TOWARD A CATEGORICITY THEOREM FOR ABSTRACT ELEMENTARY CLASSES

Monica VanDieren

CARNEGIE MELLON UNIVERSITY

www.math.cmu.edu/~monicav

RUTGERS UNIVERSITY 2001 LOGIC CONFERENCE: MAMLS

October 13, 2001

NON-ELEMENTARY CLASSES

There are many natural mathematical classes that cannot be captured by £rst order logic:

- 1. Archimedian ordered £elds
- 2. Locally £nite groups
- 3. Well-ordered sets
- 4. Noetherian Rings, etc.

EXTENSIONS OF FIRST-ORDER LOGIC

- 1. $L_{\kappa,\omega}$ when $\kappa > \omega$
- 2. L(Q) when Q is interpretted as the Keisler-quanti£er (there exist at least \aleph_1 many)
- 3. $L_{\omega_1,\omega}(Q)$

De£nition. Let L_1 be an expansion of the language L. Suppose T_1 is a £rst order theory in L_1 and Γ is a collection of £rst order types without parameters in the language of L_1 . We denote by

 $PC(T_1, \Gamma, L) :=$

 $\{(M \upharpoonright L) : M \models T_1 \text{ and } M \text{ omits every type from } \Gamma\}.$

If \mathcal{K} is a class of models such that $\mathcal{K} = PC(T_1, \Gamma, L(\mathcal{K}))$ for some T_1 , Γ and L_1 with $\mu = |T_1| + |\Gamma| + |L_1| + \aleph_0$, then we call \mathcal{K} a PC_{μ} -class.

ABSTRACT ELEMENTARY CLASSES

De£nition. Let \mathcal{K} be a class of structures all in the same similarity type $L(\mathcal{K})$, and let $\prec_{\mathcal{K}}$ be a partial order on \mathcal{K} . The ordered pair $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ is an *abstract elementary class* iff

A0 (Closure under isomorphism)

- (a) For every $M \in \mathcal{K}$ and every $L(\mathcal{K})$ -structure N if $M \cong N$ then $N \in \mathcal{K}$.
- (b) Let $N_1, N_2 \in \mathcal{K}$ and $M_1, M_2 \in \mathcal{K}$ such that there exist $f_l : N_l \cong M_l$ (for l = 1, 2) satisfying $f_1 \subseteq f_2$ then $N_1 \prec_{\mathcal{K}} N_2$ implies that $M_1 \prec_{\mathcal{K}} M_2$.

A1 For all $M, N \in \mathcal{K}$ if $M \prec_{\mathcal{K}} N$ then $M \subseteq N$.

- A2 Let M, N, M^* be $L(\mathcal{K})$ -structures. If $M \subseteq N$, $M \prec_{\mathcal{K}} M^*$ and $N \prec_{\mathcal{K}} M^*$ then $M \prec_{\mathcal{K}} N$.
- A3 (Löwenheim-Skolem) There exists a cardinal $LS(\mathcal{K}) \ge +\aleph_0 + |L(\mathcal{K})|$ such that for every $M \in \mathcal{K}$ and for every $A \subseteq |M|$ there exists $N \in \mathcal{K}$ such that $N \prec_{\mathcal{K}} M$, $|N| \supseteq A$ and $||N|| \le |A| + LS(\mathcal{K})$.
- A4 (Tarski-Vaught Chain)
 - (a) For every regular cardinal μ and every $N \in \mathcal{K}$ if $\{M_i \prec_{\mathcal{K}} N : i < \mu\} \subseteq \mathcal{K}$ is increasing (i.e. $i < j \Longrightarrow M_i \prec_{\mathcal{K}} M_j$) then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $\bigcup_{i < \mu} M_i \prec_{\mathcal{K}} N$.
 - (b) For every regular μ , if $\{M_i : i < \mu\} \subseteq \mathcal{K}$ is increasing then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $M_0 \prec_{\mathcal{K}} \bigcup_{i < \mu} M_i$.

Shelah's Presentation Theorem. If \mathcal{K} is an AEC, then \mathcal{K} is a PC_{μ} -class for some $\mu \leq 2^{L(\mathcal{K})}$.

Notation.

1. For $M, N \in \mathcal{K}$ a monomorphism $f : M \to N$ is called a $\prec_{\mathcal{K}}$ -embedding iff $f[M] \prec_{\mathcal{K}} N$. Denote this by $f : M \hookrightarrow_{\mathcal{K}} N$.

2.
$$\mathcal{K}_{\lambda} := \{ M \in \mathcal{K} : \|M\| = \lambda \}.$$

3. $\mathcal{K}_{<\lambda} := \{ M \in \mathcal{K} : \|M\| < \lambda \}.$

In pure model theory, through solutions to §&s Conjecture, central concepts for the classi£cation of £rst order theories were identi£ed (ie. prime models, minimal types, super-stability, etc.).

§∂s conjecture.(1956) Let *T* be a £rst-order theory. If there exists $\lambda > |T| + \aleph_0$ such that $I(\lambda, T) = 1$ then $I(\mu, T) = 1$ holds for every $\mu > |T| + \aleph_0$.

Our goal in studying AECs is to develop a classi£cation theory for non-elementary classes. A test question for the proposed stability theory was identi£ed by Shelah in the 70s for $L_{\omega_1,\omega}$. Later this conjecture was generalized to a categoricity transfer theorem for AECs.

Shelah's conjecture.(about 1977) Let \mathcal{K} be an AEC. If \mathcal{K} is categorical in some $\lambda \geq Hanf(\mathcal{K})$, then \mathcal{K} is categorical in every $\mu \geq Hanf(\mathcal{K})$.

Status - very open. Partial results:

- 1. Keisler (1971), for $L_{\omega_1,\omega}$ under the additional assumption of existence sequentially homogeneous model.
- 2. Shelah (1984) [87a] and [87b] for excellent classes.
- 3. Lessmann (1998) for countable £nite diagrams.
- 4. Makkai and Shelah [Sh285] for $L_{\kappa,\omega}$ -theories under the additional assumption that κ is a strongly compact cardinal, AND $\lambda = \chi^+$.

- **5.** Kolman-Shelah [Sh362] and Shelah [Sh 472] partial going down results for $L_{\kappa,\omega}$ -theories where κ is a measurable cardinal and $\lambda = \chi^+$.
- 6. Shelah [Sh394] partial going down result for AECs with the Amalgamation Property under the assumption that $\lambda = \chi^+$.

CONTEXT OF SHELAH AND VILLAVECES' WORK

- 1. GCH holds,
- 2. \mathcal{K} is an abstract elementary class,
- 3. ${\cal K}$ has no maximal models and
- 4. \mathcal{K} is categorical in some λ with $\lambda \geq LS(\mathcal{K})$.

The notion of Galois types

De£nition.

 $\mathcal{K}^{\mathbf{3}}_{\mu} := \{ (M, N, a) \mid a \in N; M \prec_{\mathcal{K}} N; M, N \in \mathcal{K}_{\mu} \}.$

Definition. Let $M \in \mathcal{K}_{\mu}$, We say that (M, N_1, a_1) and $(M, N_2, a_2) \in \mathcal{K}^3_{\mu}$, are ~*-related*, written

 $(M, N_1, a_1) \sim (M, N_2, a_2),$

if there exists $N \in \mathcal{K}_{\lambda}$ and $\prec_{\mathcal{K}}$ -embeddings

 $h_1: N_1 \to N \quad \text{and} \quad h_2: N_2 \to N,$

such that

$$h_1(a_1) = h_2(a_2)$$

and the following diagram commutes:

$$\begin{array}{c} N_1 \xrightarrow{h_1} N \\ id & \uparrow h_2 \\ M \xrightarrow{id} N_2 \end{array}$$

11

AMALGAMATION PROPERTY

Definition. Let $(\mathcal{K}, \prec_{\mathcal{K}})$ be an abstract elementary class, and let $\mu \geq \mathsf{LS}(\mathcal{K})$ be a cardinal.

1. We say that $M_0 \in \mathcal{K}_{\mu}$ is an *amalgamation base* iff for every $M_1, M_2 \in \mathcal{K}_{\mu}$ and every $f_{\ell} : M_0 \hookrightarrow_{\mathcal{K}} M_{\ell}$ for $\ell = 1, 2$, there exists $N \in \mathcal{K}_{\mu}$ so that there are $g_1 : M_1 \hookrightarrow_{\mathcal{K}} N$ and $g_2 : M_2 \hookrightarrow_{\mathcal{K}} N$ so that $g_1 \circ f_1 \upharpoonright |M_0| = g_2 \circ f_2 \upharpoonright |M_0|$. Namely, the following diagram is commutative:

$$\begin{array}{c} M_1 \xrightarrow{g_1} N \\ f_1 & \uparrow g_2 \\ M_0 \xrightarrow{f_2} M_2 \end{array}$$

2. Denote by \mathcal{K}^{am}_{μ} the collection of models in \mathcal{K}_{μ} that are amalgamation bases.

Definition. We say that \mathcal{K} satisfies the *amalgamation* property (AP) iff every model $M \in \mathcal{K}$ is an amalgamation base.

TYPES

Proposition. ~ is an equivalence relation on $\{(M, N, \bar{a}) \in \mathcal{K}^{3}_{\mu} \mid M, N \text{ are amalgamation bases}\}.$

De£nition

1. For $M \prec_{\mathcal{K}} N \in \mathcal{K}^{am}_{\mu}$ and $a \in N$, we let $tp(a/M, N) := (M, N, a)/ \sim$. This is the type of a over M in N.

2. For
$$M \in \mathcal{K}^{am}_{\mu}$$
, we let $S(M) :=$
{ $\operatorname{tp}(a'/M, N) : M \prec_{\mathcal{K}} N \in \mathcal{K}^{am}_{\mu}, a \in N$ }.

DENSITY OF AMALGAMATION BASES IN THE CONTEXT OF SHELAH AND VILLAVECES

Theorem. [Shelah-Villaveces]

Let μ be a cardinal with $LS(\mathcal{K}) \leq \mu < \lambda$. Then for every $M \in \mathcal{K}_{\mu}$, there exists $M' \in \mathcal{K}_{\mu}^{am}$ with $M \prec_{\mathcal{K}} M'$.

Theorem. [V]

Let μ be a cardinal with $LS(\mathcal{K}) \leq \mu < \lambda$. Fix $N_{\lambda} \in \mathcal{K}_{\lambda}$ Suppose $M \in \mathcal{K}_{\mu}$ and $\bar{a} \in {}^{\mu}|N_{\lambda}|$. If $M \prec_{\mathcal{K}} N_{\lambda}$, then there exists $M^{\bar{a}}$ an amalgamation base of cardinality μ such that $M \cup \bar{a} \subseteq M^{\bar{a}} \prec_{\mathcal{K}} N_{\lambda}$.

SATURATED MODELS

De£nition. A model $N \in \mathcal{K}_{\mu}$ is *saturated* iff for every $M \prec_{\mathcal{K}} N$ with $M \in \mathcal{K}^{am}_{<\mu}$ and every type $p \in S(M)$, there exists a realization of p in N.

De£nition. An AEC, \mathcal{K} , is μ -stable iff for every $M \in \mathcal{K}^{am}_{\mu}$, we have that $|S(M)| \leq \mu$.

Proposition. If \mathcal{K} is μ -stable and has the amalgamation property, then there exists a saturated model N of cardinality μ . Moreover, the saturated model of cardinality μ is unique up to isomorphism.

Remark. Without the amalgamation property, the existence of a saturated model is not known in general.

ROUGH SKETCH OF ATTEMPTS TOWARDS THE CATEGORICITY CONJECTURE

Show that:

- 1. For every μ there exists a saturated model of cardinality μ .
- 2. Limit models of a given cardinality are unique up to isomorphism.
- 3. A model is saturated iff it is a limit model.
- 4. If $M \in \mathcal{K}_{\mu}$ is not saturated, then there exists $N \in \mathcal{K}_{\lambda}$ which is not saturated.

LIMIT MODELS

Definition. We say $N \in \mathcal{K}$ is universal over M iff for every $M' \in \mathcal{K}_{|M|}$ with $M \prec_{\mathcal{K}} M'$, there exists $f: M' \hookrightarrow N$ such that $f \upharpoonright M = id_M$.

De£nition. Let μ be a cardinal and θ a limit ordinal with $\theta < \mu^+$. We say that N is a (μ, θ) -limit over M provided there exists $\langle N_i | i < \theta \rangle$ such that for every $i < \theta$,

- 1. $N_i \in \mathcal{K}^{am}_{\mu}$
- 2. N_{i+1} is universal over N_i
- 3. $N_0 = M$ and
- 4. $\bigcup_{i < \theta} N_i = N$.

EXISTENCE OF LIMIT MODELS

Theorem. [Shelah-Villaveces] Let $\mu < \lambda$. For every $M \in \mathcal{K}^{am}_{\mu}$, there exists $N \in \mathcal{K}_{\|M\|}$ with N universal over M.

Corollary. [Shelah-Villaveces] Let μ be a cardinal and θ a limit ordinal such that $\theta < \mu^+ \leq \lambda$. Then there exists a (μ, θ) -limit, $M \in \mathcal{K}$.

Theorem. [Shelah-Villaveces] If M is a (μ, θ) -limit for some $\theta < \mu^+ \leq \lambda$, then M is an amalgamation base.

Theorem. [V] Let $\mu < \lambda$. For every $M \in \mathcal{K}_{\mu}^{am}$, there exists $N \in \mathcal{K}_{\mu}^{+}$ such that N is μ^{+} -universal over M.

Definition. We say $N \in \mathcal{K}$ is κ -universal over $M \in \mathcal{K}_{\mu}$ iff for every $M' \in \mathcal{K}_{\kappa}$ with $M \prec_{\mathcal{K}} M'$, there exists $f : M' \hookrightarrow N$ with $f \upharpoonright M = id_M$.

UNIQUENESS OF LIMIT MODELS

Let $\mu < \lambda$ and θ a limit ordinal with $\theta < \mu^+$.

Conjecture. Let $\mu < \lambda$ and θ_1, θ_2 be limit ordinals with $\theta_1, \theta_2 < \mu^+$. If N_1 and N_2 are (μ, θ_1) - and (μ, θ_2) -limits over M, respectively, then $N_1 \cong N_2$.

Proposition. [Shelah-Villaveces] If N_1 and N_2 are (μ, θ) -limits over M, then there exists $f : N_1 \cong N_2$ with $f \upharpoonright M = id_M$.

Proposition. [Shelah-Villaveces] If N_1 is a (μ, θ) limit over M and N_2 is a $(\mu, cf(\theta))$ -limit over M, then $N_1 \cong N_2$. TOWARDS UNIQUENESS OF LIMIT MODELS

Approach the Uniqueness Conjecture in stages:

- 1. Prove that if $N \in \mathcal{K}_{\lambda}$ is weakly model homogeneous, then any 2 limit models of the same cardinality are isomorphic.
- 2. Prove that $N \in \mathcal{K}_{\lambda}$ is weakly model homogeneous.

MODEL HOMOGENEITY

De£nition. *N* is model homogeneous iff for every $M \prec_{\mathcal{K}} N$ with $M \in \mathcal{K}_{\leq ||N||}$, we have that *N* is universal over *M*.

Remark. If $N \in \mathcal{K}_{\lambda}$ (where λ is the categoricity cardinal) is model homogeneous, then \mathcal{K} has the amalgamation property below λ .

Proposition. [Shelah]

If \mathcal{K} satisfies the amalgamation property , $M \in \mathcal{K}$ is saturated iff M is model homogeneous.

Remark. In particular, if \mathcal{K} has the amalgamation property and is categorical in λ , then $N \in \mathcal{K}_{\lambda}$ is saturated and hence model homogeneous.

De£nition. *N* is weakly model homogeneous (wmh) iff for every $M \prec_{\mathcal{K}} N$ with $M \in \mathcal{K}^{am}_{\leq ||N||}$, we have that *N* is universal over *M*.

In the context of Shelah-Villaveces assuming that $N \in \mathcal{K}_{\lambda}$ weakly model homogeneous:

- 1. [easy] $N \in \mathcal{K}_{\lambda}$ is saturated.
- 2. [V] If *M* is a (μ, θ) -limit for some $\theta < \mu^+ \leq \lambda$, then there exists an increasing and continuous sequence of ordinals $\langle \alpha_i \mid i < \theta \rangle$ such that

 $M \cong EM(I_{sup_{i < \theta}\{\alpha_i\}}, \Phi) \upharpoonright L(\mathcal{K})$ and $\langle EM(I_{\alpha_i}, \Phi) \upharpoonright L(\mathcal{K}) \mid i < \theta \rangle$ witnesses that $EM(I_{sup_{i < \theta}\{\alpha_i\}}, \Phi) \upharpoonright L(\mathcal{K})$ is a (μ, θ) -limit.

3. [V] (Uniqueness of limit models) Suppose θ_l is a limit ordinal with $\theta_l < \mu^+ \leq \lambda$ (for l = 1, 2). If N_l are (μ, θ_l) -limits for l = 1, 2, then there exists an isomorphism $f : N_1 \cong N_2$.

Conjecture. In the context of Shelah and Villaveces, the categoricity model is weakly model homogeneous.

De£nition. Θ_{μ^+} is said to hold if and only if for all $\{f_\eta \mid \eta \in {}^{\mu^+}2 \text{ where } f_\eta : \mu^+ \to \mu^+\}$ and for every club $C \subseteq \mu^+$, there exists $\eta \neq \nu \in {}^{\mu^+}2$ and there exists a $\delta \in C$ such that

1.
$$\eta \upharpoonright \delta = \nu \upharpoonright \delta$$
,

2.
$$f_{\eta} \upharpoonright \delta = f_{\nu} \upharpoonright \delta$$
 and

3.
$$\eta[\delta] \neq \nu[\delta]$$
.

Remark Devlin and Shelah have shown that Θ_{μ^+} follows from $2^{\mu} < 2^{\mu^+}$.