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Random Graph Processes

Erdős-Rényi Random Graph Process
Start: n vertices, no edges
Add

(n
2
)

edges in uniformly random permutation

Theorem (Erdős-Rényi)
At cn edges:

If c < 1
2 , largest component has order log n a.a.s.

If c > 1
2 , largest component has order n a.a.s.

Theorem (Bollobás)
Hamilton cycle appears the moment min degree ≥ 2 a.a.s.
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Applications

Erdős
There are n-vertex graphs with all cliques and indep sets ≤ 2 log n.

Triangle-Free Process
Start: n vertices, no edges
Add

(n
2
)

edges in uniformly random permutation
Don’t add whenever triangle would be created

Problem (Bollobás-Erdős)
Analyze Triangle-Free Process for off-diagonal Ramsey construction
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Restricted Random Processes

Results
Erdős, Suen, Winkler: First Triangle-Free Process analysis, to
n3/2 edges

Kim: R(3, t) construction via semi-random method
Bohman: Breakthrough to n3/2√log n edges and
independence number c

√
n log n

Fiz Pontiveros, Griffiths, Morris; Bohman, Keevash: Tracked
process to end, found asymptotic constant
Bohman, Keevash: H-free process for arbitrary fixed H
Bohman, Frieze, Lubetzky: Triangle-removal process
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Differential Equations

Susceptibility

Define φ = Ev [size of component containing v ] = 1
n
∑
|Ci |2,

where Ci are the connected components.

Observation
Ci and Cj merge: C2

i + C2
j −→ (Ci + Cj)2 . . . +2CiCj .

Difference equation ∆φ = 1
n 2φ2

φ′

φ2 = 2
n

− 1
φ

= 2
nt + C

At t = 0, φ = 1, so C = −1.

φ = 1
1− 2

n t
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Unbounded obstructions

Previous Work
Used Wormald’s Differential Equations Method
Obstructions had bounded size

Unbounded obstruction sizes?
Analyze random graph process, with matching number ≤ k = k(n).

Definition
Matching number is maximum number of vertex-disjoint edges

Observation
If k = 1, process always results in star K1,n−1
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Extremal Results

Theorem (Erdős-Gallai)
The n-vertex graphs with matching number ≤ k which maximize
the number of edges are:

Kk n-kK2k+1 or

Observation
When k ≈ n

2 − 1, process gives K2k+1

Last vertices consumed only at n log n edges
At that point, everything densely connected
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Results

Observation
When k = n

9 , process gives neither extremal graph
Runs free for first n

9 edges, and until matching number hits k.
Still linear number of edges at this time
Constant probability of two isolated triangles; will never link

Theorem (Krivelevich-L.-Sudakov)
For k = o(n), Matching Number Process a.a.s. gives

Kk n-k
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Results

Theorem (Krivelevich-L.-Sudakov)
For k = o(n), Matching Number Process a.a.s. gives

Kk n-k

Remarks
Global property
Differential equations tracked local properties
Proof introduces new methods using global statistics
Completely solves problem up to k = Θ(n) threshold



Key Structure

Matching Structure
Free run until matching number hits k, in k + o(k) rounds
Since E[# edges that hit existing edge] ≤ k2

n = o(k).
Fix a matching of size k and build structure:

b1 b2

v

C1 D1 D2 D3

A

B

C2

w

+ −

If C−i − Dj edge arrives, grow Ci by absorbing part of Dj



Key Structure

Matching Structure
Free run until matching number hits k, in k + o(k) rounds
Since E[# edges that hit existing edge] ≤ k2

n = o(k).
Fix a matching of size k and build structure:

b1 b2

v

C1 D1 D2 D3

A

B

C2

w

+ −

If C−i − Dj edge arrives, grow Ci by absorbing part of Dj



Key Structure

Matching Structure
Free run until matching number hits k, in k + o(k) rounds
Since E[# edges that hit existing edge] ≤ k2

n = o(k).
Fix a matching of size k and build structure:

b1 b2

v

C1 D1 D2 D3

A

B

C2

w

+ −

If C−i − Dj edge arrives, grow Ci by absorbing part of Dj



Key Structure

b1 b2

v

C1 D1 D2 D3

A

B

C2

w

+ −

Observations
Forever reject all B − B edges

Forever reject all C−i − (B \ {bi}) edges
Forever reject all C−i − C−j 6=i edges

Key Structure Lemma

If C−i ∪ {bi} independent, will accept any edge touching C+
i or D
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Maintain Independence

b1 b2

v

C1 D1 D2 D3

A

B

C2

w

+ −

Definition
When v added to C−, let Sv be all vertices already in C−

Observation
If w offered edge to B \ {bi} before v offered edge to Sv , then
v rejects all edges to Sv

Cumulative bad probability ≤
∑

v Sv
n

Susceptibility: at most k
n = o(1)
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