
21-121 Error Bound Theorems November 23, 2010

Note: These notes were written by Aaron Leclair. If you have any questions or corrections, please
direct them to aleclair@andrew.cmu.edu.

1 The Three Main Error Bound Theorems

When you’re trying to approximate the value of an integral, it’s natural that you want to know
how close your answer is to the correct answer. If the function you are integrating has an easy-to-
calculate antiderivative, you can find the precision of your estimate by calculating the exact value of
the integral and seeing how far away the exact and estimated answer are from each other; however,
when integrating a function whose antiderivative you can’t take, such as f(x) = e−x

2/2, you don’t
have this luxury. Knowing absolutely anything - even a crude equality that bounds the precision
of your answer - about the error is better than knowing nothing in this case.

This is where the error bound theorems come into play. For each of the major numerical inte-
gration techniques you’ve learned, there is a theorem that gives the error bound. First, we’ll state
the theorems, and then explain what they mean.

Error Bound for the Midpoint Rule: Suppose that |f ′′(x)| ≤ K for some k ∈ R where
a ≤ x ≤ b. Then

|EM | ≤ k
(b− a)3

24n2

Error Bound for the Trapezoid Rule: Suppose that |f ′′(x)| ≤ K for some k ∈ R where
a ≤ x ≤ b. Then

|ET | ≤ k
(b− a)3

12n2

Error Bound for Simpson’s Rule: Suppose that |f (IV )(x)| ≤ K for some k ∈ R where
a ≤ x ≤ b. Then

|ES | ≤ k
(b− a)5

180n4

I have used the symbol ES to denote the error bound for Simpson’s rule, ET the error
bound for the Trapezoid Rule, and so on.

For this class, it’s best that you memorize these formulas, and understand how to use them.
Since these formulas have lots of inequalities, it’s easy to remember what they are but be completely
lost as to how to use them on final exam day. The purpose of these notes is to do some illustrative
examples that will (slowly, but certainly) demystify what the big deal with all the inequalities and
absolute value bars are, and acquaint you with how powerful of a tool error analysis is.

Let’s start by demystifying (well, to some extent) the absolute value bars. For example, take the
assumption that |f ′′(x)| ≤ K in the Trapezoid Rule formula. What this is stating is that the
magnitude of the second derivative must always be less than a number K. For example, suppose
that the second derivative of a function took all of the values in the set [−9, 8] over a closed interval.
Then |f ′′(x)| ≤ 9 for all x in the interval, since −9 has the largest absolute value. However, it’s also
true that |f ′′(x)| ≤ 20 since no numbers in [−9, 8] have magnitude 20; however, we will want the
smallest value K that we can get, because it will ensure a sharper error bound - in other words,
one that is as close to the actual error as possible.
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In general, we’ll get the smallest value of K by finding the largest absolute value of the second
derivative over the interval. Sometimes, this will be easy; other times, we will have to use calculus
to find the critical numbers, relative maxima, and relative minima.

Now we’ll explain |ET |; the idea behind this can be generalized to the other numerical techniques.
|ET | specifies how far the trapezoidal approximation actually is from the real interval. In other
words,

|ET | = |
∫ b

a
f(x)dx− Tn| = |Tn −

∫ b

a
f(x)dx|

However, we almost never know what |ET | is when solving integrals approximately. The error
bound inequalities give us an interval of the real numbers where we are guaranteed to find the
actual value of the integral. With the Trapezoid Rule,

|Tn −
∫ b

a
f(x)dx| ≤ k

(b− a)3

12n2

If you’re adept at converting absolute value inequalities to compound inequalities, you’ll see that

this means that if you know Tn, then somewhere between Tn−k (b−a)3
12n2 and Tn +k (b−a)3

12n2 , you’ll find
the real value of the integral.

2 Precision of Numerical Estimates

In this section, we’ll do some examples that will hopefully show you that there isn’t much to these
inequalities.

Example 1: By the Fundamental Theorem of Calculus, you can see that∫ 2

1

1

x
dx = ln(2)− ln(1) = ln(2)

Using the Midpoint Rule with n = 2, we get that ln(2) ≈ .68571. With the Trapezoid
Rule, we get ln(2) ≈ .708333. With Simpson’s Rule, we get ln(2) ≈ .69444. Which is
the best approximation?
Let’s do the Midpoint Rule and the Trapezoid Rule, and you should try to use the same
steps to get the error bound for Simpson’s Rule. Taking the second derivative, we have
that

f ′′(x) =
2

x3

Now we need to find a K such that |f ′′(x)| ≤ K for all x ∈ [1, 2]. There are two ways we
can do this: First, we can find the absolute minimum and maximum of f ′′(x) over the
interval, and take the one with the larger absolute value. You should try this yourself
and verify that you get the same answer as the way we’ll do, which is by manipulating
inequalities.
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1 ≤ x ≤ 2 =⇒ 1 ≤ x3 ≤ 8

=⇒ 1 ≥ 1

x3
≥ 1

8

=⇒ 2 ≥ 2

x3
≥ 1

4

The symbol =⇒ should be read as “implies”. The second step of this argument is the
more difficult one, and will need some explaining. What we did was first multiply both
sides by x−3, and then solve so x−3 was by itself.
The bigger of the two endpoints is 2, so K = 2 is the best choice to make. Then,

|ET | =
2(1)3

12(2)2
=

2

48
=

1

24
and |EM | =

2(1)3

24(2)2
=

1

48

In other words, if you used the Trapezoid Rule, you would know the real value of the
integral would be between .708333−.0417 and .708333+.0417. If you used the midpoint
rule, you would know the real value is between .68571− .0208 and .68571 + .0208.

Suppose you knew in advance that you only needed an estimate to a certain precision. The error
bound formulas are especially powerful here, since they will tell you how many subintervals you
need, and they will do it without ever computing the antiderivative.

Example 2: How many subintervals do you need to approximate the integral
∫ 2
1 1/xdx

to a precision of .0001 using Simpson’s Rule?
If you take the fourth derivative, you will find that f IV (x) = 24/x5, which has a
maximum magnitude of 24. Then, we know that

|ES | ≤
24(1)5

180(n)4

but we want
|ES | ≤ .0001

To get both of these to be true, we take

24(1)5

180(n)4
< .0001

Note that |ES | is guaranteed to be less than the error bound, so it most certainly will
be less than .0001. Here, all we need to do now is solve the equation. Multiplying by
n4 and dividing by .0001, we will get that n4 > 4000/3 , or n > 6.043. However, the
number of subintervals used in Simpson’s Rule is always even, so we need at least 8
subintervals.

To see if you get the idea of how to do problems like this, try answering the same question for the
Trapezoid Rule and the Midpoint Rule. You should find that with the Midpoint Rule, you need 29
subintervals, and with the Trapezoid Rule, you need 41.
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The amazing thing about Simpson’s Rule is that computationally, it isn’t that more difficult than
any of the other rules. Usually, in computing, if you want a more precise answer to a numer-
ical problem, you need to make the computer do significantly more work. If you learn how to
approximate the solutions to differential equations, you will see this tradeoff between complexity
and precision: if you want a more precise answer, be prepared for the computer to do twice as
many calculations. Yet with Simpson’s Rule, you get far more precision for the same amount of
calculations.

3 Consequences of the Error Bound

Since Simpson’s Rule is so accurate, it would make sense to ask if it’s ever exact. Since Simpson’s
Rule uses parabolas to approximate the function, it would make sense to say that it will be exact
when approximating the integral of a quadratic function. However, Simpson’s Rule is also exact
with cubic polynomials.

Example 3: Construct a proof that shows that if f(x) is a cubic polynomial, then no
matter how many subintervals we divide [a, b] into, the integral∫ b

a
f(x)dx

is always exact.
To do this, we appeal to the error bound for Simpson’s Rule. In turn, the error bound
requires that we get the number K from the fourth derivative. If f(x) is cubic, then
there are coefficients a, b, c, d such that f(x) = ax3 + bx2 + cx + d. Taking derivatives:

f ′(x) = 3ax2 + 2bx + c

f ′′(x) = 6ax + 2b

f ′′′(x) = 6a

f (IV )(x) = 0

since a is held constant. Therefore,

|Es| ≤ 0
(b− a)5

180n4
= 0

Since the error is less than or equal to 0, it must be 0 because it is an absolute value.
Therefore, Simpson’s Rule is always exact with cubic polynomials.
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