

MONOTONE PATHS

Po-Shen Loh
Carnegie Mellon University

Joint work with Mikhail Lavrov

MONOTONE SEQUENCES

THEOREM (ERDŐS-SZEKERES 1935)

Every permutation of $\{1, \dots, n\}$ has a monotone subsequence of length about \sqrt{n} .

MONOTONE SEQUENCES

THEOREM (ERDŐS-SZEKERES 1935)

Every permutation of $\{1, \dots, n\}$ has a monotone subsequence of length about \sqrt{n} .

EXAMPLE

1 5 2 7 3 6 4

MONOTONE SEQUENCES

THEOREM (ERDŐS-SZEKERES 1935)

Every permutation of $\{1, \dots, n\}$ has a monotone subsequence of length about \sqrt{n} .

EXAMPLE

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and decreasing subsequences ending there.

	1	5	2	7	3	6	4
inc.	1	2	2	3	3	4	4
dec.	1	1	2	1	2	2	3

MONOTONE WALKS: LOWER BOUND

QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone

MONOTONE WALKS: LOWER BOUND

QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

MONOTONE WALKS: LOWER BOUND

QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

MONOTONE WALKS: LOWER BOUND

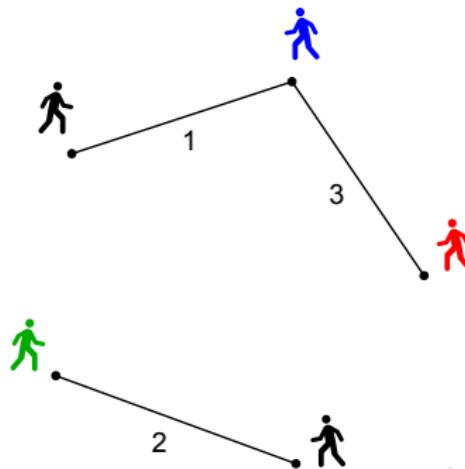
QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.



MONOTONE WALKS: LOWER BOUND

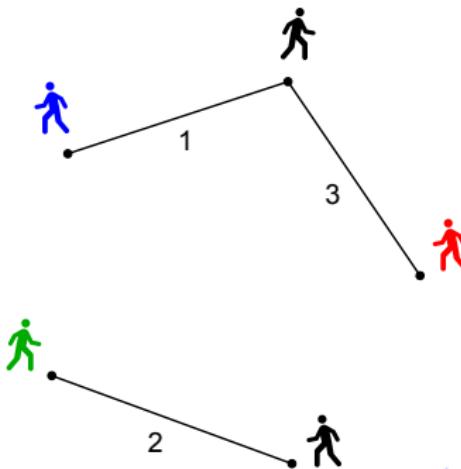
QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.



MONOTONE WALKS: LOWER BOUND

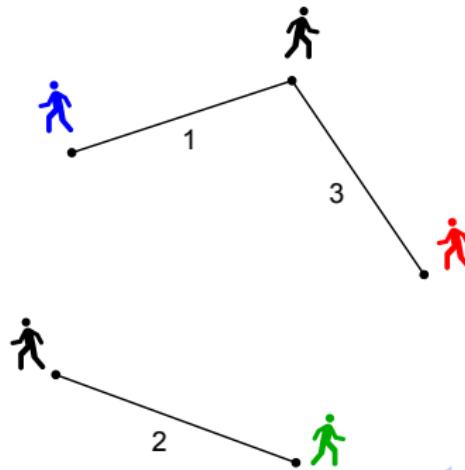
QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.



MONOTONE WALKS: LOWER BOUND

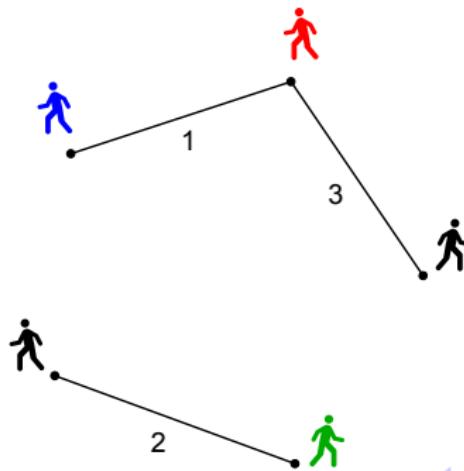
QUESTION (CHVÁTAL-KOMLOS 1971)

If edges of K_n are ordered from $1 \dots \binom{n}{2}$, is there always a long monotone walk?

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing walk of length $n - 1$.

Proof.



THEOREM (GRAHAM-KLEITMAN 1973)

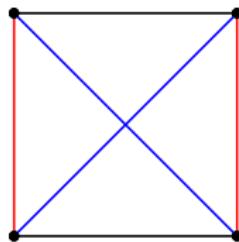
There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \notin \{3, 5\}$.

MONOTONE WALKS: UPPER BOUND

THEOREM (GRAHAM-KLEITMAN 1973)

There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \notin \{3, 5\}$.

Proof (for even n). Edges of K_n can be partitioned into perfect matchings.

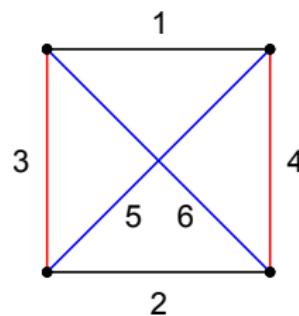


MONOTONE WALKS: UPPER BOUND

THEOREM (GRAHAM-KLEITMAN 1973)

There is an edge-ordering of K_n in which the longest monotone walk has length $n - 1$, for all $n \notin \{3, 5\}$.

Proof (for even n). Edges of K_n can be partitioned into perfect matchings.



Assign a batch of consecutive labels to each matching.

SELF-AVOIDING WALKS

DEFINITION

A *path* in a graph is a *self-avoiding walk*, which never visits the same vertex twice.

DEFINITION

A *path* in a graph is a *self-avoiding walk*, which never visits the same vertex twice.

SELF-AVOIDING WALKS ARE MORE COMPLICATED

- Easy poly-time algorithm to find longest increasing walk.

SELF-AVOIDING WALKS

DEFINITION

A *path* in a graph is a *self-avoiding walk*, which never visits the same vertex twice.

SELF-AVOIDING WALKS ARE MORE COMPLICATED

- Easy poly-time algorithm to find longest increasing walk.
- In probability: self-avoiding random walk proven sub-ballistic only in 2012 by Duminil-Copin and Hammond.

MONOTONE PATHS

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.

$$\binom{n}{2} = \text{walked} + \text{refused} \leq \frac{kn}{2} + \binom{k}{2}n = \frac{k^2n}{2}$$

MONOTONE PATHS

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of K_n has an increasing path of length $\sqrt{n-1}$.

Proof. Employ walkers again.

- When edge called, if a walker would revisit a vertex, neither walker moves.
- Suppose all walkers take $\leq k$ steps.
- At most $\frac{kn}{2}$ edges are walked.
- Each walker refuses at most $\binom{k+1}{2} - k = \binom{k}{2}$ edges.

$$\binom{n}{2} = \text{walked} + \text{refused} \leq \frac{kn}{2} + \binom{k}{2}n = \frac{k^2n}{2}$$

THEOREM (CALDERBANK-CHUNG-STURTEVANT 1984)

There is an edge-ordering of K_n in which the longest increasing path has length $(\frac{1}{2} - o(1))n$.

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

RANDOM ORDERING

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

Equiv: assign independent $\text{Unif}[0, 1]$ random real to each edge.

RANDOM ORDERING

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

Equiv: assign independent $\text{Unif}[0, 1]$ random real to each edge.

OBSERVATION

A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.

RANDOM ORDERING

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

Equiv: assign independent $\text{Unif}[0, 1]$ random real to each edge.

OBSERVATION

A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of $n - 1$ Uniforms, so expectation is $\frac{1}{n}$.

RANDOM ORDERING

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

Equiv: assign independent $\text{Unif}[0, 1]$ random real to each edge.

OBSERVATION

A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of $n - 1$ Uniforms, so expectation is $\frac{1}{n}$.
- Take that edge, then expose labels of edges to $n - 2$ remaining vertices.
- Smallest increment is min of $n - 2$ Unifs, so expectation $\frac{1}{n-1}$.

MODEL

Sample uniformly random ordering of $\binom{n}{2}$ edges.

Equiv: assign independent $\text{Unif}[0, 1]$ random real to each edge.

OBSERVATION

A random edge-ordering has an increasing path of length at least $(1 - \frac{1}{e})n$ a.a.s.

Proof sketch.

- Start at arbitrary vertex, expose labels of incident edges.
- Smallest incident label is min of $n - 1$ Uniforms, so expectation is $\frac{1}{n}$.
- Take that edge, then expose labels of edges to $n - 2$ remaining vertices.
- Smallest increment is min of $n - 2$ Unifs, so expectation $\frac{1}{n-1}$.
- Sum $\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{c n} = 1$ when $\log \frac{1}{c} = 1$. □

TRIVIAL BOUND

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

TRIVIAL BOUND

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability $\frac{1}{(n-1)!}$.

TRIVIAL BOUND

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability $\frac{1}{(n-1)!}$.
- Number of Hamiltonian paths is $n!$.

TRIVIAL BOUND

A.a.s., a random edge-ordering does not have a Hamiltonian increasing path.

Proof. (first moment method)

- For a given Hamiltonian path, it is increasing with probability $\frac{1}{(n-1)!}$.
- Number of Hamiltonian paths is $n!$.
- Expected number of increasing Hamiltonian paths is $n \dots$

FIRST MOMENT INSUFFICIENT

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$,
i.e., when $p \sim \frac{e}{n}$.

FIRST MOMENT INSUFFICIENT

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$,
i.e., when $p \sim \frac{e}{n}$.

THEOREM (BOLLOBÁS)

A.a.s., random graph process gets Hamiltonian cycle at moment
that all vertices have degree ≥ 2 , which is at $p \sim \frac{\log n + \log \log n + \omega}{n}$.

FIRST MOMENT INSUFFICIENT

$G_{n,p}$ has n Hamiltonian paths on expectation when $n!p^{n-1} \sim n$,
i.e., when $p \sim \frac{e}{n}$.

THEOREM (BOLLOBÁS)

A.a.s., random graph process gets Hamiltonian cycle at moment
that all vertices have degree ≥ 2 , which is at $p \sim \frac{\log n + \log \log n + \omega}{n}$.

THEOREM (GLEBOV-KRIVELICH 2013)

At hitting time, number of Hamiltonian cycles jumps from 0 to
 $[(1 + o(1)) \frac{\log n}{e}]^n$ a.a.s.

THEOREM (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

THEOREM (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.

LONG INCREASING PATHS

THEOREM (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.

THEOREM (LAVROV, L.)

With backtracking, k -greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.

LONG INCREASING PATHS

THEOREM (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.

Recall: greedy algorithm found increasing path of length $(1 - \frac{1}{e})n \approx 0.63n$ in a random edge-ordering, but was analyzable.

THEOREM (LAVROV, L.)

With backtracking, k -greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.

CONJECTURE (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.

SECOND MOMENT METHOD

THEOREM (CHEBYSHEV)

$$\mathbb{P} [|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}$$

SECOND MOMENT METHOD

THEOREM (CHEBYSHEV)

$$\mathbb{P} [|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}$$

THEOREM (LAVROV, L.)

Let X be the number of Hamiltonian increasing paths. Then $\mathbb{E}[X^2] \sim en^2$.

SECOND MOMENT METHOD

THEOREM (CHEBYSHEV)

$$\mathbb{P}[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}$$

THEOREM (LAVROV, L.)

Let X be the number of Hamiltonian increasing paths. Then $\mathbb{E}[X^2] \sim en^2$.

THEOREM (PALEY-ZYGMUND)

For nonnegative random variables X ,

$$\mathbb{P}[X > 0] \geq \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}$$

CALCULATION

Let $X = I_1 + \cdots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\mathbb{E}[X^2] = \sum_{j,k} \mathbb{E}[I_j I_k]$$

CALCULATION

Let $X = I_1 + \cdots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

CALCULATION

Let $X = I_1 + \dots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

Simplest profile: P, Q edge-disjoint

P

Q

CALCULATION

Let $X = I_1 + \dots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

Simplest profile: P, Q edge-disjoint

P

- Given P and Q , $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$

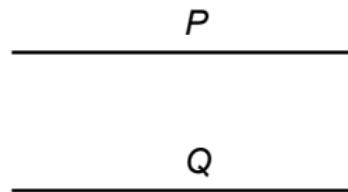
Q

CALCULATION

Let $X = I_1 + \dots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

Simplest profile: P, Q edge-disjoint



- Given P and Q , $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
- Number of (P, Q) embeddings: $n!n!$

CALCULATION

Let $X = I_1 + \dots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

Simplest profile: P, Q edge-disjoint

P

- Given P and Q , $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
- Number of (P, Q) embeddings: $n!n!$
- Total contribution of profile: n^2

Q

CALCULATION

Let $X = I_1 + \dots + I_{n!}$, a sum with one indicator random variable per potential Hamiltonian increasing path.

$$\begin{aligned}\mathbb{E}[X^2] &= \sum_{j,k} \mathbb{E}[I_j I_k] \\ &= \sum_{P,Q} \mathbb{P}[\text{both } P \text{ and } Q \text{ increasing}]\end{aligned}$$

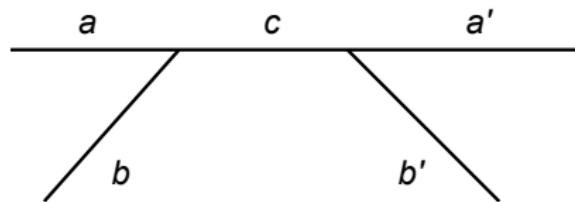
Simplest profile: P, Q edge-disjoint

P

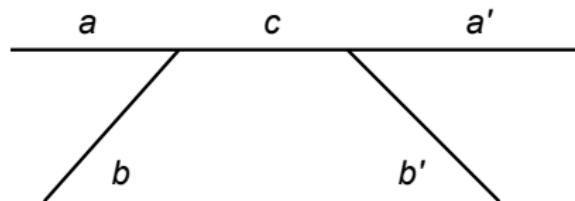
- Given P and Q , $\mathbb{P} = \frac{1}{(n-1)!} \cdot \frac{1}{(n-1)!}$
- Number of (P, Q) embeddings: $n! n! \frac{1}{e^2}$
- Total contribution of profile: $n^2 \frac{1}{e^2}$

Q

ANOTHER EASY PROFILE



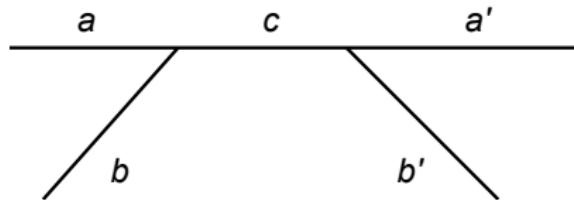
ANOTHER EASY PROFILE



PROBABILITY

- Total number of edge labels: $a + b + c + a' + b'$.

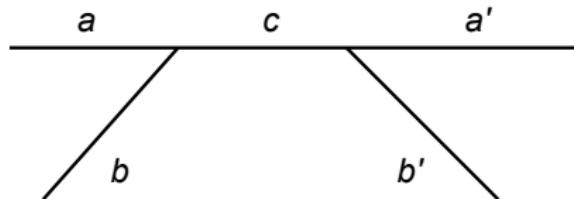
ANOTHER EASY PROFILE



PROBABILITY

- Total number of edge labels: $a + b + c + a' + b'$.
- Lowest $a + b$ of them must be in left branches.

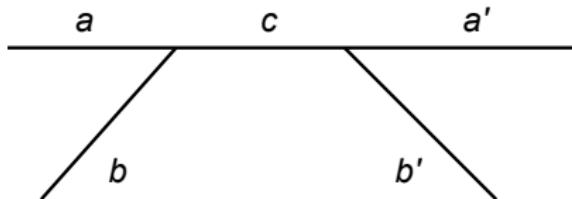
ANOTHER EASY PROFILE



PROBABILITY

- Total number of edge labels: $a + b + c + a' + b'$.
- Lowest $a + b$ of them must be in left branches.
- They can be split into top-left and bottom-left in $\binom{a+b}{a}$ ways.

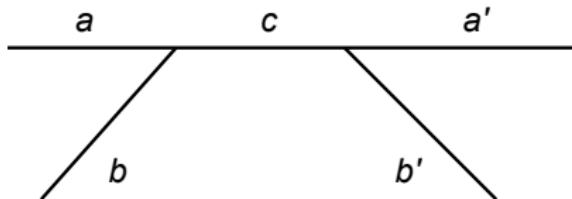
ANOTHER EASY PROFILE



PROBABILITY

- Total number of edge labels: $a + b + c + a' + b'$.
- Lowest $a + b$ of them must be in left branches.
- They can be split into top-left and bottom-left in $\binom{a+b}{a}$ ways.
- Highest $a' + b'$ labels can split into top-right and bottom-right in $\binom{a'+b'}{a'}$ ways,

ANOTHER EASY PROFILE

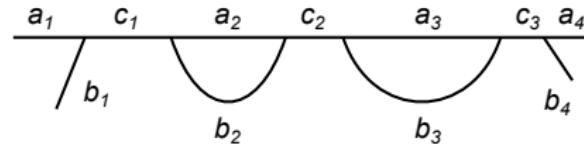


PROBABILITY

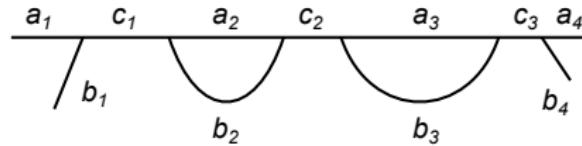
- Total number of edge labels: $a + b + c + a' + b'$.
- Lowest $a + b$ of them must be in left branches.
- They can be split into top-left and bottom-left in $\binom{a+b}{a}$ ways.
- Highest $a' + b'$ labels can split into top-right and bottom-right in $\binom{a'+b'}{a'}$ ways, so profile probability is

$$\frac{\binom{a+b}{a} \binom{a'+b'}{a'}}{(a+b+c+a'+b')!}$$

BIGGER PROFILE



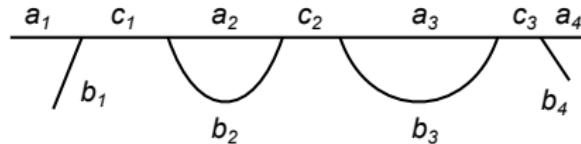
BIGGER PROFILE



PROBABILITY

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

BIGGER PROFILE



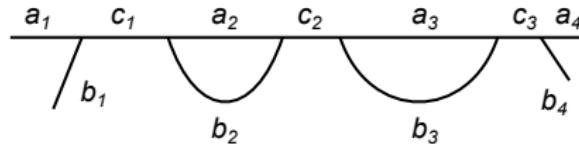
PROBABILITY

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

NUMBER OF EMBEDDINGS

- Embed top path: $n!$

BIGGER PROFILE



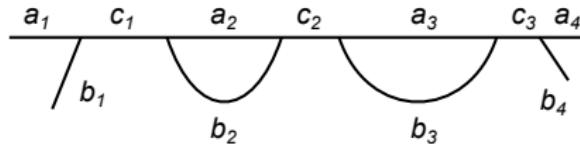
PROBABILITY

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

NUMBER OF EMBEDDINGS

- Embed top path: $n!$
- Bottom path has $(c_1 + 1) + (c_2 + 1) + (c_3 + 1)$ vertices already fixed.

BIGGER PROFILE



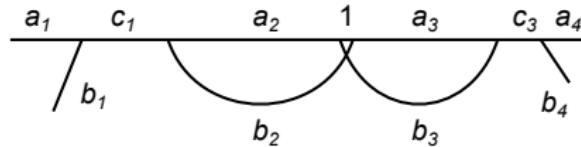
PROBABILITY

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

NUMBER OF EMBEDDINGS

- Embed top path: $n!$
- Bottom path has $(c_1 + 1) + (c_2 + 1) + (c_3 + 1)$ vertices already fixed.
- Remaining vertices can be embedded in $(n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}$ ways.

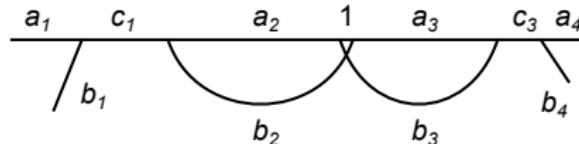
GENERAL PROFILE



CARE REQUIRED

When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.

GENERAL PROFILE



CARE REQUIRED

When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.

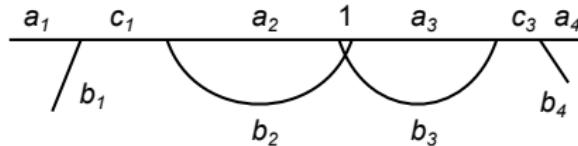
DOUBLING FACTOR

- Probability is still

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

- Number of embeddings is still $n!(n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}$.

GENERAL PROFILE



CARE REQUIRED

When a common segment has length 1, i.e., some $c_i = 1$, the single common edge can also be traversed backwards.

DOUBLING FACTOR

- Probability is still

$$\frac{\binom{a_1+b_1}{a_1} \binom{a_2+b_2}{a_2} \binom{a_3+b_3}{a_3} \binom{a_4+b_4}{a_4}}{(\sum a_i + \sum b_i + \sum c_i)!}$$

- Number of embeddings is still $n!(n - c_1 - c_2 - c_3 - 3)! \cdot e^{-2}$.
- We pick up a factor of 2 for each $c_i = 1$.

COMPUTATION

Therefore, second moment of number of Hamilton increasing paths is $\mathbb{E}[X^2] =$

$$\sum_{\substack{a_1, a_2, \dots \\ b_1, b_2, \dots \\ c_1, c_2, \dots}} n! \left[n - \sum (c_i + 1) \right]! e^{-2} \cdot \frac{\prod \binom{a_i + b_i}{a_i}}{[\sum a_i + \sum b_i + \sum c_i]!} \cdot 2^{\#\{i : c_i = 1\}}$$

Therefore, second moment of number of Hamilton increasing paths is $\mathbb{E}[X^2] =$

$$\sum_{\substack{a_1, a_2, \dots \\ b_1, b_2, \dots \\ c_1, c_2, \dots}} n! \left[n - \sum (c_i + 1) \right]! e^{-2} \cdot \frac{\prod \binom{a_i + b_i}{a_i}}{[\sum a_i + \sum b_i + \sum c_i]!} \cdot 2^{\#\{i : c_i = 1\}}$$

which, after some work, turns out to be $(1 + o(1))en^2$.

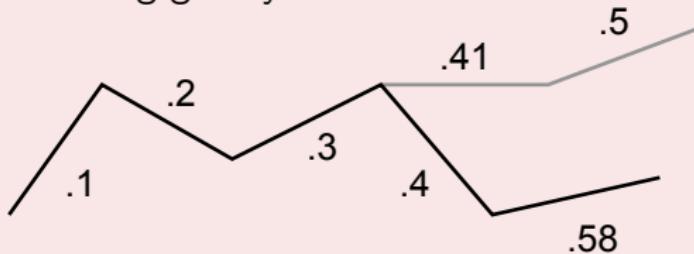
COST OF GREED

GREEDY ALGORITHM

Always pick edge with smallest increment to a new vertex.

POTENTIAL GAIN

Consider the following greedy outcome:



GREEDY ALGORITHM

- Let k be a constant, say 5.

GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.

GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.

GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.

GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
- Extend path to earliest subtree.

GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
- Extend path to earliest subtree.
- Replace exploration tree by that subtree, and repeat.

k -GREEDY ALGORITHM

- Let k be a constant, say 5.
- When extending path, do not immediately pick smallest increment.
- Reveal **next-labeled edge to new vertex** which is incident to end of path.
- Reveal **next edge** incident to exploration tree at end of path.
- Repeat until exploration tree has k edges.
- Extend path to **largest** subtree.
- Replace exploration tree by that subtree, and repeat.

TIME TO GROW PATH FROM $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ .

TIME TO GROW PATH FROM $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ .
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n - \ell)}$.

TIME TO GROW PATH FROM $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ .
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n - \ell)}$.
- To grow exploration tree to k edges, total increment is typically

$$\frac{1}{n - \ell} \left(\frac{1}{t} + \frac{1}{t + 1} + \cdots + \frac{1}{k} \right).$$

ANALYSIS OF k -GREEDY

TIME TO GROW PATH FROM $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ .
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n - \ell)}$.
- To grow exploration tree to k edges, total increment is typically

$$\frac{1}{n - \ell} \left(\frac{1}{t} + \frac{1}{t + 1} + \cdots + \frac{1}{k} \right).$$

- (Sanity check: in Greedy, $t = k = 1$.)

ANALYSIS OF k -GREEDY

TIME TO GROW PATH FROM $\ell \rightarrow \ell + 1$

- Suppose exploration tree has t vertices, and path has length ℓ .
- To grow exploration tree by 1 vertex, increment is min of $t(n - \ell)$ Uniforms, so typically $\frac{1}{t(n - \ell)}$.
- To grow exploration tree to k edges, total increment is typically

$$\frac{1}{n - \ell} \left(\frac{1}{t} + \frac{1}{t + 1} + \cdots + \frac{1}{k} \right).$$

- (Sanity check: in Greedy, $t = k = 1$.)

TYPICAL TIME TO GROW PATH FROM $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n - 1} + \cdots + \frac{1}{n - \ell} \right) \cdot \left(\text{typical } \frac{1}{t} + \cdots + \frac{1}{k} \right).$$

OBSERVATION

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process

OBSERVATION

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).

TYPICAL RESIDUAL EXPLORATION TREE

OBSERVATION

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).

CHINESE RESTAURANT PROCESS

When n -th person enters restaurant:

- Start new table with probability $\frac{1}{n}$.
- Join existing table with probability proportional to size.

TYPICAL RESIDUAL EXPLORATION TREE

OBSERVATION

If one watches subtrees of children of root, they grow according to the Chinese Restaurant Process (random recursive tree).

CHINESE RESTAURANT PROCESS

When n -th person enters restaurant:

- Start new table with probability $\frac{1}{n}$.
- Join existing table with probability proportional to size.

GOLOMB-DICKMAN CONSTANT

If T_k is largest table after k people, then

$$\mathbb{E} \left[\frac{T_k}{k} \right] \rightarrow 0.6243$$

CALCULATION FOR k -GREEDY

TYPICAL TIME TO GROW PATH FROM $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k} \right).$$

CALCULATION FOR k -GREEDY

TYPICAL TIME TO GROW PATH FROM $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k} \right).$$

TYPICAL FACTOR

- For large (but constant k):

$$\frac{1}{T_k} + \cdots + \frac{1}{k} \approx \log \frac{k}{T_k}$$

CALCULATION FOR k -GREEDY

TYPICAL TIME TO GROW PATH FROM $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k} \right).$$

TYPICAL FACTOR

- For large (but constant k):

$$\frac{1}{T_k} + \cdots + \frac{1}{k} \approx \log \frac{k}{T_k}$$

- As k grows, factor decreases; for $k = 100$, factor is about 0.5219.

CALCULATION FOR k -GREEDY

TYPICAL TIME TO GROW PATH FROM $0 \rightarrow \ell$

$$\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-\ell} \right) \cdot \left(\text{typical } \frac{1}{T_k} + \cdots + \frac{1}{k} \right).$$

TYPICAL FACTOR

- For large (but constant k):

$$\frac{1}{T_k} + \cdots + \frac{1}{k} \approx \log \frac{k}{T_k}$$

- As k grows, factor decreases; for $k = 100$, factor is about 0.5219.
- Typical length is when

$$\log \frac{n}{n-\ell} = \frac{1}{0.5219} \quad \Rightarrow \quad \ell = (1 - e^{-1/0.5219})n.$$

CONCLUDING REMARKS

THEOREM (LAVROV, L.)

- A random edge-ordering has an increasing Hamiltonian path with probability at least $\frac{1}{e}$.
- With backtracking, k -greedy algorithm finds an increasing path of length $0.85n$ a.a.s. in a random edge-ordering.
- Let X be the number of Hamiltonian increasing paths. Then $\mathbb{E}[X^2] \sim en^2$.

CONJECTURE (LAVROV, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.