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Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.
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THEOREM (GRAHAM-KLEITMAN 1973)

There is an edge-ordering of K,, in which the longest monotone
walk has length n — 1, for all n & {3,5}.

Proof (for even n). Edges of K, can be partitioned into perfect

matchings.
1

2
Assign a batch of consecutive labels to each matching.
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SELF-AVOIDING WALKS

DEFINITION

A path in a graph is a self-avoiding walk, which never visits the
same vertex twice.

SELF-AVOIDING WALKS ARE MORE COMPLICATED

@ Easy poly-time algorithm to find longest increasing walk.

@ In probability: self-avoiding random walk proven sub-ballistic
only in 2012 by Duminil-Copin and Hammond.
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MONOTONE PATHS

THEOREM (GRAHAM-KLEITMAN 1973)

Every edge-ordering of Kj, has an increasing path of length +/n — 1.

Proof. Employ walkers again.
@ When edge called, if a walker would revisit a vertex, neither
walker moves.
@ Suppose all walkers take < k steps.
@ At most % edges are walked.

@ Each walker refuses at most (kgl) — k= (’2‘) edges.

n kn k k2n
= < 0 27
<2> walked + refused < > + <2> n 5

THEOREM (CALDERBANK-CHUNG-STURTEVANT 1984)

There is an edge-ordering of K, in which the longest increasing
path has length (3 — o(1))n.
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RANDOM ORDERING

MODEL

Sample uniformly random ordering of ('2’) edges.
Equiv: assign independent Unif[0, 1] random real to each edge.

OBSERVATION

A random edge-ordering has an increasing path of length at least
(1- %)n a.a.s.

Proof sketch.

@ Start at arbitrary vertex, expose labels of incident edges.

@ Smallest incident label is min of n — 1 Uniforms, so
expectation is L

H.
o Take that edge, then expose labels of edges to n — 2
remaining vertices.
1
n—1-
oSum%+ﬁ—|—---+$:1whenlog%:1. g

@ Smallest increment is min of n — 2 Unifs, so expectation
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RANDOM ORDERING: UPPER BOUND

A.a.s., a random edge-ordering does not have a Hamiltonian
increasing path.

Proof. (first moment method)

@ For a given Hamiltonian path, it is increasing with probability
1

(n—1)!"
@ Number of Hamiltonian paths is n!.

@ Expected number of increasing Hamiltonian pathsis n ...
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FIRST MOMENT INSUFFICIENT

Gn,p has n Hamiltonian paths on expectation when nlp"™1 ~n,
i.e., when p ~ =.

THEOREM (BOLLOBAS)

A.a.s., random graph process gets Hamiltonian cycle at moment

that all vertices have degree > 2, which is at p ~ Egi‘—c’;'c’w

THEOREM (GLEBOV-KRIVELEVICH 2013)

At hitting time, number of Hamiltonian cycles jumps from 0 to
[(1+ 0(1))E]" a.as.
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LONG INCREASING PATHS

A random edge-ordering has an increasing Hamiltonian path with
probability at least %

Recall: greedy algorithm found increasing path of length
(1- %)n ~ 0.63n in a random edge-ordering, but was analyzable.

THEOREM (LAvrOv, L.)

With backtracking, k-greedy algorithm finds an increasing path of
length 0.85n a.a.s. in a random edge-ordering.

CONJECTURE (LAvrOv, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.
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SECOND MOMENT METHOD

THEOREM (CHEBYSHEV)

P(X - E[X]| > ] < Y

THEOREM (LAvRrROV, L.)
Let X be the number of Hamiltonian increasing paths. Then
E [X?] ~ en?.

THEOREM (PALEY-ZYGMUND)

For nonnegative random variables X,

E [X]°
E[X2]

P[X > 0] >
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PROFILES

Let X =1/ +---+ I, a sum with one indicator random variable
per potential Hamiltonian increasing path.

E[X?| = Y E[j]
J.k

= ZIP’ [both P and Q increasing]
P,Q

Simplest profile: P, Q edge-disjoint
P

e Given P and Q'P:(nTllﬁ'ZnTllﬁ

o Number of (P, Q) embeddings: n!n!%
@ Total contribution of profile: n
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ANOTHER EASY PROFILE

PROBABILITY

o Total number of edge labels: a+ b+ c+a + b'.

@ Lowest a + b of them must be in left branches.

@ They can be split into top-left and bottom-left in
n '+ b’ . Am T
in (*77) ways, so profile probability is

(503

(a+b+c+a+b)!

(a—i—b)
a
@ Highest a’ + b’ labels can split into top-right and bottom-right

ways.
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as Cy a, Cy as C3 ay
/b7 \/ v b4
b2 b3

PROBABILITY

(81+b1) (az+b2) (33+b3) (a4+b4)

ay an as as

>Ca+XY bi+>c)

y

NUMBER OF EMBEDDINGS
o Embed top path: n!

@ Bottom path has (c; +1) + (2 + 1) + (c3 + 1) vertices
already fixed.

@ Remaining vertices can be embedded in
(n—c1—c—c3—3)! e 2 ways.
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When a common segment has length 1, i.e., some ¢; = 1, the
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GENERAL PROFILE

a, [o2 a, 1 as
/b, W
b, bs

C; a4

by
When a common segment has length 1, i.e., some ¢; = 1, the
single common edge can also be traversed backwards.
DOUBLING FACTOR
@ Probability is still
(31+b1

)

ap

az+bs

) (b
(>Cai+>Xbi+>c)

@ Number of embeddings is still n!(n—c; —cx —c3 —3)! - e
@ We pick up a factor of 2 for each ¢; = 1.

2




COMPUTATION

is E[X?] =

Therefore, second moment of number of Hamilton increasing paths

| > e
81,282:,.."7! {n_Z(CIJrl)]!e [Ta+T b+l
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COMPUTATION

is E[X?] =

Therefore, second moment of number of Hamilton increasing paths

Z n! [n - Z(c,- + 1)] le—2
a ,a,...

i+bi
. H (a aj ) . 2#{i;ci:1}
Doai+ > bi+> ¢l
1,b2,...
C1,C2;..-

which, after some work, turns out to be (1 + o(1))en?.



COST OF GREED

GREEDY ALGORITHM

Always pick edge with smallest increment to a new vertex. I
POTENTIAL GAIN

Consider the following greedy outcome:
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GREEDY ALGORITHM, WITH TEMPTATION

GREEDY ALGORITHM

Let k be a constant, say 5.

When extending path, do not immediately pick smallest
increment.

Reveal next-labeled edge to new vertex which is incident to
end of path.

Reveal next edge incident to exploration tree at end of path.

Repeat until exploration tree has k edges.
Extend path to earliest subtree.

Replace exploration tree by that subtree, and repeat.




k-GREEDY ALGORITHM

k-GREEDY ALGORITHM

o Let k be a constant, say 5.

@ When extending path, do not immediately pick smallest
increment.

@ Reveal next-labeled edge to new vertex which is incident to
end of path.

Reveal next edge incident to exploration tree at end of path.
Repeat until exploration tree has k edges.
Extend path to largest subtree.

Replace exploration tree by that subtree, and repeat.

u}
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ANALYSIS OF k-GREEDY
TIME TO GROW PATH FROM £ — / + 1
@ Suppose exploration tree has t vertices, and path has length £.
@ To grow exploration tree by 1 vertex, increment is min of

t(n — £) Uniforms, so typically ‘t(nl—ei'

@ To grow exploration tree to k edges, total increment is
typically

1

<1 o 1 PR 1)
n—¢\t t+1 k)’
o (Sanity check: in Greedy, t = k =1.)

TYPICAL TIME TO GROW PATH FROM 0 — /
( 1

1 1
e e
n

o1
p— n_g)-<typ|calz+-~-
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TYPICAL RESIDUAL EXPLORATION TREE

OBSERVATION

If one watches subtrees of children of root, they grow according to
the Chinese Restaurant Process (random recursive tree).

CHINESE RESTAURANT PROCESS

When n-th person enters restaurant:
@ Start new table with probability %

@ Join existing table with probability proportional to size.

GOLOMB-DICKMAN CONSTANT

If Ty is largest table after k people, then

E [%} — 0.6243
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CALCULATION FOR k-GREEDY
TYPICAL TIME TO GROW PATH FROM 0 — /
1

1 1 ) 1
=4 +.--4+—— | typical — +---
n n—+{ k

n—1

+7)
).

0.5219.

@ As k grows, factor decreases; for k = 100, factor is about

o Typical length is when

log

1

n—¢ 05219

0= (1 e 105219y,




CONCLUDING REMARKS

THEOREM (LAvVRrOV, L.)

@ A random edge-ordering has an increasing Hamiltonian path
with probability at least %

e With backtracking, k-greedy algorithm finds an increasing
path of length 0.85n a.a.s. in a random edge-ordering.

@ Let X be the number of Hamiltonian increasing paths. Then
E [X?] ~ en?.

CoONJECTURE (Lavrov, L.)

A random edge-ordering has an increasing Hamiltonian path a.a.s.
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