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Abstract

The combinatorial version of the theorem [1] of de Bruijn and Erdős is presented in a more
accessible way, since it turns out Wikipedia’s article [2] only provides the proof in the case that
the points are a subset of the plane.

Definition. An incidence geometry consists of a set of points and a collection of lines, which are
subsets of the set of points. If a line ` contains a point P , we say P lies on `, or ` passes through
P . The points and lines must satisfy the following axioms:

[I1] Through any two points, there is exactly one line.

[I2] Each line contains at least two points.

[I3] There are three points that do not all lie on one line.

Theorem (de Bruijn, Erdős, 1948). Any incidence geometry contains at least as many lines as
points.

Proof. Suppose our geometry consists of points P1, . . . , Pn and lines `1, . . . , `m. We define lines(Pi)
to be the number of lines through point Pi, and points(`j) to be the number of points on line `j .

Lemma 1. lines(P1) + lines(P2) · · · + lines(Pn) = points(`1) + points(`2) + · · · + points(`m).

Proof. Both sides of the equality we want to prove are counting the same thing in two ways: pairs
(Pi, `j) where point Pi lies on line `j . This can be counted by going through all points, and counting
how many lines they lie on (the left-hand side), or by going through all lines, and counting how
many points they contain (the right-hand side).

Lemma 2. Suppose point Pi does not lie on line `j. Then lines(Pi) ≥ points(`j).

Proof. For each point on `j , there is a line through that point and Pi, by [I1]. If we go through
all points on `j and look at this line, we never see the same line twice: the only line that passes
through two points of `j is `j itself, also by [I1]. Therefore we have found as many lines through
Pi as there are points on `j .

We are now ready to proceed to the proof of the theorem. We’re free to choose the order in which
we label our lines and points, so we make the following choices:
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• Choose Pn to be the point with the fewest lines through it – or one such point, if there is a
tie. Let k = lines(Pn).

• Choose `1, . . . , `k to be the k lines through Pn.

• For 1 ≤ j ≤ k, there is at least one point on `j other than Pn, by [I2]; let Pj be one such
point.

To avoid really weird cases, we need to rule out the possibilities k = 0 and k = 1.

1. By [I3], there are at least three points; so there is a point Pi other than Pn. By [I1], there
is a line through Pi and Pn, so k ≥ 1.

2. If we had k = 1, then all points would lie on `1, which also contradicts [I3].

The point P1 does not lie on `2; or else there would be two lines (`1 and `2) through P1 and Pn,
contradicting [I1]. By applying Lemma 2, we get lines(P1) ≥ points(`2). For 1 ≤ i ≤ k − 1,
we can apply the same argument to get lines(Pi) ≥ points(`i+1). Finally, this argument gives us
lines(Pk) ≥ points(`1).

If we add all these inequalities, we get:

lines(P1) + lines(P2) + · · · + lines(Pk) ≥ points(`1) + points(`2) + points(`k). (1)

Note that this argument would have failed if k = 0 or k = 1: it can never get off the ground,
because it doesn’t even make sense to talk about P1 and `2. Proving that k ≥ 2 is the only time we
use [I3]: it allows us to rule out the case of a single line through n points, which would otherwise
be a counterexample.

Subtract inequality (1) from the equality in Lemma 1, and we get:

lines(Pk+1) + lines(Pk+2) + · · · + lines(Pn) ≤ points(`k+1) + points(`k+2) + · · · + points(`m). (2)

Due to the way we chose Pn, lines(Pi) ≥ lines(Pn) = k for all i; in particular, on the left-hand side
of (2), every term we’re adding is at least k. So the left-hand side of (2) is at least k(n− k).

By Lemma 2, for each j > k, lines(Pn) ≥ points(`j), since Pn does not lie on any of `k+1, . . . , `m.
This means that on the right-hand side of (2), every term we’re adding is at most k. So the
right-hand side of (2) is at most k(m− k).

Therefore we have k(n− k) ≤ k(m− k), which we can simplify to n ≤ m.
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