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1. (15 points) Find symmetric equations for the line of intersection L of the two planes

x+ y + z = 1 and x− 2y + 3z = 1. Also, find the angle between these two planes.
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2. (15 points) Let r(t) = (
√

2t, et, e−t).

(a) Calculate the arc length function s(t) measured from t = 0.

(b) Find the equation of the line tangent to the curve at the point r(1).

(c) Compute the unit tangent vector T̂(t).

(d) Compute κ(t).
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3. (10 points) Find all local maximum, local minimum, and saddle points of f(x, y) =

e4y−x2−y2 .
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4. (20 points) Find the absolute maximum and minimum values of f(x, y) = x2 + y2 +

x2y + 4 on the set D = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}. Also, give the points at

which the function attains its maximum and minimum values.
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5. (20 points) Find the dimensions of the rectangular box of maximum volume if the total

surface area is given as 64 cm2 using the method of Lagrange multipliers.
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6. (15 points) Let T = {(x, y, z) : 0 ≤ z ≤ 6, z/2 ≤ x ≤ 3, x ≤ y ≤ 6− y} be the solid in

space. Set up(not compute) a triple integral in the order dxdydz that gives the volume

of the solid T.
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7. (15 points) Find the volume of the solid in the first octant which is bounded by the cone

x2+y2 = 3z2, by the planes x = 0 and x =
√

3y, and by the sphere 4x2+4y2+4z2 = 1.
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8. (20 points) Evaluate
∫∫

R
(x+y) cosπ(2x2 +xy−y2) dx dy where R is the parallelogram

with vertices (0, 0), (1, -1), (1/3, 2/3), and (4/3, -1/3).
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9. (a) (15 points) Determine whether or not the vector filed F(x, y, z) =< yz, xz, xy >

is conservative. If it is then f such that ∇f = F.

(b) (5 points) Compute
∫
C
h.dr where C is given by r(t) = (t cos t)i + (t2 cos t +

3 sin5(t))j, 0 ≤ t ≤ π/2.
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10. (20 points) Compute the line integral of the vector field F(x, y) =< xy, x2y > over

the boundary of the triangle with vertices (0, 0), (0, 1), (2, 1) directly and by using

Green’s theorem.
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11. (10 points) Find the surface area of the part of the surface z = 1 + 3x + 2y2 that lies

above the triangle with vertices (0, 0), (0, 1), and (2, 1).
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12. (20 points) Evaluate the surface integral
∫∫

S
curlF.dS, where F(x, y, z) = −xyj− xzk

and S consists of the paraboloid z = x2+y2, 0 ≤ z ≤ 1, and the disk x2+y2 ≤ 1, z = 1

by following different ways:

(a) Directly.

(b) By using Stokes’ Theorem.
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