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THEOREM (ERDOS-RENYI)

At cn edges:
o If c < % largest component has order log n a.a.s.

o If c > % largest component has order n a.a.s.

THEOREM (BOLLOBAS)

Hamilton cycle appears the moment min degree > 2 a.a.s.
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TRIANGLE-FREE PROCESS

@ Start: n vertices, no edges
o Add (3) edges in uniformly random permutation

@ Don't add whenever triangle would be created

PROBLEM (BOLLOBAS-ERDOS)

Analyze Triangle-Free Process for off-diagonal Ramsey construction
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RESULTS

@ Erdds, Suen, Winkler: First Triangle-Free Process analysis, to
n3/2 edges

e Kim: R(3,t) construction via semi-random method

e Bohman: Breakthrough to n3/2/log n edges and
independence number cy/nlogn

@ Fiz Pontiveros, Griffiths, Morris; Bohman, Keevash: Tracked
process to end, found asymptotic constant

@ Bohman, Keevash: H-free process for arbitrary fixed H

@ Bohman, Frieze, Lubetzky: Triangle-removal process
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PrEVIOUS WORK

@ Used Wormald's Differential Equations Method
@ Obstructions had bounded size

UNBOUNDED OBSTRUCTION SIZES?

Analyze random graph process, with matching number < k = k(n).

Matching number is maximum number of vertex-disjoint edges I

OBSERVATION

If Kk =1, process always results in star Ky ,—1
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THEOREM (ERDOS-GALLATI)

The n-vertex graphs with matching number < k which maximize
the number of edges are:

or

OBSERVATION

@ When k ~ g — 1, process gives Kokt

@ Last vertices consumed only at nlog n edges

@ At that point, everything densely connected
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@ Runs free for first § edges, and until matching number hits k.
@ Still linear number of edges at this time
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THEOREM (KRIVELEVICH-L.-SUDAKOV)

For k = o(n), Matching Number Process a.a.s. gives

(-

Differential equations tracked local properties

REMARKS

Global property

Proof introduces new methods using global statistics

Completely solves problem up to k = ©(n) threshold
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KEY STRUCTURE
MATCHING STRUCTURE

@ Free run until matching number hits k, in k+ o(k) rounds

o Since E[# edges that hit existing edge] < &

= o(k).

o Fix a matching of size k and build structure

o If ¢

— D; edge arrives, grow C; by absorbing part of D
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OBSERVATIONS

o Forever reject all B — B edges
o Forever reject all C;7 — (B \ {b;}) edges

o Forever reject all G — CJ;, edges

KEY STRUCTURE LEMMA

If C;- U {b;} independent, will accept any edge touching C;" or D
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MAINTAIN INDEPENDENCE

When v added to C—, let S, be all vertices already in C— l

o If w offered edge to B\ {b;} before v offered edge to S, then
v rejects all edges to S,

D0, S
n

o Susceptibility: at most £ = o(1)

e Cumulative bad probability <
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