Math 21-259 Calculus in 3D Homework 10 Solution Spring 2011

1. Solution: Note that the given region **R** is the part of the annular ring(with inner radius 1 and outer radius 2) that lies in the second and the third quadrant. Thus,

$$\iint_{\mathbf{R}} (x+y) \, \mathrm{d}A = \int_{\pi/2}^{3\pi/2} \int_{1}^{2} (r\cos\theta + r\sin\theta) r \, \mathrm{d}r \mathrm{d}\theta$$
$$= \int_{\pi/2}^{3\pi/2} (\cos\theta + \sin\theta) \, \mathrm{d}\theta \int_{1}^{2} r \, \mathrm{d}r$$
$$= \left[-\sin\theta + \cos\theta \right]_{\pi/2}^{3\pi/2} \left[\frac{r^2}{2} \right]_{1}^{2} = 2(2-1/2) = 3.$$

2. Solution: By changing the given integral into polar coordinates, we get

$$\begin{aligned} \iint_{\mathbf{R}} y e^{x} dA &= \int_{0}^{\pi/2} \int_{0}^{5} r \sin \theta e^{r \cos \theta} r dr d\theta \\ &= \int_{0}^{5} \int_{0}^{\pi/2} r^{2} \sin \theta e^{r \cos \theta} d\theta dr \quad [\text{Switch the order of integration}] \\ &= \int_{0}^{5} \int_{\cos 0}^{\cos \pi/2} r^{2} e^{ru} (-du) dr \quad [\text{Use substitution } u = \cos \theta] \\ &= \int_{0}^{5} \left[r^{2} \frac{e^{ru}}{r} \right]_{u=1}^{u=0} dr \\ &= \int_{0}^{5} r^{2} \frac{1}{r} - \frac{e^{r}}{r} dr \\ &= \int_{0}^{5} r(1 - e^{r}) dr \\ &= \left[re^{r} - e^{r} - \frac{1}{2}r^{2} \right]_{0}^{5} \quad [\text{Use Integration by parts}] \\ &= 4e^{5} - \frac{23}{2}. \end{aligned}$$

3. Solution: Note that the height of the given solid is given by $2\sqrt{16 - x^2 - y^2}$ and the projection of the given region in the xy-plane is the annular ring with inner radius 2 and outer radius 4. Thus,

$$\begin{split} \iint_{4 \le x^2 + y^2 \le 16} 2\sqrt{16 - x^2 - y^2} \, \mathrm{d}A &= \int_0^{2\pi} \int_2^4 2\sqrt{16 - r^2} \, r \, \mathrm{d}r \mathrm{d}\theta \\ &= \int_0^{2\pi} \int_{16 - 2^2}^{16 - 4^2} -\sqrt{u} \, \mathrm{d}u \mathrm{d}\theta \quad \text{[Use substitution } u = 16 - r^2] \\ &= \int_0^{2\pi} \left[-\frac{u^{3/2}}{3/2} \right]_{u=12}^{u=0} \, \mathrm{d}\theta \\ &= \int_0^{2\pi} \left[\frac{2}{3} (12)^{3/2} \right] \, \mathrm{d}\theta \\ &= \frac{2}{3} (2\pi) (12)^{3/2} = 32\sqrt{3}\pi. \end{split}$$

4. Solution: Note that the solid is bounded below by the paraboloid and above by the plane z = 7, thus the height of the solid is given by $7 - (1 + 2x^2 + 2y^2)$. The shadow of the given region in the *xy*-plane can be found by solving the following inequality:

$$z_{\text{bottom}} \le z_{\text{top}} \iff 1 - 2x^2 - 2y^2 \le 7 \iff x^2 + y^2 = 3.$$

Also, we are restricted to the first quadrant only. Thus the required integral is given by

$$\begin{aligned} \iint_{x^2+y^2 \le 3, \ x \ge 0, \ y \ge 0} [7 - (1 + 2x^2 + 2y^2)] \, \mathrm{d}A &= \int_0^{\pi/2} \int_0^{\sqrt{3}} [7 - (1 + 2r^2)] r \, \mathrm{d}r \mathrm{d}\theta \\ &= \left(\int_0^{\pi/2} \mathrm{d}\theta \right) \left(\int_0^{\sqrt{3}} (6 - 2r^2) r \, \mathrm{d}r \right) \\ &= (\pi/2) \left[3r^2 - \frac{2}{4}r^4 \right]_0^{\sqrt{3}} = (\pi/2)(9 - 9/2) = \frac{9}{4}\pi. \end{aligned}$$

5. Solution: The first step is to sketch the region that is determined by the bounds in the given integral. Note that $0 \le x \le 2$ and $0 \le y \le \sqrt{2x - x^2}$ describes the semicircular region with radius 1 and center (1, 0) that lies above the x-axis. The same region can be described in

polar coordinates by the inequalities: $0 \le r \le 2\cos\theta$, $0 \le \theta \le \pi/2$. Thus,

$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} \, dy dx = \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} [r] \, r \, dr d\theta$$

$$= \int_{0}^{\pi/2} \left[\frac{r^{3}}{3}\right]_{0}^{2\cos\theta} \, d\theta$$

$$= \int_{0}^{\pi/2} \frac{(2\cos\theta)^{3}}{3} \, d\theta$$

$$= \int_{0}^{\pi/2} \frac{8}{3} (\cos\theta)^{2} \cos\theta \, d\theta$$

$$= \int_{0}^{\pi/2} \frac{8}{3} (1-\sin^{2}\theta) \cos\theta \, d\theta$$

$$= \int_{\sin0}^{\sin\pi/2} \frac{8}{3} (1-u^{2}) \, du \qquad [\text{Use } u - \text{sub}, \ u = \sin\theta]$$

$$= \left[\frac{8}{3} (u - \frac{u^{3}}{3})\right]_{0}^{1} = \frac{8}{3} (1 - 1/3) = \frac{16}{9}.$$

6. Solution: Let $I = \int_0^1 \int_x^{2x} \int_0^y 2xyz \, dz dy dx$.

$$I = \int_{0}^{1} \int_{x}^{2x} [xyz^{2}]_{z=0}^{z=y} dydx$$

= $\int_{0}^{1} \int_{x}^{2x} xy^{3} dydx$
= $\int_{0}^{1} \left[\frac{y^{4}}{4}x\right]_{y=x}^{y=2x} dx$
= $\int_{0}^{1} \frac{15}{4}x^{5} dx$
= $\left[\frac{5}{8}x^{6}\right]_{0}^{1} = \frac{5}{8}.$

7. Solution: Let $I = \iiint_E yz \cos(x^5) \, dV$, where $E: 0 \le x \le 1, 0 \le y \le x, x \le z \le 2x$. Note

$$I = \int_{0}^{1} \int_{0}^{x} \int_{x}^{2x} yz \cos(x^{5}) dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{x} \frac{3}{2}x^{2}y \cos(x^{5}) dy dx$$

$$= \int_{0}^{1} \int_{0}^{x} \left[\frac{3}{4}x^{2}y^{2} \cos(x^{5})\right]_{y=0}^{y=x} dx$$

$$= \int_{0}^{1} \frac{3}{4}x^{4} \cos(x^{5}) dx$$

$$= \int_{0}^{1^{5}} \frac{3}{4(5)} \cos u \, du \qquad [\text{Use u - sub, u = x}^{5}]$$

$$= \left[\frac{3}{20} \sin u\right]_{0}^{1} = \frac{3}{20} \sin 1.$$

8. Solution: Let $I = \iiint_E xz \, dV$, where E is the solid tetrahedron with vertices (0, 0, 0), (0, 1, 1)(0), (1, 1, 0), and (0, 1, 1). Note that this solid can easily be treated as type 1, type 2 or type 3 region. Suppose we decide to write the integral in the order dxdzdy. To find the bounds for y and z, we shall need the projection of the tetrahedron in the yz-plane. Note that the projection of the tetrahedron is the yz-plane is the triangle with vertices (0, 0), (1, 1), (1, 0). Thus, we can describe the given solid as $E = \{(x, y, z) | 0 \le x \le y - z, 0 \le y \le 1, 0 \le z \le y, \}$ which allows us to write the integral as follows:

$$I = \int_{0}^{1} \int_{0}^{y} \int_{0}^{y-z} xz \, dx \, dz \, dy$$

= $\int_{0}^{1} \int_{0}^{y} \left[\frac{x^{2}}{2}z\right]_{x=0}^{x=y-z} \, dz \, dy$
= $\int_{0}^{1} \int_{0}^{y} \frac{(y-z)^{2}}{2} z \, dz \, dy$
= $\int_{0}^{1} \int_{0}^{y} \frac{1}{2} (zy^{2} + z^{3} - 2yz^{2}) \, dz \, dy$
= $\int_{0}^{1} \left[\frac{y^{2}z^{2}}{4} + \frac{z^{4}}{8} - \frac{yz^{3}}{3}\right]_{z=0}^{z=y} \, dy$
= $\int_{0}^{1} \left[\frac{y^{4}}{4} + \frac{y^{4}}{8} - \frac{y^{4}}{3}\right] \, dy$
= $\left[\left(\frac{1}{4} + \frac{1}{8} - \frac{1}{3}\right)\frac{y^{5}}{5}\right]_{y=0}^{y=1} = \frac{1}{24(5)} = \frac{1}{120}$

9. Solution: Note that the given solid is bounded below by the xy-plane (z = 0) and above by the plane z = 4 and its projection in the xy-plane is the region bounded by the parabola $y = x^2$ and the line y = 9. Thus the volume of the given solid is given by

1

$$V = \int_{-3}^{3} \int_{x^{2}}^{9} \int_{0}^{4} dz dy dx$$

= $\int_{-3}^{3} \int_{x^{2}}^{9} 4 dy dx$
= $\int_{-3}^{3} 4(9 - x^{2}) dx$
= $4 \left[9x - \frac{x^{3}}{3} \right]_{x=-3}^{x=3}$
= $4 [(9(3) - 3^{2}) - (9(-3) - (-3^{2}))] = 144.$

10. Solution: Note that the given solid is the tetrahedron with vertices (0, 0, 0), (0, 2, 02), and (1, 2, 0). Sketch the projections of this solid on all three xy-, yz-, and xz- planes. If D_1, D_2 , and D_3 are the projections of the given solid on the xy-, yz-, and xz- planes respectively, then

$$\begin{array}{rcl} D_1 &=& \{(x,y)| 0 \leq x \leq 1, \ 2x \leq y \leq 2\} = \{(x,y)| 0 \leq y \leq 2, \ 0 \leq x \leq y/2\} \\ D_2 &=& \{(y,z)| 0 \leq y \leq 2, \ 0 \leq z \leq y\} = \{(y,z)| 0 \leq z \leq 2, \ z \leq y \leq 2\} \\ D_3 &=& \{(x,z)| 0 \leq x \leq 1, \ 0 \leq z \leq 2 - 2x\} = \{(x,z)| 0 \leq z \leq 2, \ 0 \leq x \leq (2-z)/2\}. \end{array}$$

Therefore,

$$\begin{array}{rcl} E &=& \{(x,y,z)| 0 \leq x \leq 1, \ 2x \leq y \leq 2, \ 0 \leq z \leq y - 2x\} \\ E &=& \{(x,y,z)| 0 \leq y \leq 2, \ 0 \leq x \leq y/2, \ 0 \leq z \leq y - 2x\} \\ E &=& \{(x,y,z)| 0 \leq y \leq 2, \ 0 \leq z \leq y, \ 0 \leq x \leq (y-z)/2\} \\ E &=& \{(x,y,z)| 0 \leq z \leq 2, \ z \leq y \leq 2, \ 0 \leq x \leq (y-z)/2\} \\ E &=& \{(x,y,z)| 0 \leq x \leq 1, \ 0 \leq z \leq 2 - 2x, \ z + 2x \leq y \leq 2\} \\ E &=& \{(x,y,z)| 0 \leq z \leq 2, \ 0 \leq x \leq (2-z)/2, \ z + 2x \leq y \leq 2\}. \end{array}$$

Then

$$\begin{aligned} \iiint_E f(x,y,z) \, \mathrm{d}V &= \int_0^1 \int_{2x}^2 \int_0^{y-2x} f(x,y,z) \, \mathrm{d}z \mathrm{d}y \mathrm{d}x = \int_0^2 \int_0^{y/2} \int_0^{y-2x} f(x,y,z) \, \mathrm{d}z \mathrm{d}x \mathrm{d}y \\ &= \int_0^2 \int_0^y \int_0^{(y-z)/2} f(x,y,z) \, \mathrm{d}x \mathrm{d}z \mathrm{d}y = \int_0^2 \int_z^2 \int_0^{(y-z)/2} f(x,y,z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \\ &= \int_0^1 \int_0^{2-2x} \int_{z+2x}^2 f(x,y,z) \, \mathrm{d}y \mathrm{d}z \mathrm{d}x = \int_0^2 \int_0^{(2-z)/2} \int_{z+2x}^2 f(x,y,z) \, \mathrm{d}y \mathrm{d}x \mathrm{d}z. \end{aligned}$$