Graph Theory (Coloring) Annie Xu and Emily Zhu March 26, 2017

1 Introduction

Definition 1 (Graph). A (simple) graph consists of vertices/nodes and (undirected) edges connecting pairs of distinct vertices, where there is at most one edge between a pair of vertices.

Definition 2 (Degree). The degree of a vertex is the number of edges through a vertex.

Definition 3 (Neighbor). A vertex u is a neighbor of a vertex v if there is an edge between u and v.

Definition 4 (Paths and Cycles). A path is a sequence of vertices where consecutive vertices are connected by an edge. A cycle is a path starting and ending at the same vertex.

Definition 5 (Proper (Vertex) Coloring). In a proper vertex coloring of a graph, every vertex is assigned a color and if two vertices are connected by an edge, they must have different colors. If a graph can be colored with k colors, it is called k-colorable.

Definition 6 (Chromatic Number). The chromatic number of a graph G, denoted $\chi(G)$ is the least number of colors required to properly color the vertices of a graph.

Proposition 7. A graph is 2-colorable if and only if it does not contain an odd cycle

1.1 Graphs of Large Chromatic Number

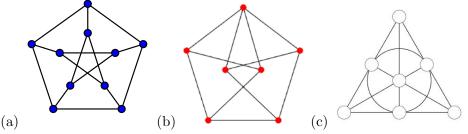
The Zykov Graphs are a recursively defined family of graphs. Z_1 has one point. Then Z_{i+1} is defined by taking *i* copies of Z_i , adding a set A_i of $|V(Z_i)|^i$ (the number of vertices of Z_i raised to *i*) vertices where we connect each vertex in A_i to one vertex in each copy of Z_i in a different way.

Proposition 8. The Zykov graphs do not contain a triangle (a cycle of length 3) and have the property that $\chi(Z_i) = i$.

Remark 9. The Zykov graphs are an example which show that triangles aren't the only thing which cause chromatic numbers to be large!

2 Problems

1. Find the chromatic number of:



2. Jim has six children, and it is not an easy bunch. Chris fights with Bob, Faye, and Eve all the time; Eve also fights with Al and Di; and Al and Bob fight all the time. Can Jim put the children in two rooms so that pairs of fighters are in different rooms? If so, show how.^[1]

^[1]Discrete Mathematics by Lovász, Pelikán, Vesztergombi

- 3. Does there exist a graph with the following degrees (if so, draw it): (a) 2, 2, 3, 3, 4, 4; (b) 0, 2, 2, 2, 4, 4, 6; (c) 2, 2, 3, 3, 4, 4, 5?^[1]
- 4. A complete graph on n vertices (denoted K_n) has the property that there is an edge between any two vertices. Show that $\chi(K_n) = n$.
- 5. Find a general way to construct a 3-chromatic graph such that the size of the smallest cycle is n, where n is some natural number.
- 6. If a graph has n vertices and is 2-colorable, find the maximum number of edges it can have.
- 7. Prove the Handshaking Lemma: the sum of the degrees of the vertices of a graph is twice the number of edges.
- 8. Prove that there must be two vertices of equal degree in any graph.
- 9. Prove that if every vertex has degree at least 2 then the graph has a cycle.
- 10. If all vertices of a graph have degree at most d and there exists a vertex with degree less than d, prove that G is d-colorable.^[1]
- 11. Assuming friendship is mutual between pairs of people, given 6 people, show that there are either 3 people who are all friends or 3 people who are all not friends.

3 Challenge Problems

1. The Mycielski graphs are a family of graphs similar to the Zykov graphs. Again, M_1 is a one point, and M_2 is two vertices connected by an edge. Then, to define M_{i+1} , we have a copy of M_i and then we add a "twin vertex" for every vertex in M_i , and we connect this twin vertex to all the neighbors of the corresponding vertex in M_i . Finally, we add one more vertex which we connect to every twin vertex.

Prove that the Mycielski graphs have no triangles and that $\chi(M_i) = i$.

3.1 Hypergraphs!!

Definition 10 (Hypergraph). A hypergraph consists of a set of vertices and edges which can connect any number of vertices (instead of just 2)

Definition 11 (Linear Space). A linear space is a hypergraph where any pair of distinct vertices is contained in precisely one edge. It is called trivial if one edge contains all vertices and a near pencil if one edge contains all but one vertex.

Theorem 12 (de Bruijn-Erdös). If a non-trivial linear space has n vertices and m edges, then $m \ge n$.

- 2. Show that there is no linear space with 2016 vertices such that every edge contains either 11 or 12 vertices.
- 3. Prove that if the edges of a complete graph K_n are colored with $m \ge 2$ colors such that each color forms a complete subgraph, then $n \ge m$.