (M; | i < \) and {(a; | i < ) satisfy

(1) (M; € K, |i < \) are <x-increasing;

(2) M.y is a (u, k)-limit over M;;

(3) @; € "Mipq;

(4) pi := (a;/M;, M;11) does not u-split over My and

(5) fori<j <X p <p;.
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Then, (a; | i < A\) is a Galois-indiscernible sequence over M.
Definition IT1.3.9. A sequence (a;, M; | i < \) satisfying conditions (1) — (6)
of Lemma II1.3.8 is called a Morley sequence.

Remark I11.3.10. While the statement of the lemma is similar to Shelah’s

Lemma 1.2.5 in [Shc|, the proof differs, since types are not sets of formulas.

Proof. We prove that forig < --- < i, < Xand jo < -+ < jp < A, (@4, - - -, a;, /Mo, M;

(@jo, - - -, aj, /Mo, M, .,) by induction on n < w.

n = 0: Let 9, jo < A be given. Condition 5, gives us
(@io /Mo, Mig 1) = (a5, /Mo, Mjg11)-

n > 0: Suppose that the claim holds for all increasing sequences i and j €
A of length n. Let ig < -+ < 4, < Aand jp < --- < j, < A be given.
Without loss of generality, i,, < j,. Define M* := M;. From condition 2 and
uniqueness of (y,w)-limits, we can find a <g-isomorphism, g : M; — M;,
such that g [ My = idy,. Moreover we can extend g to g : M, 11 — M; 41.
Denote by b;, = g(a;) for [ = 0,...,n. Notice that b, € M, for | < n.
Since (bjy, - - -, bj, /Mo, My, 1) = (@, - . -, @, /Mo, Mj, 11) it suffices to prove that
(bjo, -+ b5, /Mo, My, 1) = (@i, - - -, @, /Mo, M;,, 1)

Also notice that the <x-mapping preserves some properties of p;. Namely, since

p; does not p-split over My, g(p; | M;,) =p; [ M;

n*

n+1) -

Thus, (bj, /M;,, M;, 1) = (@, /M;,, M;, +1). In particular we have that (b;, /M;, , M;, 1)

does not u-split over Mj.

By the induction hypothesis

(bjos - - -+ bjy /Mo, M;,)) = (G, - - -, s, /Mo, M;,).
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Thus we can find h; : M;, 1 — M*and h; : M;, 1 — M* such that h;(a,,...,a;, ,) =

hj(bjy,---,bj,_,). Let us abbreviate b; b;, , by b;. Similarly we will write

509 Joor s+ Ygn—1

C_L{ for C_lioa c. ,(_zl-n_l.
By appealing to condition 4, we derive several equalities that will be useful in

the latter portion of the proof. Since p; does not u-split over M,, we have that

pj [ hj(M;,) = hj(p; | M;,), rewritten as
(%) (bj,/hi(M;,), My, 1) = (hy(by,)/h; (M), M¥).

Similarly as p; does not p-split over My, we get
pi | hi(M;,) = hij(p; | M;,) and p; | hi(M;,) = hi(p; | M;,). These equalities

translate to

(ex)j (@i, /hi(M;,), M;, 1) = (hj(as,)/h;(M;,), M) and

(x%); (@i, /hi(M;,), M;, 1) = (hi(a;,)/hi(M;,), M™), respectively.
Finally, from condition 5., notice that
(k%) (@, /Mi,, My, 1) = (s, /M, Mi, 1)
Applying h; to (* * ) yields
(1) (hy(bs,) /0y (M, ), M¥) = (hj(@i, ) /Ry (M, ), M),

Since h;(a;) = h;(b;) € hj(M;,), we can draw from (1) the following:

(1) (hy(by,) Ny (05) /Mo, M*) = (hj(ay,) hi(az) /Mo, M*).
Equality (xx); allows us to see

(2) (@i, hi(a;)/ Mo, M*) = (hi(as,) hi(az) /Mo, M™).
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Since (hj(as, )/h;j(M;,), M*) = (a3, /h;(Ms,), M;, 1) (equality (xx);)) and h;(a;) =

h;(b;) € h;(M;,), we get that
(3)  (hj(ai,) hi(az)/ Mo, M™) = (@i, hi(az) /Mo, M™).

Combining equalities (1), (2) and (3), we get

(1) (hi(az) hias, )/ Mo, M*) = (h;(b;)"h;(bj,)/ Mo, M*).
Recall that h; [ My = h; | My = idp,. Thus (11), witnesses that

(@igs - -, @i /Mo, My, 1) = (bjg, - - -, bj, /Mo, Mi, 11).

3.4 Tame Abstract Elementary Classes

By Lindstrom’s Theorem, one obvious feature of non-elementary abstract ele-
mentary classes is the absence of the compactness theorem. A method of com-
bating this is to view types as equivalences classes of triples (Definition I11.2.3)
instead of sets of formulas. While this notion of type has led to several profound
results in the study of abstract elementary classes, a stronger equivalence rela-
tion (denoted E,,) is eventually utilized in various partial solutions to Shelah’s

Categoricity Conjecture (see [Sh 394] and [Sh 576]).

Shelah identified E,, as an interesting relation in [Sh 394]. Here we recall the

defintion.

Definition III.4.1. Triples (a;, M, Ny) and (aq, M, Ns) are said to be E,-related

provided that for every M’ <x M with M' € K,

(ay, M', Ny)E(ag, M', N5).
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Notice that in first order logic, the finite character of consistency implies that

two types are equal if and only if they are E-related.

In Main Claim 9.3 of [Sh 394], Shelah ultimately proves that, under categoricity
in some A > Hanf(K) and under the assumption that I has the amalgamation
property, for types over saturated models, E-equivalence is the same as FE,

equivalence for some p < Hanf(K).

We now define a context for abstract elementary classes where consistency has

small character.

Definition I11.4.2. Let y be a cardinal number. We say the abstract el-
ementary class K with the amalgamation property is y-tame provided that
for types, E-equivalence is the same as the E), relation. In other words, for
M € Kstangc), p # q € ga-S(M) implies existence of N <x M of cardinality

x such that p [ N £ ¢ [ N.

KC is tame iff there exists such that K is y-tame for some y < Hanf(K)

Remark I1I1.4.3. We actually only use that E-equivalence is the same as F,-

equivalence for types over limit models.

Notice that if K is a finite diagram (i.e. we have amalgamation not only all

models but also over subsets of models) then it is a tame AEC.

There are tame AECs with amalgamation which are not finite diagrams. In fact
Leo Marcus in [Ma] constructed an L, ., sentence which is categorical in every
cardinal but does not have an uncountable sequentially homogeneous model.

Lately Boris Zilber found a mathematically more natural example [Zi].

While we are convinced that there are examples of arbitrary level of tameness

at the moment we don’t don’t any.
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Question I11.4.4. For iy < po < 3, find an AEC which is pa-tame but not

p1-tame.

In fact we suspect that the question is easy to answer.

3.5 The order property

The order property, defined next, is an analog of the first order definition of
order property using formulas. The order property for non-elementary classes

was introduced by Shelah in [Sh 394].

Definition II1.5.1. K is said to have the k-order property provided that for
every a, there exists (d; | i < a) and where d; € "€ such that if iy < jo < a

and i1 < jl < o,
(*) then for no f € Aut(€) do we have f(d;,"d;,) = d;,"d;, .

Remark III.5.2 (Trivial monotonicity). Notice that for k1 < ko if a class

has the ki-order property then it has the xo-order property.

Claim III.5.3 (Claim 4.6.3 of [Sh 394]). We may replace the phrase every
a in Definition I11.5.1 with every a < 3(2H+Ls<;<>)+ and get an equivalent defini-

tion.

Theorem I11.5.4 (Claim 4.8.2 of [Sh 394]). If K has the k-order property
and p > K, then for some M € K, we have that | ga-S®(M)/E,| > u*. More-

over, we can conclude that K is not Galois stable in p.

Question II1.5.5. Can we get a version of the stability spectrum theorem for

tame stable classes?
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The following is a generaliztion of a old theorem of Shelah from [Sh3] (it is

Theorem 4.17 in [GrLe2])

Theorem II1.5.6. Let 5 > 0. Suppose that IC is a k-tame abstract elementary

class. If K is 3-stable in p with Digerrsooye < pu, then w5(K) < Digrrrse)s.

Proof. Let x := j(Qn-}—LS()C))Jr. Suppose that the conclusion of the theorem does
not hold. Let (M; € K, | i < x) and p € ga-S”(M, ) witness the failure. Namely,

the following hold:

(1) (M; | i < x) is <x-increasing and continuous,
(2) for every i < x, M1 is a (u, 0)-limit over M; for some § < pt and

(3) for every i < u*, p p-splits over M;.

For every i < x let f;, N! and N? witness that p p-splits over M;. Namely,

M; <x N} N? < M,
fi: N} =2 N2 with f; | M; = idy,
and fi(p | Nj) #p | N

By r-tameness, there exist B; and A; := f; *(B;) of size <  such that

filp I Ai) #p I Bi.
By renumbering our chain of models, we may assume that
(4) A;, B; C M;4q.
Since M, is a limit model over M;, we can additionally conclude that

(5) ¢ € M;yq realizes p | M;.
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For each i < p, let d; := A;"B;"G;.

Claim IT1.5.7. {(d; | i < x) witnesses the k-order property.

Proof. Suppose for the sake of contradiction that there exist g € Aut(€), ig <

jo < x and i; < j; < x such that

Notice that since ig < jo < a we have that ¢;, € M;,. So f;(¢,) = ¢,. Recall

that f;,(Aj,) = Bj,.- Thus, f;, witnesses that
(%) (@0 A}y /0) = (&, By /0).
Applying g to (x) we get
(ex) (€5, " Ai, /0) = (€5, By, /0).
Applying f;, to the RHS of (xx), we notice that
(0 (fir(€;,)"Bi, /0) = (¢;,"Bi, /0).
Because i1 < ji, we have that ¢;, realizes p | M;,. Thus, () implies

) fiulp I Ay) =p | By,

which contradicts our choice of f; , A;, and B;,.

By Claim II1.5.3 and Theorem II1.5.4, we have that K is unstable in y, contra-

dicting our hypothesis.
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3.6 Morley sequences

Hypothesis II1.6.1. For the rest of the chapter we make the following as-
sumption: C is a tame abstract elementary class, has no maximal models and

satisfies the amalgamation property.

Theorem II1.6.2. Suppose p > 3(2Hanf(l€))+. Let M € K+, A, I C M be given
such that |I| > u*™ > |A|. If K is Galois stable in p, then there exists J C I of
cardinality pu*, Galois indiscernible over A. Moreover J can be chosen to be a

Morley sequence over A.

Proof. Fix k= cf(p). Let {a; | i < p™} C I be given. Define (M; € K, | i <
) <-increasing and continuous satisfying

(1) AC |My|

(2) M,y is a (u, k)-limit over M;

(3) a; € Mi+1

Let p; := (@;/M;, M; ) for every i < u*. Define f: S*" — put by
f(@) == min{j < p" | p; does not p- split over M;}.

By Theorem II1.5.6, f is regressive. Thus by Fodor’s Lemma, there are a sta-

tionary set S C S#" and jy € I such that for every i € S,
(1) pi does not p-split over M;,.

By stability and the pigeon-hole principle there exists p* € ga-S(Mj,) and S* C

*

S of cardinality pt such that for every i € S*, p* = p; | M,,. Enumerate

and rename S*. Let M* := M. Again, by stability we can find S** C S* of
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cardinality p* such that for every ¢ € S**, p™ = p;, [ M*. Enumerate and

rename S**.

Subclaim I11.6.3. Fori < j € S*™, p;=p,; | M,.

Proof. Let 0 < i < j € S™ be given. Since M;;; and M, are (p, k)-limits over
M;, there exists an isomorphism ¢ : M; 1 — M;;1 such that g [ M; = idyy;,. Let

b; := g(a;). Since the type p; does not p-split over M;

j jo» g cannot witness the

splitting. Therefore, it must be the case that (b;/M;, M;y1) = p; | M;. Then, it
suffices to show that (l_)j/MZ-, M;q) = p;.

Since p; | My = p; | My, we can find <x-mappings witnessing the equality.
Furthermore since M* is universal over M,, we can find h; : M;,; — M* such
that hy [ Mo = idyy, for [ =i,7 and hi(a;) = hj(Ej).

We will use (f) to derive several inequalities. Consider the following possible
witness to splitting. Let Ny := M; and Ny := h;(M;). Since p; does not p-split

over My, we have that p; [ No = h;(p; [ N1), rewritten as
(6) @i/ hi(M;), Mivr) = (hi(@;)/hi(M;), M).

Similarly we can conclude that

(%) (0j/hj (M), Miy) = (hj(bj)/hi(M;), M),
By choice of S**, we know that
(kxx)  (by/M™) = (@;/M").

Now let us consider another potential witness of splitting. N := h;(M;) and

Ny := h;(M;) with H* := hjo h;* : Nf — Nj. Since p; | M; does not p-split
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over My, p; | Ny = H*(p; [ N{). Thus by (%*) we have
() H*(pj | N7) = (hy(by)/hy (M), M)

Now let us translate H*(p; [ Ni). By monotonicity and (* * %), we have that
pj [ Ny = (b;/hi(M;), My 1) = (@;/hi(M;), M;11). We can then conclude by (%)

that p; [ Nf = (h;(a;)/hi(M;), M;41). Applying H* to this equality yields
(#8) H*(p; I NY) = (hy(a:)/h;(M;), M™).
By combining the equalities from (f) and (£f) and applying hj_1 we get that

(b /M;, Myy1) = (@) My, M),

Notice that by Subclaim III1.6.3 and our choice of S**, (M; | i € S*) and
(a; | i € J) satisfy the conditions of Lemma I11.3.8. Applying Lemma III.3.8,
we get that (a; | ¢ € S™) is a morley sequence over My. In particular, since

A C My, we have that (a; | i € S**) is a Morley sequence over A.

3.7 Exercise on Dividing

With the existence of Morley sequences a natural extension is to study the
following dependence relation to determine whether or not it satisfies proper-

ties such as transitivity, symmetry or extension. Here we derive the existence

property.
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Definition III.7.1. Let p € ga-S(M) and N <x M. We say that p divides over
N iff there are a € M non-algebraic over N and a Morley sequence, {a, | n < w}
for the (a/N, M) such that for every collection {f, € Auty€ | n < w} with
fn(@) = a, we have

{fu(p) | n < w} is inconsistent.

Theorem I11.7.2 (Existence). Suppose that K is stable in p and k-tame for
some Kk < p. For every p € ga-S(M) with M € K, there exists N <x M of

cardinality p such that p does not divide over N.

Proof. Suppose that p and M form a counter-example. WLOG we may assume
that M = €. Through the proof of Claim 3.3.1 of [Sh 394], in order to contradict

stability in g, it suffices to find N;, N}, N2, h; for i < u satisfying

(1) (N; € K, | @ < p) is a <-increasing and continuous sequence of models;
(2) N; <xc N} < Niyq fori < pandl=1,2;

(3) for i < p, h; : N} & N? and h; | N; = idy, and

(4) p I N7 # hi(p [ N}).

Suppose that N; has been defined. Since p divides over every substructure of
cardinality p, we may find a, {a, | n < w} and {f, | n < w} witnessing that p
divides over N;. Namely, we have that {f,,(p) | n < w} is inconsistent. Let n < w
be such that fy(p) # fu(p). Then p # f; ' o f.(p). By k-tameness, we can find
N* <x € of cardinality p containing N such that p | N* # (f; ' o fu(p)) | N*.

WLOG f; ' o f, € AutyN*.

Let h; := fi' o f,, N} := N* and N? := N*. Choose Ni;; <x € to be an

)

extension of N* of cardinality p. -
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