DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Math 21-259 Calculus in 3D Practice Final Exam Solutions

1. (15 points) Find symmetric equations for the line of intersection L of the two planes x + y + z = 1 and x - 2y + 3z = 1. Also, find the angle between these two planes.

Solution: To find the equation of the line, we need a point and a direction vector. Note that the direction vector of the required line is $\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2$ where $\hat{\mathbf{n}}_1 = \langle 1, 1, 1 \rangle$ and $\hat{\mathbf{n}}_1 = \langle 1, -2, 3 \rangle$ are normal vectors of the given planes. Thus, the direction vector = $\langle 5, -2, -3 \rangle$.

To find a point on L, we can find the point where the line intersects the xy-plane by setting z = 0 in the equations of both planes. By solving the given equations of planes simultaneously after setting z = 0, we get x = 1 and y = 0. Thus, the required line passes through a point (1, 0, 0) and hence the equation of the line is given by

$$\frac{x-1}{5} = \frac{y}{-2} = \frac{z}{-3}.$$

- 2. (15 points) Let $\mathbf{r}(t) = (\sqrt{2}t, e^t, e^{-t})$.
 - (a) Calculate the arc length function s(t) measured from t=0.

Solution: We have,

$$\|\mathbf{r}'(t)\| = \sqrt{(\sqrt{2})^2 + (e^t)^2 + (-e^{-t})^2} = \sqrt{2 + e^{2t} + e^{-2t}} = \sqrt{(e^t + e^{-t})^2} = e^t + e^{-t}.$$

We have, $s(t) = \int_0^t \|\mathbf{r}'(u)\| du = \int_0^t e^u + e^{-u} du = e^t - e^{-t}$.

(b) Find the equation of the line tangent to the curve at the point $\mathbf{r}(1)$. Solution: The tangent line is given by

$$\mathbf{R}(t) = \mathbf{r}(1) + t\mathbf{r}'(1) = (\sqrt{2}, e, e^{-1}) + t(\sqrt{2}, e, -e^{-1}).$$

(c) Compute the unit tangent vector $\hat{\mathbf{T}}(t)$.

Solution :
$$\hat{\mathbf{T}}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{(\sqrt{2}, e^t, -e^{-t})}{e^t + e^{-t}}.$$

(d) Compute $\kappa(t)$.

Solution: We have $\mathbf{r}''(t) = (0, e^t, e^{-t})$. So

$$\mathbf{r}'(t) \times \mathbf{r}''(t) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \sqrt{2} & e^t & -e^{-t} \\ 0 & e^t & e^{-t} \end{pmatrix} = (2, -\sqrt{2}e^{-t}, \sqrt{2}e^t).$$

So we get,

$$\kappa(t) = \frac{\sqrt{4 + 2e^{-2t} + 2e^{2t}}}{(e^t + e^{-t})^3} = \frac{\sqrt{2}\sqrt{2 + e^{-2t} + e^{2t}}}{(e^t + e^{-t})^3} = \frac{\sqrt{2}(e^t + e^{-t})}{(e^t + e^{-t})^3} = \frac{\sqrt{2}}{(e^t + e^{-t})^2}.$$

3. (10 points) Find all local maximum, local minimum, and saddle points of $f(x,y) = e^{4y-x^2-y^2}$

Solution: First we find all the partial derivatives of f up to the second order.

$$f_x = -2xe^{4y-x^2-y^2}$$

$$f_y = (4-2y)e^{4y-x^2-y^2}$$

$$f_{xx} = (4x^2-2)e^{4y-x^2-y^2}$$

$$f_{xy} = -2x(4-2y)e^{4y-x^2-y^2}$$

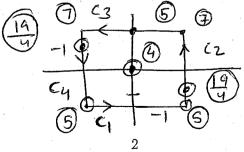
$$f_{yy} = (4y^2-16y+14)e^{4y-x^2-y^2}$$

Next, we set $f_x = 0 = f_y$ which implies x = 0 and y = 2, so the only critical point is (0, 2). Recall that $D(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^2$. Note that $D(0, 2) = 4e^8 > 0$ and $A = f_{xx}(0, 2) = -2e^4 < 0$, so $f(0, 2) = e^4$ is a local minimum.

4. (20 points) Find the absolute maximum and minimum values of $f(x,y) = x^2 + y^2 + x^2y + 4$ on the set $D = \{(x,y): -1 \le x \le 1, -1 \le y \le 1\}$. Also, give the points at which the function attains its maximum and minimum values.

Solution: We are given that $f(x,y) = x^2 + y^2 + x^2y + 4$.

Step 1. Sketch the Region: Rectangle = $\{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$.



Step 2. Find critical points in the interior of the domain.

$$\nabla f = \langle 2x + 2xy, 2y + x^2 \rangle = 0 \Rightarrow 2x(y+1) = 0 \text{ and } x^2 = -y \Rightarrow x = 0, y = -1.$$

Note that y = -1 is on the boundary of the given domain, so the only critical point is (0, 0). Label it and record the value of f(0, 0) = 4.

Step 3. Find the extreme values on the boundary of the domain.

Parametrize
$$C_1$$
: $x(t) = -1 + 2t$, $y(t) = -1$, $0 \le t \le 1$.
Here $f_1(t) = f(x(t), y(t)) = (-1 + 2t)^2 + 1 - (-1 + 2t)^2 + 4 = 5$, constant.

Parametrize
$$C_2$$
: $x(t) = 1$, $y(t) = -1 + 2t$, $0 \le t \le 1$.
Here $f_2(t) = f(x(t), y(t)) = 1 + (-1 + 2t)^2 + (-1 + 2t) + 4 = 4t^2 - 2t + 5$.
Note $f'_2(t) = 0 \Rightarrow t = 1/4$.
 $f_2(1/4) = f(1, -1/2) = 19/4$, $f_2(0) = f(1, -1) = 5$, $f_2(1) = f(1, 1) = 7$.

Parametrize
$$C_3$$
: $x(t) = 1 - 2t$, $y(t) = 1$, $0 \le t \le 1$.
Here $f_3(t) = f(x(t), y(t)) = (1 - 2t)^2 + 1 + (1 - 2t)^2 + 4 = 2(1 - 2t)^2 + 5$.
Note $f'_3(t) = -8(1 - 2t) = 0 \implies t = 1/2$.
 $f_3(0) = f(1, 1) = 7$, $f_3(1) = f(-1, 1) = 7$, $f_3(1/2) = f(0, 1) = 5$.

Parametrize
$$C_4$$
: $x(t) = -1$, $y(t) = 1 - 2t$, $0 \le t \le 1$.
Here $f_4(t) = f(x(t), y(t)) = 1 + (1 - 2t)^2 - (1 - 2t) + 4$.
Note $f'_4(t) = -4(1 - 2t) + 2 = 8t - 2 = 0 \implies t = 1/4$.
 $f_4(0) = f(-1, 1) = 7$, $f_4(1) = f(-1, 1) = 0$, $f_4(1/4) = f(-1, 1/2) = 19/4$.

Absolute Maximum = 7 at $(\pm 1, 1)$ Absolute Minimum = 4 at (0, 0). 5. (20 points) Find the dimensions of the rectangular box of maximum volume if the total surface area is given as 64 cm² using the method of Lagrange multipliers.

Solution: Let x, y, z denote the length, width and the height of the rectangular box respectively. Note that the Surface area of the rectangular box is given by $S = 2(xy + yz + zx) = 64 \text{ cm}^2$. Note $z = \frac{32-xy}{x+y}$.

Maximize the Volume function, $f(x,y) = xy\frac{32-xy}{x+y}$. Then $f_x(x,y) = \frac{32y^2-2xy^3-x^2y^2}{(x+y)^2} = y^2\frac{(32-2xy-y^2)}{(x+y)^2}$ and $f_y(x,y) = x^2\frac{(32-2xy-x^2)}{(x+y)^2}$. Set $f_x = 0$ and $f_y = 0$ which implies

$$32 - 2xy - x^2 = 0$$
 and $32 - 2xy - y^2 = 0$.

You may now use your best way to solve these equations simultaneously. One way to do so is by setting $32-2xy-x^2=32-2xy-y^2=0$. This implies that $x^2=y^2\Rightarrow x=y$ since both x and y are positive. By Substituting x=y in any of the two equations above, we get $32-2x^2-x^2=0\Rightarrow x^2=32/3$. Thus, $x=y=4\sqrt{\frac{2}{3}}$ and $z=4\sqrt{\frac{2}{3}}$. Thus the box is a cube with edges $4\sqrt{\frac{2}{3}}$.

6. (15 points) Let $T = \{(x, y, z) : 0 \le z \le 6, z/2 \le x \le 3, x \le y \le 6 - y\}$ be the solid in space. Set up(not compute) a triple integral in the order dxdydz that gives the volume of the solid T.

Solution: This problem is same as the part (b) of the tetrahedron problem in Exam 3. Look for its solution in Exam 3 solution packet.

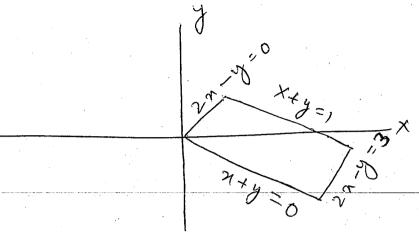
7. (15 points) Find the volume of the solid in the first octant which is bounded by the cone $x^2 + y^2 = 3z^2$, by the planes x = 0 and $x = \sqrt{3}y$, and by the sphere $4x^2 + 4y^2 + 4z^2 = 1$.

Solution: Note that the equation of the sphere can be written as $\rho = \frac{\Gamma}{2}$ and equation of the cone as $\phi = \frac{\pi}{3}$ in spherical coordinates. From this it follows that $0 \le \rho \le 1/2$ and $0 \le \phi \le \pi/3$. Also, observe that the equation of the planes x = 0 and $x = \sqrt{3}y$ indicates that $0 \le \theta \le \pi/6$. Thus, we see that the volume of the solid is given by

$$\int_0^{\pi/6} \int_0^{\pi/3} \int_0^{1/2} \rho^2 \sin \phi \, \mathrm{d}\rho \, \mathrm{d}\phi \, \mathrm{d}\theta = \left[\frac{(\rho)^3}{3} \right]_0^{1/2} [-\cos \phi]_0^{\pi/3} \, \frac{\pi}{6} = \frac{\pi}{12} \frac{(1/2)^3}{3} = \frac{\pi}{288}.$$

8. (20 points) Evaluate $\iint_{\mathbb{R}} (x+y) \cos \pi (2x^2 + xy - y^2) dx dy$ where R is the parallelogram with vertices (0, 0), (1, -1), (1/3, 2/3), and (4/3, -1/3).

Solution: Note that R bounded by lines x + y = 0, x + y = 1, 2x - y = 0 and 2x - y = 3.



This suggests that we choose $u=x+y,\ v=2x-y$. Thus, the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}=-3$ and hence the given integral can be written as

$$\begin{split} \iint_{R} (x+y) \cos \pi (2x^2 + xy - y^2) \, \mathrm{d}x \, \mathrm{d}y &= \int_{0}^{1} \int_{0}^{3} (u) \cos \pi u v \frac{1}{3} \, \mathrm{d}v \, \mathrm{d}u \\ &= \frac{1}{3} \int_{0}^{1} \left[u \frac{1}{\pi u} \sin \pi u v \right]_{0}^{3} \, \mathrm{d}u \\ &= \frac{1}{3} \int_{0}^{1} \frac{1}{\pi} \sin 3\pi u \, \mathrm{d}u \\ &= \frac{1}{3} \left[\frac{1}{3(\pi)^2} \cos 3\pi u \right]_{0}^{1} = -\frac{2}{9(\pi)^2}. \end{split}$$

9. (a) (15 points) Determine whether or not the vector field $\mathbf{F}(x,y,z) = \langle yz,xz,xy \rangle$ is conservative. If it is then f such that $\nabla f = \mathbf{F}$.

Solution: We are given that P = yz, Q = xz, R = xy. We need to verify that $R_y = Q_z$, $P_z = R_x$, and $Q_x = P_y$. Indeed they are all equal which implies that \mathbf{F} is a gradient field, that is, $\mathbf{F} = \nabla f$.

In order to find f, we need to solve $f_x = yz$, $f_y = xz$, and $f_z = xy$. Then f(x, y, z) = xyz + g(y, z) and $f_y = xz + g_y$. But we are given that $f_y = xz = xz + g_y \Rightarrow g_y = 0 \Rightarrow g(y, z) = h(z)$. Now, we use the third equation to get $xy + h'(z) = xy \Rightarrow h(z) = C$. Thus, we see that f(x, y, z) = xyz + C.

(b) (5 points) Compute $\int_C \mathbf{h} \cdot d\mathbf{r}$ where C is given by $\mathbf{r}(t) = (t \cos t)\mathbf{i} + (t^2 \cos t + 3\sin^5(t))\mathbf{j}$, $0 \le t \le \pi/2$.

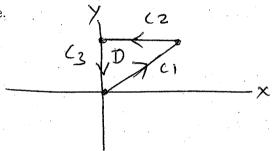
Solution: By Fundamental Theorem of line integral,

$$\int_C \mathbf{h}.d\mathbf{r} = f(\mathbf{r}(\pi/2)) - f(\mathbf{r}(0)) = f(0,3,0) - f(0,0,0) = 0.$$

10. (20 points) Compute the line integral of the vector field $\mathbf{F}(x,y) = \langle xy, x^2y \rangle$ over the boundary of the triangle with vertices (0, 0), (0, 1), (2, 1) directly **and** by using Green's theorem.

Solution:

(a) Directly: First we sketch the triangle and label each side of it by a curve as shown below in the figure.



Note that the required line integral $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3} \mathbf{F} \cdot d\mathbf{r}$.

On C_1 , x = 2y and $0 \le y \le 1$. Note,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} xy \, dx + x^2 y \, dy = \int_0^1 2y(y) \, 2dy + (2y)^2 y \, dy$$
$$= \int_0^1 4y^2 + 4y^3 \, dy = \left[\frac{4}{3} y^3 + y^4 \right]_0^1 = \frac{7}{3}.$$

On C_2 , y = 1 and x is from 2 to 0, so this implies that dy = 0. Note,

$$int_{C_2} \mathbf{F} . d\mathbf{r} = \int_{C_2} xy \, dx + x^2 y \, dy = \int_2^0 x \, dx = \left[\frac{x^2}{2}\right]_2^0 = -2.$$

On C_3 , x = 0 and y is from 1 to 0, so this implies that dx = 0. Note,

$$\int_{C_3} \mathbf{F}.\mathrm{d}\mathbf{r} = \int_{C_3} xy \,\mathrm{d}x + x^2 y \,\mathrm{d}y = 0.$$

This implies that $\int_C \mathbf{F} . d\mathbf{r} = \frac{7}{3} - 2 = \frac{1}{3}$.

(b) Green's Theorem: We have that

$$\int_{C} \mathbf{F}.d\mathbf{r} = \iint_{D} (Q_{x} - P_{y}) dA$$

$$= \iint_{D} (2xy - x) dA = \int_{0}^{2} \int_{x/2}^{1} (2xy - x) dy dx$$

$$= \int_{0}^{2} \left[xy^{2} - xy \right]_{y=x/2}^{y=1} dx$$

$$= \int_{0}^{2} \left(\frac{x^{2}}{2} - \frac{x^{3}}{4} dx \right)$$

$$= \left[\frac{x^{3}}{6} - \frac{x^{4}}{16} \right]_{0}^{2}$$

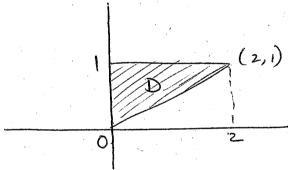
$$= \frac{8}{6} - \frac{16}{16} = \frac{1}{3}.$$

11. (10 points) Find the surface area of the part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0, 0), (0, 1), and (2, 1).

Solution: To find the surface area, we use

$$A(S) = \iint_D \sqrt{1 + (g_x)^2 + (g_y)^2} \, dA$$

where $g(x,y)=1+3x+2y^2$ and D is the region enclosed by the given triangle as shown below.



Thus,

$$A(S) = \int_0^1 \int_0^{2y} \sqrt{1+9+16y^2} \, dx \, dy$$
$$= \int_0^1 2y \sqrt{10+16y^2} \, dy$$
$$u=10+16y^2 \int_{10}^{26} \sqrt{u} \frac{1}{16} \, du = \frac{1}{24} [26^{3/2} - 10^{3/2}].$$

- 12. (20 points) Evaluate the surface integral $\iint_S \text{curl} \mathbf{F} d\mathbf{S}$, where $\mathbf{F}(x,y,z) = -xy\mathbf{j} xz\mathbf{k}$ and S consists of the paraboloid $z = x^2 + y^2$, $0 \le z \le 1$, and the disk $x^2 + y^2 \le 1$, z = 1 by following different ways:
 - (a) Directly.

Note that $\operatorname{curl} \mathbf{F} = z\mathbf{j} - y\mathbf{k}$. This problems is similar to problem 11 from homework 15. Check out its solution in there and the answer should turn out to be zero.

(b) By using Stokes' Theorem: It is a bad question for using Stokes' theorem as it has no boundary. However, we can still argue by Stokes' theorem that

$$\iint_{S} \operatorname{curl} \mathbf{F}. d\mathbf{S} = \int_{C} \mathbf{F}. d\mathbf{r} = 0$$

since there is no boundary curve C.

No boundary for Uosed Surfacegu