
A NOTE ON TORSION MODULES WITH PURE EMBEDDINGS

MARCOS MAZARI-ARMIDA

Abstract. We study Martsinkovsky-Russell torsion modules [MaRu20] with pure embeddings

as an abstract elementary class. We give a model-theoretic characterization of the pure-

injective and the Σ-pure-injective modules relative to the class of torsion modules assuming
that the ring is right semihereditary. Our characterization of relative Σ-pure-injective modules

extends the classical charactetization of [GrJe76] and [Zim77, 3.6].

We study the limit models of the class and determine when the class is superstable assuming
that the ring is right semihereditary. As a corollary, we show that the class of torsion abelian

groups with pure embeddings is strictly stable, i.e., stable not superstable.

1. Introduction

Martsinkovsky-Russell torsion modules were introduced in [MaRu20] as a natural generaliza-
tion of torsion modules to rings that are not necessarily commutative domains (Definition 2.3).
We will denote them by s-torsion modules throughout this paper. For a commutative domain,
they are precisely the R-torsion modules, i.e., those modules such that every element of the
module can be annihilate by a non-zero element of the ring.

For most rings the class of s-torsion modules is not first-order axiomatizable. For example,
it is folklore that the class of torsion abelian groups is not first-order axiomatizable. For this
reason, we use non-elementary model-theoretic methods to analyse the class. More precisely, we
will study the class of s-torsion modules with pure embedding as an abstract elementary class
(AEC for short).

An AEC K is a pair (K,≤K) where K is a class of structures and ≤K is a partial order on
K. Additionally, the partial order on K extends the substructure relation, K is closed under
unions of chains, and every set can be closed to a small structure in the class. The class of
s-torsion modules with pure embedding is an abstract elementary class with amalgamation, joint
embedding, and no maximal models. Moreover, it was shown in [Maz2, 4.16] that the class is
stable. In this paper, assuming that the ring is right semihereditary, we study its class of limit
models and use them to determine when the class is superstable. Recall that a limit model is
a universal model with some level of homogeneity (Definition 2.9) and an AEC is superstable if
there is a unique limit model up to isomorphims on a tail of cardinals (Definition 2.12).2

A difficulty when trying to understand the class of s-torsion modules is that the class might not
be closed under pure-injective envelopes, see [Maz21a, 3.1] for the case of torsion abelian groups.
Therefore, we begin by developing relative notions of pure-injectivity and Σ-pure-injectivity. The
following result extends the classical result of [GrJe76] and [Zim77, 3.6] where they characterize
Σ-pure-injective modules (see Remark 3.21).
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Lemma 3.19. Assume R is right semihereditary and M is s-torsion. M is Σ-Ks-Tor-pure-
injective if and only if M has the low-pp descending chain condition.

The study of limit models for the class of s-torsion modules and the characterization of super-
stability we obtain parallels that of previous results, [Maz21b], [Maz1] and [Maz2], with the added
difficulty that we have to deal with relative pure-injective modules instead of with pure-injective
or cotorsion modules. More precisely, we obtain the following result.

Theorem 4.14. Assume R is right semihereditary and RR is not absolutely pure. The
following are equivalent.

(1) The class of s-torsion modules with pure embeddings is superstable.
(2) There exists a λ ≥ (|R|+ℵ0)+ such that the class of s-torsion modules with pure embed-

dings has uniqueness of limit models of cardinality λ.
(3) Every limit model is Σ-Ks-Tor-pure-injective.
(4) Every s-torsion module is Σ-Ks-Tor-pure-injective.
(5) Every s-torsion module is Ks-Tor-pure-injective.
(6) For every λ ≥ |R|+ ℵ0, the class of s-torsion modules with pure embeddings has unique-

ness of limit models of cardinality λ.
(7) For every λ ≥ |R|+ ℵ0, the class of s-torsion modules with pure embeddings is λ-stable.

An important question that is left open is to determine if there is a ring satisfying any of the
equivalent conditions of the above theorem (see Question 4.16 and Question 4.18). Nevertheless,
the theorem is important as it allows us to show that certain classes are not superstable.

In particular, we use our results to show that the class of torsion abelian groups with pure
embeddings is strictly stable, i.e., stable not superstable. Determining if the class was superstable
was the original objective of this paper.

Theorem 5.6. The class of torsion abelian groups with pure embeddings is λ-stable if and
only if λℵ0 = λ. Hence, it is strictly stable.

This paper is part of a program to understand AECs of modules: [Maz20], [KuMa20], [Maz21b],
[Maz1], [Maz21a], [Maz2]. Other papers that have studied AECs of modules include: [BCG+],
[BET07], [ŠaTr12], [Sh17], [Bon20, §6] [LRV1, §6], [LRV2, §3].

The paper is divided into five sections. Section 2 has the preliminaries. Section 3 has new
characterizations of relative pure-injective and Σ-pure-injective modules. Section 4 analyses the
class of s-torsion modules with pure embeddings as an abstract elementary class. Section 5
shows how to use the previous results to show that the class of torsion abelian groups with pure
embeddings is strictly stable.

This paper was written while the author was working on a Ph.D. under the direction of Rami
Grossberg at Carnegie Mellon University and I would like to thank Professor Grossberg for his
guidance and assistance in my research in general and in this work in particular. I would also
like to thank John T. Baldwin for asking me whether or not the class of torsion abelian groups
with pure embeddings is superstable. I thank Ivo Herzog for helpful conversations. I thank Hanif
Cheung, Samson Leung, and Daniel Simson for many comments that helped improve the paper.

2. Preliminaries

In this section we briefly present the basic notions of module theory and abstract elementary
classes that we will use in this paper. The module theoretic preliminaries include the definition
of the class of s-torsion modules and assert some of its basic properties.

2.1. Module theory. All rings considered in this paper are associative with unity. We write

RM to specify that M is a left R-module and MR to specify that M is a right R-module. If we
simply write M , we assume that M is a left R-module.
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Recall that φ is a positive primitive formula, pp-formula for short, if φ is an existentially
quantified system of linear equations. M is a pure submodule of N if pp-formulas are preserved
between M and N and we denote it by M ≤p N . The next family of pp-formulas was introduced
in [Roth2].

Definition 2.1. A pp-formula ψ(x) is low if and only if ψ[RR] = 0.

Remark 2.2. It is easy to show that if ψ1(x), ψ2(x) are low formulas and r ∈ R, then ψ1 +
ψ2(x) := ∃y∃z(ψ1(y) ∧ ψ2(z) ∧ x = y + z) and rψ1(x) := ∃y(ψ(y) ∧ x = ry) are low formulas.

Given b ∈ M<ω and A ⊆ M , the pp-type of b over A in M , denoted by pp(b/A,M), is the
set of all pp-formulas that hold for b in M with parameters in A.

As mentioned in the introduction, in this paper we will study the class of s-torsion modules.
These were introduced in [MaRu20] and studied from a model-theoretic perspective in [MaRo]
and [Roth1]. Below we present their model-theoretic definition.

Definition 2.3. We say that M is an s-torsion module if and only if for every m ∈M there is
a low formula ψ(x) such that M � ψ[m]. We denote the class of s-torsion modules by Ks-Tor.

Remark 2.4. Let R be a commutative domain. Recall that a module M is an R-torsion module
if for every m ∈ M there is an r 6= 0 ∈ R such that rm = 0. Denote the class of R-torsion
modules by KR-Tor. It was shown in [MaRu20, 2.2] that Ks-Tor = KR-Tor. In particular, the
class of of s-torsion abelian groups is precisely the class of torsion abelian groups.

The following was introduced in [MaRu20, 2.1]. The description we present will appear in the
forthcoming paper [MaRo].

Definition 2.5. For a left R-module M , let

s(M) = {m ∈M : M � ψ[m] for some low formula ψ}.

Remark 2.6.

• M ∈ Ks-Tor if and only if s(M) = M .
• Ks-Tor is closed under pure submodules and direct sums.
• ( [MaRu20, 2.19]) s is a radical, i.e., for every M,N : s(M) is a submodule of M , if
f : M → N then f(s(M)) ≤ s(N), and s(M/s(M)) = 0.

Remark 2.7. It is important to notice that in general s(s(M)) might be different from s(M),
see [MaRu20, p. 69]. For this reason, for arbitrary rings it might be the case that s(M) is not
an s-torsion module.

2.2. Abstract elementary classes. We summarize the notions of abstract elementary classes
that are used in this paper. A more detailed introduction to abstract elementary classes from an
algebraic point of view is given in [Maz21a, §2]. Abstract elementary classes were introduced by
Shelah in [She88] to study those classes of structures that are axiomatizable in infinitary logics.
An abstract elementary class K is a pair (K,≤K) where K is a class of structures and ≤K is a
partial order on K. Additionally, the partial order on K extends the substructure relation, K is
closed under unions of chains, and every set can be closed to a small structure in the class.

Given a model M , we write |M | for its underlying set and ‖M‖ for its cardinality. For an
infinite cardinal λ, we denote by Kλ the models in K of cardinality λ. If we write f : M → N
for M,N ∈ K, we assume that f is a K-embedding unless specified otherwise. Recall that f is a
K-embedding if f : M ∼= f [M ] ≤K N . Finally, for M,N ∈ K and A ⊆M , we write f : M −→

A
N

if f is a K-embedding from M to N that fixes A point-wise.



4 MARCOS MAZARI-ARMIDA

We say that K has the amalgamation property if every span of models can be completed to a
commutative square, K has the joint embedding property if every two models can be K-embedded
into a single model, and K has no maximal models if every model can be properly extended.

Shelah introduced a semantic notion of type in [Sh300], we call them Galois-types following
[Gro02]. Intuitively, a Galois-type over a model M can be identified with an orbit of the group
of automorphisms of the monster model which fixes M point-wise. The full definition can be
consulted in [Maz21a, 2.6]. We denote by gS(M) the set of all Galois-types over M and we say
that K is (< ℵ0)-tame if for every M ∈ K and p 6= q ∈ gS(M), there is a finite subset A of M
such that p�A 6= q�A.

Definition 2.8. K is λ-stable if |gS(M)| ≤ λ for every M ∈ Kλ. We say that K is stable if
K is λ-stable for some λ ≥ LS(K).

A model M is universal over N if and only if ‖N‖ = ‖M‖ = λ and for every N∗ ∈ Kλ such
that N ≤K N∗, there is f : N∗ −→

N
M .

Definition 2.9. Let λ be an infinite cardinal and α < λ+ be a limit ordinal. M is a (λ, α)-limit
model over N if and only if there is {Mi : i < α} ⊆ Kλ an increasing continuous chain such
that:

(1) M0 = N .
(2) M =

⋃
i<αMi.

(3) Mi+1 is universal over Mi for each i < α.

M is a (λ, α)-limit model if there is N ∈ Kλ such that M is a (λ, α)-limit model over N . M
is a λ-limit model if there is a limit ordinal α < λ+ such that M is a (λ, α)-limit model.

Fact 2.10 ( [Sh:h, §II], [GrVan06, 2.9]). Let K be an AEC with joint embedding, amalgamation,
and no maximal models. K is λ-stable if an only if K has a λ-limit model.

A model is universal in Kλ if it has cardinality λ and if every model in K of size λ can be
K-embedded into it. It is known that every λ-limit model is universal in Kλ if K has the joint
embedding property [Maz20, 2.10].

We will also be interested in saturated models. Given λ > LS(K) we say that M is λ-saturated
if every Galois-type over a K-substructure of size strictly less than λ is realized in M . We have
the following relation between saturated models and limit models.

Fact 2.11. Let K be an AEC with joint embedding, amalgamation, and no maximal models. If
M is a (λ, α)-limit model and cf(α) > LS(K), then M is cf(α)-saturated.

We say that K has uniqueness of limit models of cardinality λ if K has λ-limit models and if
any two λ-limit models are isomorphic.

Definition 2.12. K is superstable if and only if K has uniqueness of limit models on a tail of
cardinals.

Superstability was first introduced in [She99] and further developed in [GrVas17] and [Vas18].
There it is shown that for AECs that have amalgamation, joint embedding, no maximal models,
and LS(K)-tameness, the definition above is equivalent to any other definition of superstabil-
ity introduced for AECs. In particular, for a complete first-order theory T , (Mod(T ),�) is
superstable if and only if T is superstable as a first-order theory3.

Finally, we say that K is strictly stable if K is stable and not superstable.

3T is superstable if and only if T is λ-stable for every λ ≥ 2|T |.
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3. Relative pure-injective and Σ-pure-injective modules

In this section we extend classical results of pure-injective and Σ-pure-injective modules to
our setting. The arguments are similar to the standard arguments, but we provide them to show
that they come through in this non-first-order setting.

We assume the following hypothesis throughout the paper.

Hypothesis 3.1. Ks-Tor is non-trivial, i.e., there is a non-zero module in Ks-Tor.

The following fact gives an algebraic condition that implies our hypothesis.

Fact 3.2 ( [MaRu20, 2.32]). Assume s is idempotent, i.e., s(s(M)) = s(M). RR is absolutely
pure4 if and only if Ks-Tor is trivial.

Remark 3.3. Since we will soon assume that R is right semihereditary (Hypothesis 3.4) and in
that case s is idempotent (Proposition 3.7) for our purposes we could have simply assumed that
RR is not absolutely pure.

If R is a commutative domain, then Ks-Tor is trivial if and only if R is a field.

We will assume the following hypothesis for the rest of this section.

Hypothesis 3.4. R is right semihereditary, i.e., finitely generated right submodules of projective
modules are projective.

The only reason we assume that R is right semihereditary is because of the following fact.

Fact 3.5 ( [MaRu20, 2.17]). If R is right semihereditary, then s(M) ≤p M for every left R-
module M .

Remark 3.6. Instead of assuming that R is right semihereditary our hypothesis could have been
that s(M) ≤p M for every left R-module M as this is all we will use. We decided to assume
that R is right semihereditary as it is a more natural hypothesis. An interesting question is to
determine if both statements are equivalent. In the case of commutative domains, it is well-known
that a commutative domain is semihereditary if and only if it is a a Prüfer domain. In that case,
it is known that both assertions are equivalent [Lam07, p. 117].

The next proposition follows directly from Fact 3.5, but we record it due to its importance.

Proposition 3.7.

(1) s is idempotent, i.e., s(s(M)) = s(M) for every left R-module M .
(2) s(M) ∈ Ks-Tor for every left R-module M .

Recall that a module M is pure-injective if for every N1, N2, if N1 ≤p N2 and f : N1 →M is a
homomorphism then there is a homomorphism g : N2 →M extending f . Given a module M , the
pure-injective envelope of M , denoted by PE(M), is a pure-injective module with M ≤p PE(M)
and it is minimum with respect to these properties, i.e., if N is pure-injective and there is
f : M → N pure embedding then there is g : PE(M)→ N pure embeddings extending f .

Let us recall the following notion and assertion.

Definition 3.8 ( [Pre09, p. 145]). Let M ≤p N . M is a pure-essential submodule of N , denoted
by M ≤e N , if and only if for every homomorphism f : N → N ′, if f ◦ i is a pure embedding
where i : M ↪→ N is the inclusion, then f is a pure embedding.

Fact 3.9 ( [Pre09, 4.3.15, 4.3.16]).

(1) If M ≤p N1 ≤p N2 and M ≤e N2, then M ≤e N1.

4MR is absolutely pure if for every NR, if MR ⊆R NR then MR ≤p NR
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(2) M ≤e PE(M).

We now introduce a relative notion of pure injectivity and saturation.

Definition 3.10. Let M be an s-torsion module.

• M is Ks-Tor-pure-injective if and only if for every N1, N2 ∈ Ks-Tor, if N1 ≤p N2 and
f : N1 → M is a homomorphism then there is a homomorphism g : N2 → M extending
f .

• M is relatively pp-saturated in N if and only if M ≤p N and if every pp-type over M
which is realized in N is realized in M .

The following notion of partial homomorphism will also be useful.

Definition 3.11. For two modules M,N , A ⊆ |M | and B ⊆ |N |. A function f : A → B is a
pp-(M,N)-homomorphism if and only if for every ā ∈ A and φ(x̄) pp-formula:

M � φ[ā]⇒ N � φ[f(ā)].

Observe that if f : M → N is a homomorphism then f is a pp-(M,N)-homomorphism as
pp-formulas are preserved under homomorphism.

We now prove several equivalences of Ks-Tor-pure-injectivity. These extend classical charac-
terizations of pure-injectivity, see Remark 3.21 and the detailed history presented right before
Theorem 2.8 of [Pre88].

Lemma 3.12. Assume M ∈ Ks-Tor. The following are equivalent.

(1) M is relatively pp-saturated in N for every N ∈ Ks-Tor.
(2) M is Ks-Tor-pure-injective.
(3) M = s(PE(M))
(4) M = s(N) for some pure-injective module N .
(5) If M ≤p M∗ and M∗ ∈ Ks-Tor, then M is a direct summand of M∗.

Proof. (1)⇒ (2): Let N1 ≤p N2 and f : N1 →M be a homomorphism. Let

P = {g : f ⊆ g, g is a pp-(N2,M)-homomorphism, and dom(g) = A}.

It is clear that one can apply Zorn’s lemma to P, so let g : A → M be a maximal pp-(N2,M)-
homomorphism extending f . We show that A = N2. Let b ∈ N2 and p = pp(b/A,N2). Consider
q(x) = {φ(x, g(ā)) : φ(x, ā) ∈ p}. Clearly q(x) is a Th(M)-type so there is M∗ elementary
extension of M and m∗ ∈M∗ such that q(x) ⊆ pp(m∗/M,M∗).

Since N2 ∈ Ks-Tor, there is ψ low such that N2 � ψ(b). Hence ψ ∈ q(x) and m∗ ∈ s(M∗).
Let q′(x) = pp(m∗/M, s(M∗)). Then by (1), there is m ∈ M realizing q′(x) and it is clear that
g ∪ {(b,m)} is a pp-(N2,M)-homomorphism extending f . So by maximality of g we have that
b ∈ A.

(2) ⇒ (3): Let N1 = M , N2 = s(PE(M)) and f = idM . Then by (2) there is a g :
s(PE(M))→M extending f . Observe that by Fact 3.9M ≤e s(PE(M)) asM ≤p s(PE(M)) ≤p
PE(M) and M ≤e PE(M). Then it follows that g is a pure embedding, so s(PE(M)) = M .

(3)⇒ (4): Clear.
(4) ⇒ (5): Let M ≤p M∗ and M∗ ∈ Ks-Tor. Then by (4) we have that M = s(N) ≤p N for

N a pure-injective module. Since N is pure-injective, there is a homomorphism g : M∗ → N
with g�M = idM . One can check that M∗ = M ⊕ ker(g) using that g[M∗] ⊆ s(N) = M .

(5) ⇒ (1): Let M ≤p M∗ ∈ Ks-Tor and p = pp(a/M,M∗) for some a ∈ M∗. Then by (5)
there is L such that M∗ = M ⊕ L. Let π1 : M∗ = M ⊕ L→M be the projection onto the first
coordinate. One can check that π1(a) ∈M realizes p. �
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Recall the following notion introduced in [FuSa01, XIII.§6].

Definition 3.13. Assume R is a Prüfer domain. M is torsion-ultracomplete if for every module
N , if M ≤p N and N/M ∈ Ks-Tor, then M is a direct summand of N .

The next lemma together with Lemma 3.12 show that torsion-ultracomplete modules can be
described model theoretically for Prüfer domains.

Lemma 3.14. Assume R is a Prüfer domain. Let M be an s-torsion module. The following are
equivalent.

• M is Ks-Tor-pure-injective.
• M is torsion-ultracomplete.

Proof. The forward direction follows from the fact that if M,N/M ∈ Ks-Tor, then N ∈ Ks-Tor.
The backward direction is clear as quotient of torsion modules is torsion. �

The standard argument can be used to show the following proposition.

Proposition 3.15. Assume M and N are s-torsion modules. If M and N are Ks-Tor-pure-
injective, then M ⊕N is Ks-Tor-pure-injective

We turn our attention to Σ-Ks-Tor-pure-injective modules.

Definition 3.16. Let M be an s-torsion module. M is Σ-Ks-Tor-pure-injective if and only if
M (I) is Ks-Tor-pure-injective for every index set I where M (I) denotes the direct sum of M
indexed by I.

Let us now consider the following notion.

Definition 3.17. Let M be an s-torsion module. M has the low-pp descending chain condition if
and only if for every {φn(x)}n∈ω such that φ0(x) is low and φn(x) is a pp-formula for every n ∈ ω,
if {φn[M ]}n∈ω is a descending chain in M , then there exists n0 ∈ ω such that φn0

[M ] = φk[M ]
for every k ≥ n0.

We will soon see that the previous notion is actually equivalent to being Σ-Ks-Tor-pure-
injective

The next result will be useful to characterize Σ-Ks-Tor-pure-injective modules.

Lemma 3.18. Let M be an s-torsion module. If M has the low-pp descending chain condition,
then M is Ks-Tor-pure-injective.

Proof. Let p = pp(b/M,N) for some N ∈ Ks-Tor. It is enough to show that there is a φ ∈ p such
that for every ψ ∈ p and c ∈M , M � φ(c)→ ψ(c). Such a φ exists by the hypothesis on M and
the fact that there is a low formula θ ∈ p as N is an s-torsion module. �

The next result extends a classic characterization of Σ-pure-injectivity, see [Pre88, 2.11] and
Remark 3.21.

Lemma 3.19. Let M be an s-torsion module. The following are equivalent.

(1) M is Σ-Ks-Tor-pure-injective.
(2) M (ℵ0) is Ks-Tor-pure-injective.
(3) M has the low-pp descending chain condition.

Proof. (1)⇒ (2): Clear.
(2) ⇒ (3): Assume for the sake of contradiction that there is a family of pp-formulas

{φn(x)}n∈ω such that φ0(x) is low and φn[M ] ⊃ φn+1[M ] for every n ∈ ω. For each n ∈ ω
pick an ∈ φn[M ]\φn+1[M ] and set bn = (a0, a1, · · · , an−1, 0, · · · ) ∈M (ℵ0).
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Let p(x) = {φn(x− bn) : n ≥ 1} ∪ {φ0(x)}. Realize that p(x) is a Th(M (ℵ0))-type so there is
M∗ �M (ℵ0) and c ∈M∗ realizing p(x). Observe that c ∈ s(M∗), then by hypothesis and Lemma
3.12.(1) there is d ∈M (ℵ0) realizing pp(c/M (ℵ0), s(M∗)). Then one can show that M � φm+1[am]
for some m ∈ ω, contradicting the choice of am.

(3) ⇒ (1): It is known, see for example [Pre88, 2.10], that φ[N (I)] = φ[N ](I) for every pp-
formula φ. Therefore, it follows from (3) that M (I) has the low-pp descending chain condition
and M (I) ∈ Ks-Tor by Remark 2.6. Hence M (I) is Ks-Tor-pure-injective by Lemma 3.18. �

The next corollary will be very useful.

Corollary 3.20. Let M and N be s-torsion modules .

• If N is Σ-Ks-Tor-pure-injective, then N is Ks-Tor-pure-injective.
• If M ≤p N and N is Σ-Ks-Tor-pure-injective, then M is Σ-Ks-Tor-pure-injective.
• If M is elementarily equivalent to N and N is Σ-Ks-Tor-pure-injective, then M is Σ-
Ks-Tor-pure-injective.

Remark 3.21. Let Φ be a collection of pp-formulas. We say that M is a sΦ-torsion module if
and only if M satisfies:

∀x(
∨
φ∈Φ

φ),

and given a module M , let sΦ(M) = {m ∈M : M � ψ[m] for some ψ ∈ Φ}.
If Φ is such that for every M we have that sΦ(M) ≤p M , then sΦ(-) is an idempotent radical

and all the results we have proven so far hold for sΦ-torsion modules. In particular, by taking
Φ := {x = x} it follows that the results in this section extend the classical characterizations of
pure-injective and Σ-pure-injective modules of [Ste67], [Kie67], [War69], [GrJe76], and [Zim77].
Another example is given by taking the ring of integers and letting Φ = {pnx = 0 : n < ω} for a
fixed prime number p, it is clear that the sΦ-torsion modules are precisely the abelian p-groups.
As we do not know of any other interesting choice for Φ, we do not explore this idea any further.

4. s-torsion modules as an AEC

In this section we study the class of s-torsion modules with pure embeddings as an abstract
elementary class. There are three reasons why we decided to study s-torsion modules with respect
to pure embeddings instead than with respect to embeddings. Firstly, the class of s-torsion
modules is defined with respect to all low pp-formulas and not only those low quantifier-free
formulas. Secondly, the class of s-torsion modules is closed under pure submodules, but it is
not necessarily closed under submodules. Finally, the original objective of this paper was to
understand the class of torsion abelian groups with pure embeddings.

As in the previous section we are assuming Hypothesis 3.1, i.e., there is a non-zero module in
Ks-Tor.

4.1. Basic properties. We begin by recalling some basic properties of the AEC of s-torsion
modules with pure embeddings.

Fact 4.1. Let R be a ring and Ks-Tor = (Ks-Tor,≤p).

(1) Ks-Tor is an AEC with LS(Ks-Tor) = |R|+ ℵ0.
(2) Ks-Tor has amalgamation, joint embedding, and no maximal models.
(3) If λ|R|+ℵ0 = λ, then Ks-Tor is λ-stable.

Proof. (1) and (2) follow from [Maz2, 4.2.(4), 4.8] and (3) from [Maz2, 4.16]. �
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We show next that Ks-Tor = (Ks-Tor,≤p) is nicely generated in (R-Mod,≤p) in the sense
of [Maz21a, 4.1], i.e., if N1, N2 ∈ Ks-Tor and N1, N2 ≤p N for some module N , then there is
L ∈ Ks-Tor such that N1, N2 ≤p L ⊆ N .

Lemma 4.2. Ks-Tor = (Ks-Tor,≤p) is nicely generated in (R-Mod,≤p).

Proof. If N1, N2 ∈ Ks-Tor and N1, N2 ≤p N for some module N , then L = N1 + N2 ∈ Ks-Tor

and N1, N2 ≤p L ⊆ N . �

The next result follows directly from the previous lemma, [Maz21a, 4.5], and [KuMa20, 3.7].

Corollary 4.3. Let N1, N2 ∈ Ks-Tor, M ≤p N1, N2, b̄1 ∈ N<ω
1 and b̄2 ∈ N<ω

2 , then:

gtpKs-Tor(b̄1/M ;N1) = gtpKs-Tor(b̄2/M ;N2) if and only if pp(b̄1/M,N1) = pp(b̄2/M,N2).

In particular, Ks-Tor is (< ℵ0)-tame.

The next result follows from the previous lemma and [Maz21a, 4.6].

Corollary 4.4. Let λ ≥ |R|+ ℵ0. If (R-Mod,≤p) is λ-stable, then (Ks-Tor,≤p) is λ-stable.

We can not prove anything else without extra assumptions on the ring.

4.2. Limit models and superstability. We characterize limit models algebraically and use
them to characterize superstability.

We assume Hypothesis 3.4 for the rest of this section, i.e., we assume that R is right semi-
hereditary.

We begin by showing that saturated models are Ks-Tor-pure-injective.

Lemma 4.5. If M is (|R|+ ℵ0)+-saturated in Ks-Tor, then M is Ks-Tor-pure-injective.

Proof. We use Lemma 3.12. Let M ≤p N ∈ Ks-Tor and p = pp(b/M,N) for some b ∈ N . Given
φ(x, ȳ) a pp-formula, let Aφ = {m̄ ∈ M : φ(x, m̄) ∈ p} and let m̄φ be an element Aφ if Aφ 6= ∅
and m̄φ = 0̄ otherwise. Let B =

⋃
φ∈pp-formula m̄φ and M∗ be the structure obtained by applying

downward Löwenheim-Skolem to B in M . Observe that ‖M∗‖ = |R|+ ℵ0.
Let q = gtp(b/M∗;N). Since M is (|R| + ℵ0)+-saturated there is c ∈ M such that q =

gtp(c/M∗;M). Then pp(c/M∗,M) = pp(b/M∗, N) by Lemma 4.3. Using that pp-formulas
determine cosets [Pre88, 2.2] and the choices of the m̄φ’s, it follows that c realizes p. �

It follows directly from the above result and Fact 2.11 that long limit models are Ks-Tor-pure-
injective.

Corollary 4.6. If M is a (λ, α)-limit model in Ks-Tor and cf(α) ≥ (|R| + ℵ0)+, then M is
Ks-Tor-pure-injective.

We would like to show that limit models with long chains are isomorphic. In order to do that,
we obtain a couple of algebraic results regarding pure-injective modules. We begin by recalling
the following fact.

Fact 4.7 ( [GKS18, 2.5]). Let M,N be pure-injective modules. If there are f : M → N a pure
embedding and g : N →M a pure embedding, then M and N are isomorphic.

Lemma 4.8. Let M,N be any two modules. If there are f : M → N a pure embedding and
g : N →M a pure embedding, then PE(M) and PE(N) are isomorphic.

Proof. It is enough to show that there are f ′ : PE(M) → PE(N) and g′ : PE(N) → PE(M)
pure embeddings, as then the result follows directly from Fact 4.7. The existence of f ′ and g′

follow from the minimality of PE(M) and PE(N) respectively. �
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The next corollary follows directly from the previous result and Lemma 3.12.

Corollary 4.9. Let M,N be s-torsion and Ks-Tor-pure-injective modules. If there are f : M →
N a pure embedding and g : N →M a pure embedding, then M and N are isomorphic.

Since λ-limit models are universal in (Ks-Tor)λ, we obtain the following result.

Corollary 4.10. Assume λ ≥ |R|+ ℵ0. If M,N are λ-limit models in Ks-Tor and Ks-Tor-pure-
injective, then M and N are isomorphic.

Putting together the above assertion with Lemma 4.6, we obtain the promised result that
limit models with long chains are isomorphic.

Corollary 4.11. Assume λ ≥ (|R| + ℵ0)+. If M is a (λ, α)-limit model in Ks-Tor and N is a
(λ, β)-limit model in Ks-Tor such that cf(α), cf(β) ≥ (|R|+ℵ0)+, then M and N are isomorphic.

Regarding limit models with lengths of countable cofinality, the standard argument can be
used to obtain the following assertion by Lemma 3.12.(5) and Proposition 3.15. See for example
[KuMa20, 4.5, 4.6].

Lemma 4.12. Assume λ ≥ (|R| + ℵ0)+. If M is a (λ, ω)-limit model in Ks-Tor and N is a
(λ, (|R|+ ℵ0)+)-limit model in Ks-Tor, then M and N (ℵ0) are isomorphic.

We also have that limit models are elementarily equivalent. The argument of [KuMa20, 4.2]
can be used in this setting as the class has the joint embedding property.

Lemma 4.13. If M and N are limit model in Ks-Tor, then M and N are elementarily equivalent.

This is all we need to characterize superstability in Ks-Tor.

Theorem 4.14. Assume R is right semihereditary and RR is not absolutely pure. The following
are equivalent.

(1) Ks-Tor is superstable.
(2) There exists a λ ≥ (|R| + ℵ0)+ such that Ks-Tor has uniqueness of limit models of

cardinality λ.
(3) Every limit model in Ks-Tor is Σ-Ks-Tor-pure-injective.
(4) Every M ∈ Ks-Tor is Σ-Ks-Tor-pure-injective.
(5) Every M ∈ Ks-Tor is Ks-Tor-pure-injective.
(6) For every λ ≥ |R|+ ℵ0, Ks-Tor has uniqueness of limit models of cardinality λ.
(7) For every λ ≥ |R|+ ℵ0, Ks-Tor is λ-stable.

Proof. (1)⇒ (2): Clear.
(2)⇒ (3): The proof is similar to that of (2) to (3) of [Maz2, 3.15]. The reason that argument

goes through in Ks-Tor is because of Lemma 4.12, Lemma 4.6, Lemma 3.19, Lemma 4.13, and
Corollary 3.20.

(3)⇒ (4): Follows from Corollary 3.20 and the fact that limit models are universal.
(4)⇒ (5): Follows from Corollary 3.20.
(5) ⇒ (6): By Corollary 4.10 for every cardinal λ ≥ |R| + ℵ0 there is at most one λ-limit

model up to isomorphisms, so we only need to show existence. We show that Ks-Tor is λ-stable
for every λ ≥ |R|+ ℵ0, this is enough by Fact 2.10. Let λ ≥ |R|+ ℵ0 and M ∈ Ks-Tor

λ .
Let N ∈ Ks-Tor and {ai : i ≤ κ} ⊆ N such that {gtp(ai/M ;N) : i ≤ κ} is an enumeration

without repetitions of gS(M). Let ∆ := {pp(ai/M,N) : i ≤ κ} and observe that |gS(M)| ≤ |∆|
since Φ : gS(M)→ ∆ given by Φ(gtp(ai/M ;N)) = pp(ai/M,N) is injective by Lemma 4.3.

Since N is Σ-Ks-Tor-pure-injective by (5), it follows from Lemma 3.19 that N has the low-pp
descending chain condition. Then it follows, as in Lemma 3.18, that for every p ∈ ∆ there
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is ψp ∈ p such that for every θ ∈ p and c ∈ N , N � ψp(c) → θ(c). Let Ψ : ∆ → {φ(x, m̄) :
φ(x, ȳ) is a pp-formula and m̄ ∈M} be given by Ψ(p) = ψp. It is easy to show that Ψ is injective
and as |{φ(x, m̄) : φ(x, ȳ) is a pp-formula and m̄ ∈M}| = (|R|+ℵ0)λ = λ, we can conclude that
|∆| ≤ λ. Therefore, |gS(M)| ≤ λ.

(6)⇒ (1): Clear.
(6)⇒ (7): Clear.
(7) ⇒ (4): Assume for the sake of contradiction that there is M ∈ Ks-Tor which is not Σ-

Ks-Tor-pure-injective. It follows from Lemma 3.19 that there is a set of formulas {φn(x)}n∈ω
such that φ0(x) is low and φn(x) is a pp-formula for every n ∈ ω such that φn[M ] ⊃ φn+1[M ]
for every n ∈ ω.

Let λ = iω(|R| + ℵ0). Observe that since [φn[M ] : φn+1[M ]] ≥ 2, it follows that [φn[M (λ)] :
φn+1[M (λ)]] = λ for each n ∈ ω and M (λ) ∈ Ks-Tor by Remark 2.6. For every n ∈ ω pick
{an,α : α < λ} ⊆M (λ) a complete set of representatives of φn[M (λ)]/φn+1[M (λ)].

Let A =
⋃
n<ω{an,α : α < λ} and N be a structure obtained by applying downward

Löwenheim-Skolem to A in M (λ). It is clear that N ∈ Ks-Tor
λ . For every η ∈ λω, let Φη =

{φn+1(x − Σni=0ai,η(i)) : n < ω} ∪ {φ0(x)}. Φη is a Th(M (λ))-type, so pick Mη � M (λ) and
cη ∈Mη realizing Φη. It is clear that cη ∈ s(Mη) so consider qη = gtp(cη/N ; s(Mη)).

Using Lemma 4.3 and that s(Mη) ≤p Mη for every η ∈ λω, it can be shown that if η1 6= η2 ∈ λω
then qη1 6= qη2 . Hence |gS(N)| ≥ λℵ0 > λ by the choice of λ and König’s lemma. This contradicts
our assumption that Ks-Tor was λ-stable. �

Remark 4.15. The equivalence between (4) and (7) of the above theorem is a natural extension
of a result of Garavaglia and Macintyre [Gar80, Theo 1].

Previous results that characterised superstability in classes of modules always corresponded
to classical rings [Maz21b], [Maz1], [Maz2]. In this case we do not know if that is the case.
Moreover, we do not even know if there exists a ring such that the class of s-torsion modules is
superstable. So we ask the following question.

Question 4.16. Is there a right semihereditary ring R such that RR is not absolutely pure and
R satisfies any of the equivalent conditions given in Theorem 4.14?

Remark 4.17. If there is R left pure-semsimple ring such that R is right semihereditary and
RR is not absolutely pure, then the above question would have a positive solution by Theorem
4.14.(5). For this reason, we think of a ring satisfying any of the conditions given in Theorem
4.14 as a weak pure-semisimple ring.

As foreshadow by the remark, we think that the above question has a positive solution.
Nevertheless, even if the above question has a negative solution Theorem 4.14 is still interesting
as it can be used to show that certain classes are not superstable. An example of this is given in
the next section.

A finer question would be to determine if there is a commutative domain satisfying any of the
equivalent conditions given in Theorem 4.14. We ask the question in algebraic terms.

Question 4.18. Is there a Prüfer domain such that R is not a field, but every torsion module
is torsion-ultracomplete?

Finally, a natural question is if any of the results presented in this section can be extended to
rings that are not necessarily right semihereditary. We think it is unlikely. However, we think
that if one studies the class of s-torsion modules with respect to other embeddings it is possible
to obtain analogous results to the ones presented here for rings that are not necessarily right
semihereditary.
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5. Torsion abelian groups

In this section we apply our general results to the class of torsion abelian groups with pure
embeddings. We show it is strictly stable, characterize its stability cardinals, and describe its
limit models. We will denote the class of torsion abelian groups with pure embeddings by KTor.

Remark 5.1. Recall that the class of s-torsion abelian groups is precisely the class of torsion
abelian groups, i.e., those groups such that every element has finite order. Moreover, Z is semi-
hereditary since it is a Prüfer domain. Therefore, we can use the results obtained in the previous
section to study the class of torsion abelian groups.

The following fact collects what is known of the class of torsion abelian groups with pure
embeddings. They were first obtained in [Maz21a, §4], but they also follow from the results of
the previous section.

Fact 5.2. Let KTor = (KTor,≤p).
• KTor is an AEC with LS(KTor) = ℵ0 that has amalgamation, joint embedding, and no

maximal models.
• If λℵ0 = λ, then KTor is λ-stable.
• KTor is (< ℵ0)-tame.

We will use the following algebraic result to show that the class is not superstable. Given an
abelian group G, we will denote its torsion part by the standard t(G) instead of s(G).

Remark 5.3 ( [Fuc15, §10.3]). Let Bn = Z(pn)(λ) and B =
⊕

nBn. The following holds:

g = (bn)n∈ω ∈ t(PE(B)) ≤ ΠnBn if and only if the orders of {bn}n∈ω are bounded.

Using the above characterization of t(PE(B)), it is easy to show that ‖t(PE(B))‖ = λℵ0 as
|Bn[p]| = |{b ∈ Bn : pb = 0}| = λ for every n ∈ ω.

Lemma 5.4. KTor is not superstable. Hence, KTor is strictly stable.

Proof. Assume for the sake of contradiction that KTor is superstable. Let λ = iω and B =⊕
nBn where Bn = Z(pn)(λ) for every n < ω as in Remark 5.3. Then by Theorem 4.14.(5) and

Lemma 3.12.(3), it follows that B = t(PE(B)). This is a contradiction as ‖t(PE(B))‖ = λℵ0 > λ
by König’s lemma. �

Remark 5.5. The previous result contrasts with the fact that the class of torsion abelian groups
with embedding is superstable [Maz21a, 4.8].

We are actually able to obtain a complete characterization of the stability cardinals.

Theorem 5.6. KTor is λ-stable if and only if λℵ0 = λ.

Proof. The backward direction follows from Fact 5.2 so we show the forward direction. We divide
the proof into two cases:

Case 1: λ > ℵ0. Assume that KTor is λ-stable. Let M be a (λ, ω1)-limit model and B =⊕
nBn where Bn = Z(pn)(λ) for every n < ω as in Remark 5.3. Since M is a λ-limit model and

B has size λ there is a pure embedding f : B → M . Then there is g : PE(B) → PE(M) pure
embedding extending f by the minimality of PE(B).

In particular, g�t(PE(B)) : t(PE(B))→ t(PE(M)) is injective. So ‖t(PE(B))‖ ≤ ‖t(PE(M))‖.
Since t(PE(M)) = M by Corollary 4.6 and Lemma 3.12 and ‖t(PE(B))‖ = λℵ0 by Remark 5.3,
it follows that λ = λℵ0

Case 2: λ = ℵ0. Assume for the sake of contradiction that KTor is ω-stable. Since KTor is
(< ℵ0)-tame by Fact 5.2, it follows from [BKV06, 3.6] that KTor is iω-stable. This contradicts
the previous case as iℵ0ω > iω by König’s lemma. �
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From the above results we can precisely describe the spectrum function for limit models.

Corollary 5.7. If λℵ0 = λ, then KTor has two non-isomorphic λ-limit models. Moreover, for
every other λ, KTor has no λ-limit models.

Proof. The first part follows from Corollary 4.11 and Theorem 4.14.(2). The moreover part
follows from Theorem 5.6 and Fact 2.10. �

We go one step further and give an algebraic description of the limit models. Recall that given
n ∈ N and G an abelian group, G[n] denotes the elements of order n in G and nG denotes the
elements of the form ng for some g in G.

Lemma 5.8. Let λ be an infinite cardinal such that λℵ0 = λ and α < λ+ be a limit ordinal. If
M is a (λ, α)-limit model in KTor, then:

(1) If cf(α) ≥ ω1, then M ∼= t(ΠpPE(
⊕

n Z(pn)(λ)))⊕
⊕

p Z(p∞)(λ).

(2) If cf(α) = ω, then M ∼= t(ΠpPE(
⊕

n Z(pn)(λ)))(ℵ0) ⊕
⊕

p Z(p∞)(λ).

Proof. (2) follows directly from (1) and Lemma 4.12, so we show (1). By Lemma 3.12 we have that
M = t(G) for some pure-injective group G. Since G is pure-injective, it follows from [EkFi72, §1],
that:

G = ΠpPE(
⊕
n

Z(pn)(αp,n) ⊕ Z(βp)
p )⊕Q(δ) ⊕ (

⊕
p

Z(p∞)(γp)),

for some specific αp,n, βp, δ, γp described in [EkFi72, §1] for p a prime number and n < ω.
Since

t(ΠpPE(
⊕
n

Z(pn)(αp,n)⊕Z(βp)
p )⊕Q(δ)⊕(

⊕
p

Z(p∞)(γp))) = t(ΠpPE(
⊕
n

Z(pn)(αp,n)))⊕(
⊕
p

Z(p∞)(γp)),

we only need to determine αp,n and γp for p a prime number and n < ω.
By [EkFi72, 1.9] for every prime number p we have that γp = dimFp

(D(G)[p]) where D(G) is

the divisible part of G. Let p be a prime number. Since Z(p∞)(λ) can be purely embedded in
M , because M is universal in KTor

λ , it can be purely embedded in G. Hence, γp = λ.
By [EkFi72, 1.5] for every prime number p and n < ω we have that αp,n = dimFp

((pn−1G)[p]/(pnG)[p]).

Let p be a prime number and n < ω. Since Z(pn)(λ) can be purely embedded in M , because M
is universal in KTor

λ , it can be purely embedded in G. Hence αp,n = λ.

Therefore, we can conclude that M = t(ΠpPE(
⊕

n Z(pn)(λ)))⊕
⊕

p Z(p∞)(λ). �

We finish by recording the following results for the class of abelian p-groups with pure embed-
dings. The proofs are similar to those for torsion abelian groups so we omit them. Recall that
G is an abelian p-group if every element of G has order pn for some n ∈ N.

Lemma 5.9. Let p be a fixed prime number and denote by Kp-grp the class of abelian p-groups
with pure embeddings.

(1) Kp-grp is strictly stable.
(2) Kp-grp is λ-stable if and only if λℵ0 = λ.
(3) Let λ be an infinite cardinal such that λℵ0 = λ and α < λ+ be a limit ordinal. If M is a

(λ, α)-limit model in Kp-grp, then:
• If cf(α) ≥ ω1, then M ∼= t(PE(

⊕
n Z(pn)(λ)))⊕ Z(p∞)(λ).

• If cf(α) = ω, then M ∼= t(PE(
⊕

n Z(pn)(λ)))(ℵ0) ⊕ Z(p∞)(λ).
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