Geometry

Misha Lavrov

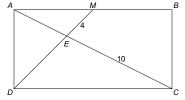
Coordinate Geometry

Western PA ARML Practice

October 29, 2014

Warm-up

1. (ARML 2007) In rectangle ABCD, M is the midpoint of AB, AC and DM intersect at E, CE = 10, and EM = 4. Find the area of rectangle ABCD.



Problems

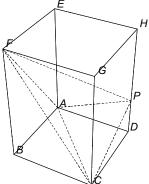
- 1. (ARML 1993) Triangle AOB is positioned in the first quadrant with O = (0,0) and B above and to the right of A. The slope of OA is 1, the slope of OB is 8, and the slope of AB is m. If the points A and B have x-coordinates a and b, respectively, compute $\frac{b}{a}$ in terms of m.
- 2. (ARML 1993) Square ABCD is positioned in the first quadrant with A on the y-axis, B on the x-axis, and C = (13, 8). Compute the area of the square.
- 3. (AIME 2000) Let u and v be integers satisfying 0 < v < u. Let A = (u, v), let B be the reflection of A across the line y = x, let C be the reflection of B across the y-axis, let D be the reflection of C across the x-axis, and let E be the reflection of D across the y-axis. The area of pentagon ABCDE is 451. Find u + v.
- 4. (AIME 2001) Let R = (8, 6). The lines whose equations are 8y = 15x and 10y = 3x contain points P and Q, respectively, such that R is the midpoint of PQ. The length of PQ equals $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.
- 5. (ARML 1988 Power Round)
 - (a) A sequence (x_n) is defined as follows: $x_0 = 2$, and for all $n \ge 1$, $(x_n, 0)$ lies on the line through (0, 4) and $(x_{n-1}, 2)$. Derive a formula for x_n in terms of x_{n-1} .
 - (b) A sequence (y_n) is defined as follows: $y_0 = 0$, and for all $n \ge 1$, draw a square of side length 2 with its bottom left corner at $(y_{n-1}, 0)$ and its bottom side on the x-axis. The point $(y_n, 0)$ lies on the line through (0, 4) and the top right corner of the square. Derive a formula for y_n in terms of y_{n-1} .
 - (c) A sequence (z_n) is defined as follows: $z_0 = 0$, and for all $n \ge 1$, draw a circle of diameter 2 tangent to the *x*-axis and tangent to the line through (0, 4) and $(z_{n-1}, 0)$ in such a

way that its center lies to the right of that line. The line through (0,4) and $(z_n,0)$ is the other tangent to the same circle. Derive a formula for z_n in terms of z_{n-1} .

- (d) Express (x_n) , (y_n) , and (z_n) explicitly as functions of n.
- 6. Prove that the area of a triangle with coordinates (a, b), (c, d), and (e, f) is given by

$$\frac{1}{2} \left| \det \begin{pmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{pmatrix} \right| = \frac{1}{2} \left| ad + be + cf - af - bc - de \right|.$$

- 7. (AIME 2005) The points A = (p, q), B = (12, 19), and C = (23, 20) form a triangle of area 70. The median from A to side BC has slope -5. Find the largest possible value of p + q.
- 8. (a) Prove that the medians of a triangle can be translated (without rotating the line segments) to form the sides of a new triangle.
 - (b) The medians of $\triangle ABC$ are translated to form the sides of $\triangle DEF$, and the medians of $\triangle DEF$ are translated to form the sides of $\triangle GHI$. Prove that $\triangle ABC$ and $\triangle GHI$ are similar, and compute the coefficient of similarity.
- 9. (ARML 2001) Let ABCDEFGH be a rectangular box such that AB = AD = 20 and $\angle GAC = 45^{\circ}$. Point P lies on DH such that plane PAC is parallel to BH. Compute the volume of tetrahedron FPCA.



- 10. (a) A sphere of radius r is inscribed in a regular tetrahedron, and a sphere of radius R is circumscribed about the same tetrahedron. Find the ratio R:r.
 - (b) An *n*-dimensional sphere of radius r is inscribed in a regular *n*-dimensional simplex (a figure with n + 1 vertices and n + 1 faces which are all regular (n 1)-dimensional simplices; in 1, 2, and 3 dimensions a simplex is a line segment, triangle, and tetrahedron respectively), and an *n*-dimensional sphere of radius R is circumscribed about the same simplex. Find the ratio R: r.
- 11. Find the equation of the line that bisects the angle formed in the first quadrant by the x-axis and the line y = mx.
- 12. In $\triangle ABC$, the altitude AH and the median AM are drawn; points H and M are distinct and points B, H, M, and C are in that order on segment BC. If $\angle BAH = \angle MAC$, compute $\angle BAC$.