Problem set on Dot Products

- 1. Find the value of α for which (5**i** 2 α **j** + 2**k**) is perpendicular to the vector (**i** - **j**). (Ans. α = -5/2)
- 2. Find all the numbers x for which xi +3j+k is perpendicular to the vector xi - 3xj + 20k. (Ans. x = 5, 4)
- 3. For **a**= 2**i**-**j**-2**k** and **b**=3**i**+2**j** -**k**, calculate the cosine of the angle between the two vectors. (Ans. $\sqrt{14}/28$)
- 4. Find all the numbers x for which the angle between $\mathbf{c} = x\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{d} = 2\mathbf{i} + x\mathbf{j} + 2\mathbf{k}$ is $\pi/3$. (Ans. x = 0, 8)
- 5. Find the angle between the vectors 2i-3j+k and -3i+j+9k. (Ans. $\pi/2$)
- 6. Find comp_b**a** and proj_b**a** given that $\mathbf{a} = 2\mathbf{i}+3\mathbf{j}-\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i}-3\mathbf{j}+\mathbf{k}$. (Ans. $-\frac{1}{13}\sqrt{26}, -\frac{\sqrt{26}}{13}$ (4 $\mathbf{i} - 3\mathbf{j} + \mathbf{k}$))
- 7. Find the unit vectors that are perpendicular to both i+2j+k and3i-4j+2k.(Ans. $\pm \frac{1}{\sqrt{165}}(8i+j-10k))$
- 8. Find the area of the parallelogram determined by the vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$ using dot products. (Ans. $\sqrt{630}$) (HINT: Refer to the notes of Jan 19)

- 9. Find the area of the triangle determined by the points P(1, 2, 3), Q(4, -5, 2), and R(0, 0, 0). (Ans. $\sqrt{630}$)
- 10. Use scalar projections to find the distance from a point P(p, q) to the line ax + by + c = 0. (Ans. $\frac{|ap+bq+c|}{\sqrt{a^2+h^2}}$)