

MATCHING NUMBER PROCESS

*Po-Shen Loh
Carnegie Mellon University*

Joint work with Michael Krivelevich and Benny Sudakov

ERDŐS-RÉNYI RANDOM GRAPH PROCESS

- Start: n vertices, no edges
- Add $\binom{n}{2}$ edges in uniformly random permutation

RANDOM GRAPH PROCESSES

ERDŐS-RÉNYI RANDOM GRAPH PROCESS

- Start: n vertices, no edges
- Add $\binom{n}{2}$ edges in uniformly random permutation

THEOREM (ERDŐS-RÉNYI)

At cn edges:

- If $c < \frac{1}{2}$, largest component has order $\log n$ a.a.s.
- If $c > \frac{1}{2}$, largest component has order n a.a.s.

THEOREM (BOLLOBÁS)

Hamilton cycle appears the moment min degree ≥ 2 a.a.s.

ERDŐS

There are n -vertex graphs with all cliques and indep sets $\leq 2 \log n$.

ERDŐS

There are n -vertex graphs with all cliques and indep sets $\leq 2 \log n$.

TRIANGLE-FREE PROCESS

- Start: n vertices, no edges
- Add $\binom{n}{2}$ edges in uniformly random permutation
- Don't add whenever triangle would be created

ERDŐS

There are n -vertex graphs with all cliques and indep sets $\leq 2 \log n$.

TRIANGLE-FREE PROCESS

- Start: n vertices, no edges
- Add $\binom{n}{2}$ edges in uniformly random permutation
- Don't add whenever triangle would be created

PROBLEM (BOLLOBÁS-ERDŐS)

Analyze Triangle-Free Process for off-diagonal Ramsey construction

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges
- Kim: $R(3, t)$ construction via semi-random method

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges
- Kim: $R(3, t)$ construction via semi-random method
- Bohman: Breakthrough to $n^{3/2}\sqrt{\log n}$ edges and independence number $c\sqrt{n \log n}$

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges
- Kim: $R(3, t)$ construction via semi-random method
- Bohman: Breakthrough to $n^{3/2}\sqrt{\log n}$ edges and independence number $c\sqrt{n \log n}$
- Fiz Pontiveros, Griffiths, Morris; Bohman, Keevash: Tracked process to end, found asymptotic constant

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges
- Kim: $R(3, t)$ construction via semi-random method
- Bohman: Breakthrough to $n^{3/2}\sqrt{\log n}$ edges and independence number $c\sqrt{n \log n}$
- Fiz Pontiveros, Griffiths, Morris; Bohman, Keevash: Tracked process to end, found asymptotic constant
- Bohman, Keevash: H -free process for arbitrary fixed H

RESULTS

- Erdős, Suen, Winkler: First Triangle-Free Process analysis, to $n^{3/2}$ edges
- Kim: $R(3, t)$ construction via semi-random method
- Bohman: Breakthrough to $n^{3/2}\sqrt{\log n}$ edges and independence number $c\sqrt{n \log n}$
- Fiz Pontiveros, Griffiths, Morris; Bohman, Keevash: Tracked process to end, found asymptotic constant
- Bohman, Keevash: H -free process for arbitrary fixed H
- Bohman, Frieze, Lubetzky: Triangle-removal process

SUSCEPTIBILITY

Define $\phi = \mathbb{E}_v[\text{size of component containing } v] = \frac{1}{n} \sum |C_i|^2$,
where C_i are the connected components.

DIFFERENTIAL EQUATIONS

SUSCEPTIBILITY

Define $\phi = \mathbb{E}_v[\text{size of component containing } v] = \frac{1}{n} \sum |C_i|^2$,
where C_i are the connected components.

OBSERVATION

- C_i and C_j merge: $C_i^2 + C_j^2 \longrightarrow (C_i + C_j)^2 \dots + 2C_i C_j$.

DIFFERENTIAL EQUATIONS

SUSCEPTIBILITY

Define $\phi = \mathbb{E}_v[\text{size of component containing } v] = \frac{1}{n} \sum |C_i|^2$, where C_i are the connected components.

OBSERVATION

- C_i and C_j merge: $C_i^2 + C_j^2 \longrightarrow (C_i + C_j)^2 \dots + 2C_i C_j$.
- Difference equation $\Delta\phi = \frac{1}{n} 2\phi^2$

$$\begin{aligned}\frac{\phi'}{\phi^2} &= \frac{2}{n} \\ -\frac{1}{\phi} &= \frac{2}{n}t + C\end{aligned}$$

DIFFERENTIAL EQUATIONS

SUSCEPTIBILITY

Define $\phi = \mathbb{E}_v[\text{size of component containing } v] = \frac{1}{n} \sum |C_i|^2$, where C_i are the connected components.

OBSERVATION

- C_i and C_j merge: $C_i^2 + C_j^2 \longrightarrow (C_i + C_j)^2 \dots + 2C_i C_j$.
- Difference equation $\Delta\phi = \frac{1}{n} 2\phi^2$

$$\begin{aligned}\frac{\phi'}{\phi^2} &= \frac{2}{n} \\ -\frac{1}{\phi} &= \frac{2}{n}t + C\end{aligned}$$

- At $t = 0$, $\phi = 1$, so $C = -1$.

$$\phi = \frac{1}{1 - \frac{2}{n}t}$$

PREVIOUS WORK

- Used Wormald's Differential Equations Method
- Obstructions had bounded size

UNBOUNDED OBSTRUCTIONS

PREVIOUS WORK

- Used Wormald's Differential Equations Method
- Obstructions had bounded size

UNBOUNDED OBSTRUCTION SIZES?

Analyze random graph process, with matching number $\leq k = k(n)$.

DEFINITION

Matching number is maximum number of vertex-disjoint edges

UNBOUNDED OBSTRUCTIONS

PREVIOUS WORK

- Used Wormald's Differential Equations Method
- Obstructions had bounded size

UNBOUNDED OBSTRUCTION SIZES?

Analyze random graph process, with matching number $\leq k = k(n)$.

DEFINITION

Matching number is maximum number of vertex-disjoint edges

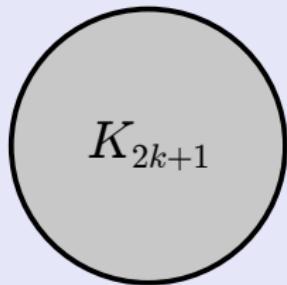
OBSERVATION

If $k = 1$, process always results in star $K_{1,n-1}$

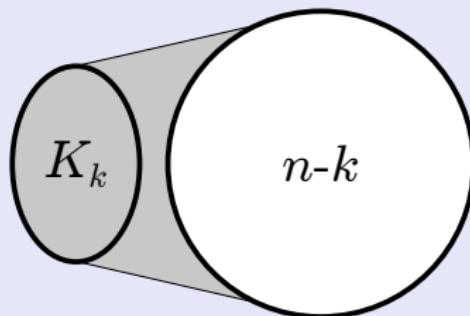
EXTREMAL RESULTS

THEOREM (ERDŐS-GALLAI)

The n -vertex graphs with matching number $\leq k$ which maximize the number of edges are:



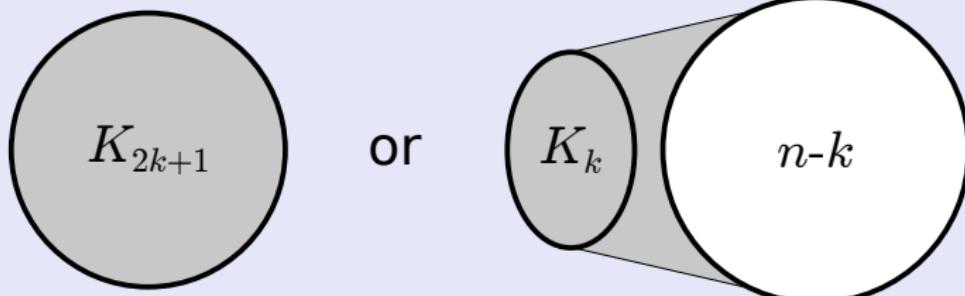
or



EXTREMAL RESULTS

THEOREM (ERDŐS-GALLAI)

The n -vertex graphs with matching number $\leq k$ which maximize the number of edges are:



OBSERVATION

- When $k \approx \frac{n}{2} - 1$, process gives K_{2k+1}
- Last vertices consumed only at $n \log n$ edges
- At that point, everything densely connected

OBSERVATION

- When $k = \frac{n}{9}$, process gives neither extremal graph
- Runs free for first $\frac{n}{9}$ edges, and until matching number hits k .
- Still linear number of edges at this time
- Constant probability of two isolated triangles; will never link

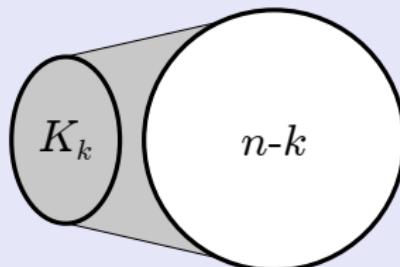
RESULTS

OBSERVATION

- When $k = \frac{n}{9}$, process gives neither extremal graph
- Runs free for first $\frac{n}{9}$ edges, and until matching number hits k .
- Still linear number of edges at this time
- Constant probability of two isolated triangles; will never link

THEOREM (KRIVELEVICH-L.-SUDAKOV)

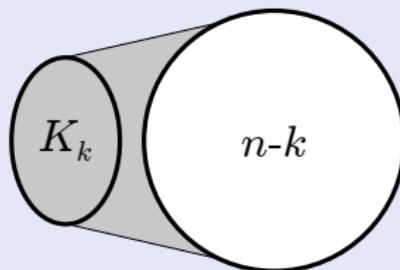
For $k = o(n)$, Matching Number Process a.a.s. gives



RESULTS

THEOREM (KRIVELEVICH-L.-SUDAKOV)

For $k = o(n)$, Matching Number Process a.a.s. gives



REMARKS

- Global property
- Differential equations tracked local properties
- Proof introduces new methods using global statistics
- Completely solves problem up to $k = \Theta(n)$ threshold

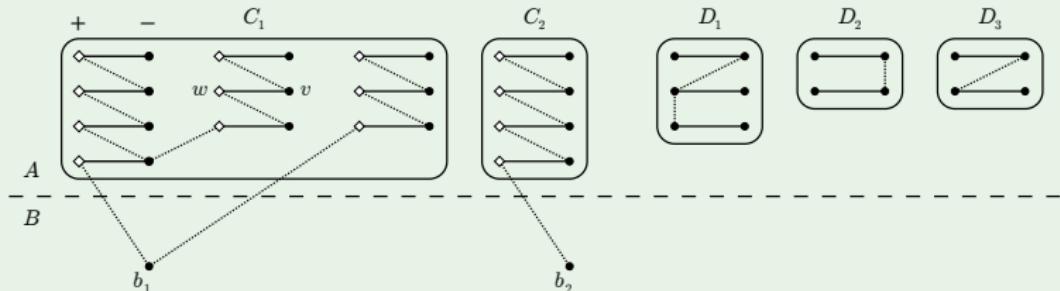
MATCHING STRUCTURE

- Free run until matching number hits k , in $k + o(k)$ rounds
- Since $\mathbb{E}[\# \text{ edges that hit existing edge}] \leq \frac{k^2}{n} = o(k)$.
- Fix a matching of size k and build structure:

KEY STRUCTURE

MATCHING STRUCTURE

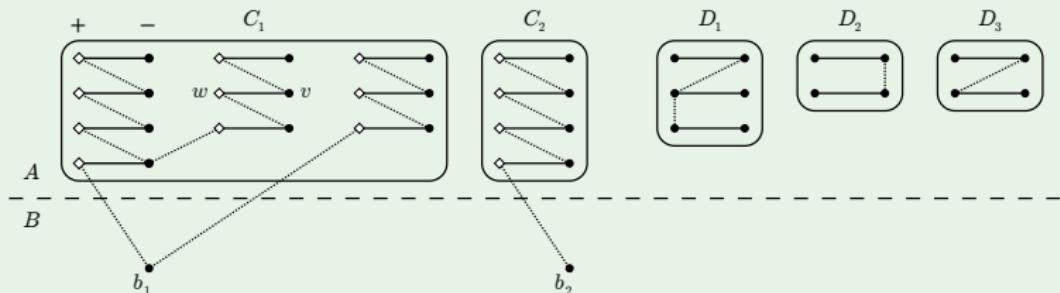
- Free run until matching number hits k , in $k + o(k)$ rounds
- Since $\mathbb{E}[\# \text{ edges that hit existing edge}] \leq \frac{k^2}{n} = o(k)$.
- Fix a matching of size k and build structure:



KEY STRUCTURE

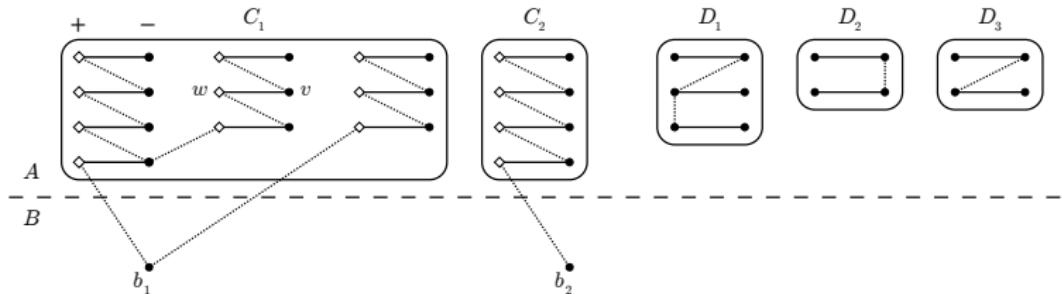
MATCHING STRUCTURE

- Free run until matching number hits k , in $k + o(k)$ rounds
- Since $\mathbb{E}[\# \text{ edges that hit existing edge}] \leq \frac{k^2}{n} = o(k)$.
- Fix a matching of size k and build structure:



- If $C_i^- - D_j$ edge arrives, grow C_i by absorbing part of D_j

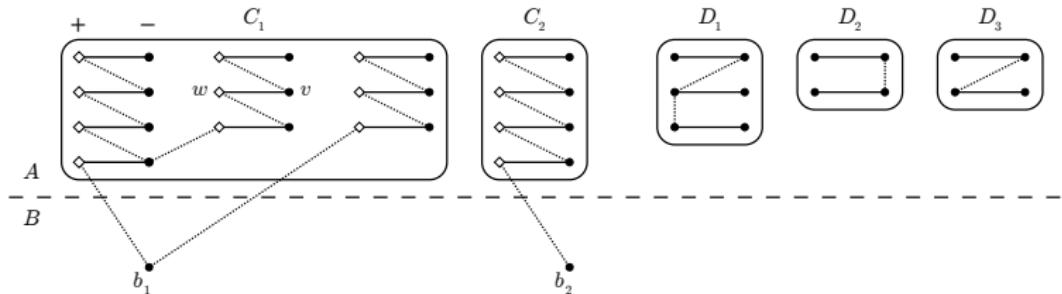
KEY STRUCTURE



OBSERVATIONS

- Forever reject all $B - B$ edges

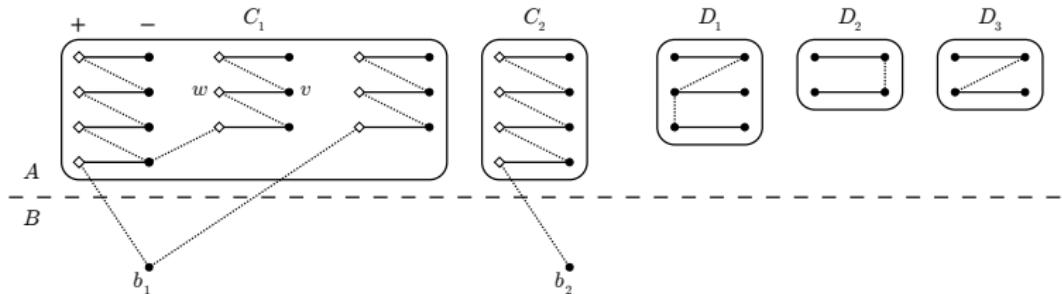
KEY STRUCTURE



OBSERVATIONS

- Forever reject all $B - B$ edges
- Forever reject all $C_i^- - (B \setminus \{b_i\})$ edges

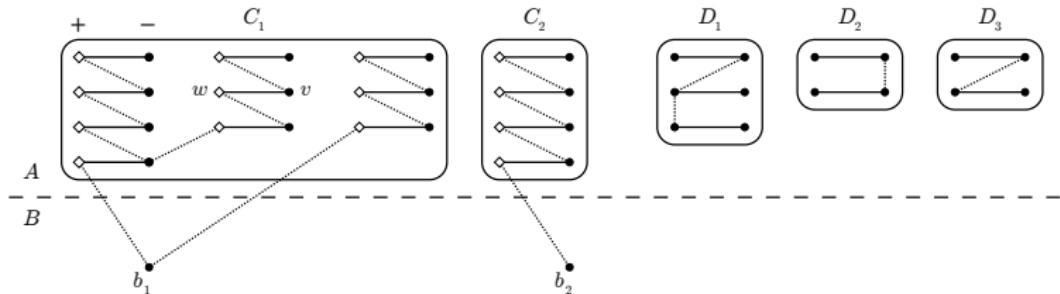
KEY STRUCTURE



OBSERVATIONS

- Forever reject all $B - B$ edges
- Forever reject all $C_i^- - (B \setminus \{b_i\})$ edges
- Forever reject all $C_i^- - C_{j \neq i}^-$ edges

KEY STRUCTURE



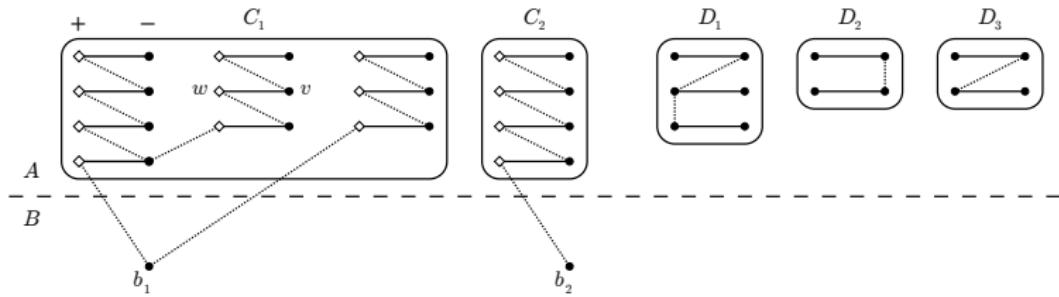
OBSERVATIONS

- Forever reject all $B - B$ edges
- Forever reject all $C_i^- - (B \setminus \{b_i\})$ edges
- Forever reject all $C_i^- - C_{j \neq i}^-$ edges

KEY STRUCTURE LEMMA

If $C_i^- \cup \{b_i\}$ independent, will accept any edge touching C_i^+ or D

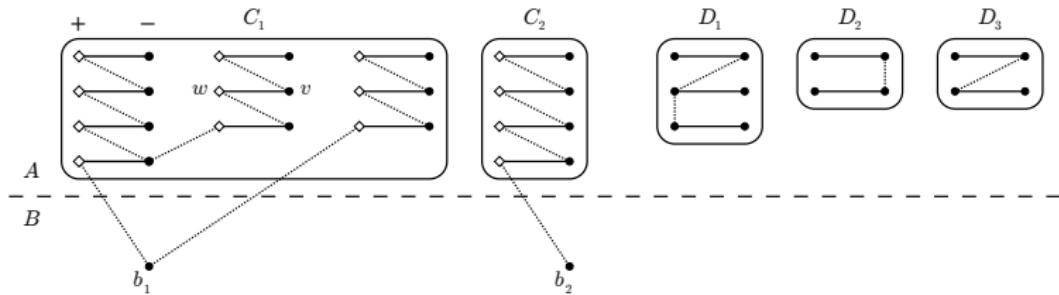
MAINTAIN INDEPENDENCE



DEFINITION

When v added to C^- , let S_v be all vertices already in C^-

MAINTAIN INDEPENDENCE



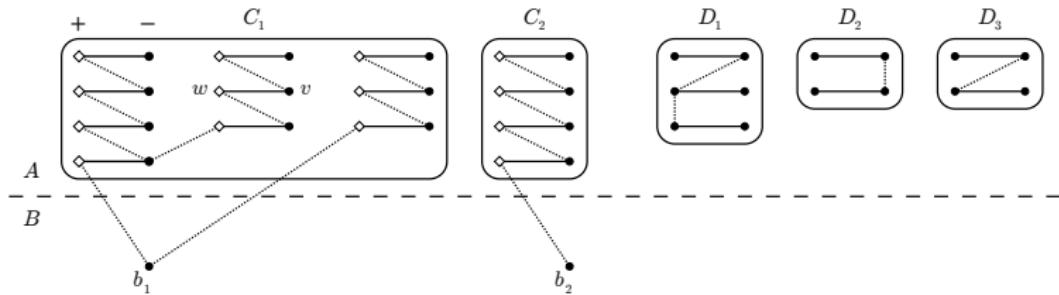
DEFINITION

When v added to C^- , let S_v be all vertices already in C^-

OBSERVATION

- If w offered edge to $B \setminus \{b_i\}$ before v offered edge to S_v , then v rejects all edges to S_v

MAINTAIN INDEPENDENCE



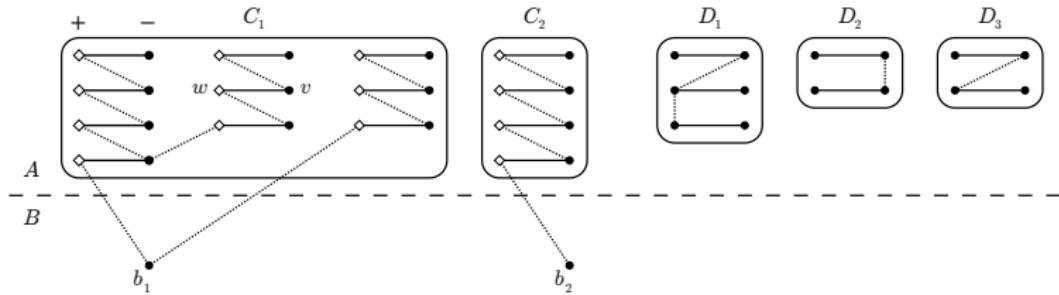
DEFINITION

When v added to C^- , let S_v be all vertices already in C^-

OBSERVATION

- If w offered edge to $B \setminus \{b_i\}$ before v offered edge to S_v , then v rejects all edges to S_v
- Cumulative bad probability $\leq \frac{\sum_v S_v}{n}$

MAINTAIN INDEPENDENCE



DEFINITION

When v added to C^- , let S_v be all vertices already in C^-

OBSERVATION

- If w offered edge to $B \setminus \{b_i\}$ before v offered edge to S_v , then v rejects all edges to S_v
- Cumulative bad probability $\leq \frac{\sum_v S_v}{n}$
- Susceptibility: at most $\frac{k}{n} = o(1)$