

37th Annual Virginia Tech Regional Mathematics Contest

From 9:00 a.m. to 11:30 a.m., October 24, 2015

Fill out the individual registration form

1. Find all integers n for which $n^4 + 6n^3 + 11n^2 + 3n + 31$ is a perfect square.
2. The planar diagram below, with equilateral triangles and regular hexagons, sides length 2cm., is folded along the dashed edges of the polygons, to create a closed surface in three dimensional Euclidean spaces. Edges on the periphery of the planar diagram are identified (or glued) with precisely one other edge on the periphery in a natural way. Thus for example, BA will be joined to QP and AC will be joined to DC. Find the volume of the three-dimensional region enclosed by the resulting surface.

3. Let $(a_i)_{1 \leq i \leq 2015}$ be a sequence consisting of 2015 integers, and let $(k_i)_{1 \leq i \leq 2015}$ be a sequence of 2015 positive integers (positive integer excludes 0). Let

$$A = \begin{pmatrix} a_1^{k_1} & a_1^{k_2} & \cdots & a_1^{k_{2015}} \\ a_2^{k_1} & a_2^{k_2} & \cdots & a_2^{k_{2015}} \\ \vdots & \vdots & \cdots & \vdots \\ a_{2015}^{k_1} & a_{2015}^{k_2} & \cdots & a_{2015}^{k_{2015}} \end{pmatrix}.$$

Prove that $2015!$ divides $\det A$.

(Please turn over)

4. Consider the harmonic series $\sum_{n \geq 1} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$. Prove that every positive rational number can be obtained as an *unordered* partial sum of this series. (An unordered partial sum may skip some of the terms $\frac{1}{k}$.)

5. Evaluate $\int_0^\infty \frac{\arctan(\pi x) - \arctan(x)}{x} dx$ (where $0 \leq \arctan(x) < \pi/2$ for $0 \leq x < \infty$).

6. Let $(a_1, b_1), \dots, (a_n, b_n)$ be n points in \mathbb{R}^2 (where \mathbb{R} denotes the real numbers), and let $\varepsilon > 0$ be a positive number. Can we find a real-valued function $f(x, y)$ that satisfies the following three conditions?

- $f(0, 0) = 1$;
- $f(x, y) \neq 0$ for only finitely many $(x, y) \in \mathbb{R}^2$;
- $\sum_{r=1}^{r=n} |f(x + a_r, y + b_r) - f(x, y)| < \varepsilon$ for every $(x, y) \in \mathbb{R}^2$.

Justify your answer.

7. Let n be a positive integer and let x_1, \dots, x_n be n nonzero points in \mathbb{R}^2 . Suppose $\langle x_i, x_j \rangle$ (scalar or dot product) is a rational number for all i, j ($1 \leq i, j \leq n$). Let S denote all points of \mathbb{R}^2 of the form $\sum_{i=1}^{i=n} a_i x_i$ where the a_i are integers. A closed disk of radius R and center P is the set of points at distance at most R from P (includes the points distance R from P). Prove that there exists a positive number R and closed disks D_1, D_2, \dots of radius R such that

- Each disk contains exactly two points of S ;
- Every point of S lies in at least one disk;
- Two distinct disks intersect in at most one point.