Name: Solution key Lab Section: Grading ky

Allowed time: 12 mins

1. (3 points) Given $f(x,y) = 2xy^2 - 4xy$ where x = 2st, $y = st^2$. If we let F(s,t) = f[x(s,t),y(s,t)] then find $\frac{\partial F}{\partial t}(1,-1)$.

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial t} = (2y^2 - 4y)(2s) + (4xy - 4x)^{2st}$$
When $8 = 1$, $t = -1$ then $x = -2$, $y = 1$

$$\frac{\partial F}{\partial t}(1, -1) = (2 - 4)(2) + (-8 + 8)(-2) = \boxed{-4}$$

- 2. Given $f(x, y) = 2x^2 + 3y$ and point P(1, 1).
 - (a) (3 points) Find the directional derivative of f at the point P in the direction of the point Q(5, 4).

$$D_{\hat{u}}^{*}f|=\nabla f(1,1)$$
. \hat{u} when $\hat{u}=\langle \frac{5,47-\langle 1,1\rangle}{|\langle 5,47-\langle 1,1\rangle\rangle}$
= $\langle 4,3\rangle$. $\langle \frac{4}{5}\rangle$ = 5 units.

(b) (4 points)In what direction does f have the minimum rate of change at P? What is this minimum directional derivative of f at P?

Minimum directional derivative is in $-\nabla f(1,1)$ direction.

Note: $-\nabla f(1,1) = -4\hat{i} - 3\hat{j}$. (9 \hat{i} \hat{i} \hat{j} \hat{j}