
Monotone Paths

Po-Shen Loh
Carnegie Mellon University

Joint work with Mikhail Lavrov

Monotone sequences

Theorem (Erdős-Szekeres 1935)
Every permutation of {1, . . . , n} has a monotone subsequence of
length about

√
n.

Example

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.

1 5 2 7 3 6 4
inc. 1 2 2 3 3 4 4
dec. 1 1 2 1 2 2 3

Monotone sequences

Theorem (Erdős-Szekeres 1935)
Every permutation of {1, . . . , n} has a monotone subsequence of
length about

√
n.

Example

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.

1 5 2 7 3 6 4
inc. 1 2 2 3 3 4 4
dec. 1 1 2 1 2 2 3

Monotone sequences

Theorem (Erdős-Szekeres 1935)
Every permutation of {1, . . . , n} has a monotone subsequence of
length about

√
n.

Example

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.

1 5 2 7 3 6 4
inc. 1 2 2 3 3 4 4
dec. 1 1 2 1 2 2 3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone

walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: lower bound

Question (Chvátal-Komlos 1971)

If edges of Kn are ordered from 1 . . .
(n

2
)
, is there always a long

monotone walk?

Theorem (Graham-Kleitman 1973)
Every edge-ordering of Kn has an increasing walk of length n − 1.

Proof.

1

2

3

Monotone walks: upper bound

Theorem (Graham-Kleitman 1973)
There is an edge-ordering of Kn in which the longest monotone
walk has length n − 1, for all n 6∈ {3, 5}.

Proof (for even n). Edges of Kn can be partitioned into perfect
matchings.

Assign a batch of consecutive labels to each matching.

Monotone walks: upper bound

Theorem (Graham-Kleitman 1973)
There is an edge-ordering of Kn in which the longest monotone
walk has length n − 1, for all n 6∈ {3, 5}.

Proof (for even n). Edges of Kn can be partitioned into perfect
matchings.

Assign a batch of consecutive labels to each matching.

Monotone walks: upper bound

Theorem (Graham-Kleitman 1973)
There is an edge-ordering of Kn in which the longest monotone
walk has length n − 1, for all n 6∈ {3, 5}.

Proof (for even n). Edges of Kn can be partitioned into perfect
matchings.

1

2

3 4

5 6

Assign a batch of consecutive labels to each matching.

Self-avoiding walks

Definition
A path in a graph is a self-avoiding walk, which never visits the
same vertex twice.

Self-avoiding walks are more complicated
Easy poly-time algorithm to find longest increasing walk.
In probability: self-avoiding random walk proven sub-ballistic
only in 2012 by Duminil-Copin and Hammond.

Self-avoiding walks

Definition
A path in a graph is a self-avoiding walk, which never visits the
same vertex twice.

Self-avoiding walks are more complicated
Easy poly-time algorithm to find longest increasing walk.

In probability: self-avoiding random walk proven sub-ballistic
only in 2012 by Duminil-Copin and Hammond.

Self-avoiding walks

Definition
A path in a graph is a self-avoiding walk, which never visits the
same vertex twice.

Self-avoiding walks are more complicated
Easy poly-time algorithm to find longest increasing walk.
In probability: self-avoiding random walk proven sub-ballistic
only in 2012 by Duminil-Copin and Hammond.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.
Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.
Each walker refuses at most

(k+1
2
)
− k =

(k
2
)

edges.(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.

Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.
Each walker refuses at most

(k+1
2
)
− k =

(k
2
)

edges.(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.
Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.

Each walker refuses at most
(k+1

2
)
− k =

(k
2
)

edges.(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.
Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.
Each walker refuses at most

(k+1
2
)
− k =

(k
2
)

edges.

(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.
Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.
Each walker refuses at most

(k+1
2
)
− k =

(k
2
)

edges.(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Monotone paths

Theorem (Graham-Kleitman 1973)

Every edge-ordering of Kn has an increasing path of length
√

n − 1.

Proof. Employ walkers again.
When edge called, if a walker would revisit a vertex, neither
walker moves.
Suppose all walkers take ≤ k steps.
At most kn

2 edges are walked.
Each walker refuses at most

(k+1
2
)
− k =

(k
2
)

edges.(
n
2

)
= walked + refused ≤ kn

2 +

(
k
2

)
n =

k2n
2

Theorem (Calderbank-Chung-Sturtevant 1984)
There is an edge-ordering of Kn in which the longest increasing
path has length (1

2 − o(1))n.

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.

Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .
Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .
Sum 1

n + 1
n−1 + · · ·+ 1

cn = 1 when log 1
c = 1. �

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .
Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .
Sum 1

n + 1
n−1 + · · ·+ 1

cn = 1 when log 1
c = 1. �

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .
Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .
Sum 1

n + 1
n−1 + · · ·+ 1

cn = 1 when log 1
c = 1. �

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .

Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .
Sum 1

n + 1
n−1 + · · ·+ 1

cn = 1 when log 1
c = 1. �

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .
Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .

Sum 1
n + 1

n−1 + · · ·+ 1
cn = 1 when log 1

c = 1. �

Random ordering

Model
Sample uniformly random ordering of

(n
2
)

edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

Observation
A random edge-ordering has an increasing path of length at least
(1− 1

e)n a.a.s.

Proof sketch.
Start at arbitrary vertex, expose labels of incident edges.
Smallest incident label is min of n − 1 Uniforms, so
expectation is 1

n .
Take that edge, then expose labels of edges to n − 2
remaining vertices.
Smallest increment is min of n − 2 Unifs, so expectation 1

n−1 .
Sum 1

n + 1
n−1 + · · ·+ 1

cn = 1 when log 1
c = 1. �

Random ordering: upper bound

Trivial bound
A.a.s., a random edge-ordering does not have a Hamiltonian
increasing path.

Proof. (first moment method)

For a given Hamiltonian path, it is increasing with probability
1

(n−1)! .
Number of Hamiltonian paths is n!.
Expected number of increasing Hamiltonian paths is n . . .

Random ordering: upper bound

Trivial bound
A.a.s., a random edge-ordering does not have a Hamiltonian
increasing path.

Proof. (first moment method)

For a given Hamiltonian path, it is increasing with probability
1

(n−1)! .

Number of Hamiltonian paths is n!.
Expected number of increasing Hamiltonian paths is n . . .

Random ordering: upper bound

Trivial bound
A.a.s., a random edge-ordering does not have a Hamiltonian
increasing path.

Proof. (first moment method)

For a given Hamiltonian path, it is increasing with probability
1

(n−1)! .
Number of Hamiltonian paths is n!.

Expected number of increasing Hamiltonian paths is n . . .

Random ordering: upper bound

Trivial bound
A.a.s., a random edge-ordering does not have a Hamiltonian
increasing path.

Proof. (first moment method)

For a given Hamiltonian path, it is increasing with probability
1

(n−1)! .
Number of Hamiltonian paths is n!.
Expected number of increasing Hamiltonian paths is n . . .

In Erdős-Rényi

First moment insufficient
Gn,p has n Hamiltonian paths on expectation when n!pn−1 ∼ n,
i.e., when p ∼ e

n .

Theorem (Bollobás)
A.a.s., random graph process gets Hamiltonian cycle at moment
that all vertices have degree ≥ 2, which is at p ∼ log n+log log n+ω

n .

Theorem (Glebov-Krivelevich 2013)
At hitting time, number of Hamiltonian cycles jumps from 0 to
[(1 + o(1)) log n

e]n a.a.s.

In Erdős-Rényi

First moment insufficient
Gn,p has n Hamiltonian paths on expectation when n!pn−1 ∼ n,
i.e., when p ∼ e

n .

Theorem (Bollobás)
A.a.s., random graph process gets Hamiltonian cycle at moment
that all vertices have degree ≥ 2, which is at p ∼ log n+log log n+ω

n .

Theorem (Glebov-Krivelevich 2013)
At hitting time, number of Hamiltonian cycles jumps from 0 to
[(1 + o(1)) log n

e]n a.a.s.

In Erdős-Rényi

First moment insufficient
Gn,p has n Hamiltonian paths on expectation when n!pn−1 ∼ n,
i.e., when p ∼ e

n .

Theorem (Bollobás)
A.a.s., random graph process gets Hamiltonian cycle at moment
that all vertices have degree ≥ 2, which is at p ∼ log n+log log n+ω

n .

Theorem (Glebov-Krivelevich 2013)
At hitting time, number of Hamiltonian cycles jumps from 0 to
[(1 + o(1)) log n

e]n a.a.s.

Long increasing paths

Theorem (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path with
probability at least 1

e .

Recall: greedy algorithm found increasing path of length
(1− 1

e)n ≈ 0.63n in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)
With backtracking, k-greedy algorithm finds an increasing path of
length 0.85n a.a.s. in a random edge-ordering.

Conjecture (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path a.a.s.

Long increasing paths

Theorem (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path with
probability at least 1

e .

Recall: greedy algorithm found increasing path of length
(1− 1

e)n ≈ 0.63n in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)
With backtracking, k-greedy algorithm finds an increasing path of
length 0.85n a.a.s. in a random edge-ordering.

Conjecture (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path a.a.s.

Long increasing paths

Theorem (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path with
probability at least 1

e .

Recall: greedy algorithm found increasing path of length
(1− 1

e)n ≈ 0.63n in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)
With backtracking, k-greedy algorithm finds an increasing path of
length 0.85n a.a.s. in a random edge-ordering.

Conjecture (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path a.a.s.

Long increasing paths

Theorem (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path with
probability at least 1

e .

Recall: greedy algorithm found increasing path of length
(1− 1

e)n ≈ 0.63n in a random edge-ordering, but was analyzable.

Theorem (Lavrov, L.)
With backtracking, k-greedy algorithm finds an increasing path of
length 0.85n a.a.s. in a random edge-ordering.

Conjecture (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path a.a.s.

Second moment method

Theorem (Chebyshev)

P [|X − E [X] | ≥ t] ≤ Var [X]

t2

Theorem (Lavrov, L.)
Let X be the number of Hamiltonian increasing paths. Then
E
[
X 2] ∼ en2.

Theorem (Paley-Zygmund)
For nonnegative random variables X ,

P [X > 0] ≥ E [X]2

E [X 2]

Second moment method

Theorem (Chebyshev)

P [|X − E [X] | ≥ t] ≤ Var [X]

t2

Theorem (Lavrov, L.)
Let X be the number of Hamiltonian increasing paths. Then
E
[
X 2] ∼ en2.

Theorem (Paley-Zygmund)
For nonnegative random variables X ,

P [X > 0] ≥ E [X]2

E [X 2]

Second moment method

Theorem (Chebyshev)

P [|X − E [X] | ≥ t] ≤ Var [X]

t2

Theorem (Lavrov, L.)
Let X be the number of Hamiltonian increasing paths. Then
E
[
X 2] ∼ en2.

Theorem (Paley-Zygmund)
For nonnegative random variables X ,

P [X > 0] ≥ E [X]2

E [X 2]

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n!

1
e2

Total contribution of profile: n2

1
e2

Profiles

Calculation
Let X = I1 + · · ·+ In!, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E
[
X 2
]
=
∑
j,k

E [Ij Ik]

=
∑
P,Q

P [both P and Q increasing]

Simplest profile: P, Q edge-disjoint

P

Q

Given P and Q, P = 1
(n−1)! ·

1
(n−1)!

Number of (P, Q) embeddings: n!n! 1
e2

Total contribution of profile: n2 1
e2

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.
Lowest a + b of them must be in left branches.
They can be split into top-left and bottom-left in

(a+b
a
)

ways.
Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways, so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.

Lowest a + b of them must be in left branches.
They can be split into top-left and bottom-left in

(a+b
a
)

ways.
Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways, so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.
Lowest a + b of them must be in left branches.

They can be split into top-left and bottom-left in
(a+b

a
)

ways.
Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways, so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.
Lowest a + b of them must be in left branches.
They can be split into top-left and bottom-left in

(a+b
a
)

ways.

Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways, so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.
Lowest a + b of them must be in left branches.
They can be split into top-left and bottom-left in

(a+b
a
)

ways.
Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways,

so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Another easy profile

a c

b

a'

b'

Probability
Total number of edge labels: a + b + c + a′ + b′.
Lowest a + b of them must be in left branches.
They can be split into top-left and bottom-left in

(a+b
a
)

ways.
Highest a′+ b′ labels can split into top-right and bottom-right
in
(a′+b′

a′
)

ways, so profile probability is(a+b
a
)(a′+b′

a′
)

(a + b + c + a′ + b′)!

Bigger profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 c2 c3

Probability (a1+b1
a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings
Embed top path: n!
Bottom path has (c1 + 1) + (c2 + 1) + (c3 + 1) vertices
already fixed.
Remaining vertices can be embedded in
(n − c1 − c2 − c3 − 3)! · e−2 ways.

Bigger profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 c2 c3

Probability (a1+b1
a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings
Embed top path: n!
Bottom path has (c1 + 1) + (c2 + 1) + (c3 + 1) vertices
already fixed.
Remaining vertices can be embedded in
(n − c1 − c2 − c3 − 3)! · e−2 ways.

Bigger profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 c2 c3

Probability (a1+b1
a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings
Embed top path: n!

Bottom path has (c1 + 1) + (c2 + 1) + (c3 + 1) vertices
already fixed.
Remaining vertices can be embedded in
(n − c1 − c2 − c3 − 3)! · e−2 ways.

Bigger profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 c2 c3

Probability (a1+b1
a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings
Embed top path: n!
Bottom path has (c1 + 1) + (c2 + 1) + (c3 + 1) vertices
already fixed.

Remaining vertices can be embedded in
(n − c1 − c2 − c3 − 3)! · e−2 ways.

Bigger profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 c2 c3

Probability (a1+b1
a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings
Embed top path: n!
Bottom path has (c1 + 1) + (c2 + 1) + (c3 + 1) vertices
already fixed.
Remaining vertices can be embedded in
(n − c1 − c2 − c3 − 3)! · e−2 ways.

General profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 1 c3

Care required
When a common segment has length 1, i.e., some ci = 1, the
single common edge can also be traversed backwards.

Doubling factor
Probability is still(a1+b1

a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings is still n!(n − c1 − c2 − c3 − 3)! · e−2.
We pick up a factor of 2 for each ci = 1.

General profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 1 c3

Care required
When a common segment has length 1, i.e., some ci = 1, the
single common edge can also be traversed backwards.

Doubling factor
Probability is still(a1+b1

a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings is still n!(n − c1 − c2 − c3 − 3)! · e−2.

We pick up a factor of 2 for each ci = 1.

General profile

a1 a2 a3 a4

b1
b2 b3

b4

c1 1 c3

Care required
When a common segment has length 1, i.e., some ci = 1, the
single common edge can also be traversed backwards.

Doubling factor
Probability is still(a1+b1

a1

)(a2+b2
a2

)(a3+b3
a3

)(a4+b4
a4

)
(
∑

ai +
∑

bi +
∑

ci)!

Number of embeddings is still n!(n − c1 − c2 − c3 − 3)! · e−2.
We pick up a factor of 2 for each ci = 1.

Computation

Therefore, second moment of number of Hamilton increasing paths
is E

[
X 2] =

∑
a1,a2,...
b1,b2,...
c1,c2,...

n!
[
n −

∑
(ci + 1)

]
!e−2 ·

∏(ai+bi
ai

)
[
∑

ai +
∑

bi +
∑

ci]!
· 2#{i :ci=1}

which, after some work, turns out to be (1 + o(1))en2.

Computation

Therefore, second moment of number of Hamilton increasing paths
is E

[
X 2] =

∑
a1,a2,...
b1,b2,...
c1,c2,...

n!
[
n −

∑
(ci + 1)

]
!e−2 ·

∏(ai+bi
ai

)
[
∑

ai +
∑

bi +
∑

ci]!
· 2#{i :ci=1}

which, after some work, turns out to be (1 + o(1))en2.

Cost of greed

Greedy algorithm
Always pick edge with smallest increment to a new vertex.

Potential gain
Consider the following greedy outcome:

.1

.2

.3
.4

.58

.41
.5

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.

When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to earliest subtree.
Replace exploration tree by that subtree, and repeat.

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.

Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to earliest subtree.
Replace exploration tree by that subtree, and repeat.

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.

Repeat until exploration tree has k edges.
Extend path to earliest subtree.
Replace exploration tree by that subtree, and repeat.

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.

Extend path to earliest subtree.
Replace exploration tree by that subtree, and repeat.

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to earliest subtree.

Replace exploration tree by that subtree, and repeat.

Greedy algorithm, with temptation

Greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to earliest subtree.
Replace exploration tree by that subtree, and repeat.

k-greedy algorithm

k-greedy algorithm
Let k be a constant, say 5.
When extending path, do not immediately pick smallest
increment.
Reveal next-labeled edge to new vertex which is incident to
end of path.
Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to largest subtree.
Replace exploration tree by that subtree, and repeat.

Analysis of k-greedy

Time to grow path from `→ ` + 1
Suppose exploration tree has t vertices, and path has length `.

To grow exploration tree by 1 vertex, increment is min of
t(n − `) Uniforms, so typically 1

t(n−`) .
To grow exploration tree to k edges, total increment is
typically

1
n − `

(1
t +

1
t + 1 + · · ·+ 1

k

)
.

(Sanity check: in Greedy, t = k = 1.)

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
t + · · ·+ 1

k

)
.

Analysis of k-greedy

Time to grow path from `→ ` + 1
Suppose exploration tree has t vertices, and path has length `.
To grow exploration tree by 1 vertex, increment is min of
t(n − `) Uniforms, so typically 1

t(n−`) .

To grow exploration tree to k edges, total increment is
typically

1
n − `

(1
t +

1
t + 1 + · · ·+ 1

k

)
.

(Sanity check: in Greedy, t = k = 1.)

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
t + · · ·+ 1

k

)
.

Analysis of k-greedy

Time to grow path from `→ ` + 1
Suppose exploration tree has t vertices, and path has length `.
To grow exploration tree by 1 vertex, increment is min of
t(n − `) Uniforms, so typically 1

t(n−`) .
To grow exploration tree to k edges, total increment is
typically

1
n − `

(1
t +

1
t + 1 + · · ·+ 1

k

)
.

(Sanity check: in Greedy, t = k = 1.)

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
t + · · ·+ 1

k

)
.

Analysis of k-greedy

Time to grow path from `→ ` + 1
Suppose exploration tree has t vertices, and path has length `.
To grow exploration tree by 1 vertex, increment is min of
t(n − `) Uniforms, so typically 1

t(n−`) .
To grow exploration tree to k edges, total increment is
typically

1
n − `

(1
t +

1
t + 1 + · · ·+ 1

k

)
.

(Sanity check: in Greedy, t = k = 1.)

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
t + · · ·+ 1

k

)
.

Analysis of k-greedy

Time to grow path from `→ ` + 1
Suppose exploration tree has t vertices, and path has length `.
To grow exploration tree by 1 vertex, increment is min of
t(n − `) Uniforms, so typically 1

t(n−`) .
To grow exploration tree to k edges, total increment is
typically

1
n − `

(1
t +

1
t + 1 + · · ·+ 1

k

)
.

(Sanity check: in Greedy, t = k = 1.)

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
t + · · ·+ 1

k

)
.

Typical residual exploration tree

Observation
If one watches subtrees of children of root, they grow according to
the Chinese Restaurant Process

(random recursive tree).

Chinese Restaurant Process
When n-th person enters restaurant:

Start new table with probability 1
n .

Join existing table with probability proportional to size.

Golomb-Dickman constant
If Tk is largest table after k people, then

E
[Tk

k

]
→ 0.6243

Typical residual exploration tree

Observation
If one watches subtrees of children of root, they grow according to
the Chinese Restaurant Process (random recursive tree).

Chinese Restaurant Process
When n-th person enters restaurant:

Start new table with probability 1
n .

Join existing table with probability proportional to size.

Golomb-Dickman constant
If Tk is largest table after k people, then

E
[Tk

k

]
→ 0.6243

Typical residual exploration tree

Observation
If one watches subtrees of children of root, they grow according to
the Chinese Restaurant Process (random recursive tree).

Chinese Restaurant Process
When n-th person enters restaurant:

Start new table with probability 1
n .

Join existing table with probability proportional to size.

Golomb-Dickman constant
If Tk is largest table after k people, then

E
[Tk

k

]
→ 0.6243

Typical residual exploration tree

Observation
If one watches subtrees of children of root, they grow according to
the Chinese Restaurant Process (random recursive tree).

Chinese Restaurant Process
When n-th person enters restaurant:

Start new table with probability 1
n .

Join existing table with probability proportional to size.

Golomb-Dickman constant
If Tk is largest table after k people, then

E
[Tk

k

]
→ 0.6243

Calculation for k-greedy

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
Tk

+ · · ·+ 1
k

)
.

Typical factor
For large (but constant k):

1
Tk

+ · · ·+ · · · 1
k ≈ log k

Tk

As k grows, factor decreases; for k = 100, factor is about
0.5219.
Typical length is when

log n
n − `

=
1

0.5219 ⇒ ` = (1− e−1/0.5219)n.

Calculation for k-greedy

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
Tk

+ · · ·+ 1
k

)
.

Typical factor
For large (but constant k):

1
Tk

+ · · ·+ · · · 1
k ≈ log k

Tk

As k grows, factor decreases; for k = 100, factor is about
0.5219.
Typical length is when

log n
n − `

=
1

0.5219 ⇒ ` = (1− e−1/0.5219)n.

Calculation for k-greedy

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
Tk

+ · · ·+ 1
k

)
.

Typical factor
For large (but constant k):

1
Tk

+ · · ·+ · · · 1
k ≈ log k

Tk

As k grows, factor decreases; for k = 100, factor is about
0.5219.

Typical length is when

log n
n − `

=
1

0.5219 ⇒ ` = (1− e−1/0.5219)n.

Calculation for k-greedy

Typical time to grow path from 0→ `(1
n +

1
n − 1 + · · ·+ 1

n − `

)
·
(

typical 1
Tk

+ · · ·+ 1
k

)
.

Typical factor
For large (but constant k):

1
Tk

+ · · ·+ · · · 1
k ≈ log k

Tk

As k grows, factor decreases; for k = 100, factor is about
0.5219.
Typical length is when

log n
n − `

=
1

0.5219 ⇒ ` = (1− e−1/0.5219)n.

Concluding remarks

Theorem (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path
with probability at least 1

e .
With backtracking, k-greedy algorithm finds an increasing
path of length 0.85n a.a.s. in a random edge-ordering.
Let X be the number of Hamiltonian increasing paths. Then
E
[
X 2] ∼ en2.

Conjecture (Lavrov, L.)
A random edge-ordering has an increasing Hamiltonian path a.a.s.

	Presentation
	Introduction
	Monotone sequences
	Monotone walks: lower bound
	Monotone walks: upper bound
	Self-avoiding walks
	Monotone paths
	Random ordering
	Random ordering: upper bound
	In Erdos-Rényi
	Long increasing paths

	Proofs
	Second moment method
	Profiles
	Slightly more complex profile
	Almost general profile
	Really general profile
	Computations
	Greedy algorithm revisited
	Greedy algorithm with temptation
	Analysis of k-greedy
	Typical residual exploration tree
	Calculation for k-greedy

	Conclusion
	Concluding remarks

