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Max Cut

Problem

Given a graph, find a bipartition which maximizes the number of
crossing edges.

Max Cut is NP-complete.

Goemans-Williamson: 0.878-factor approximation via SDP.

Observation

Every graph has a cut with at least half of the edges crossing.

Proof:

Independently choose a random side for each vertex.

Each particular edge then crosses with probability 1
2 .

Expected number of crossing edges is exactly half. �
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Extensions

Let n and m be the numbers of vertices and edges, respectively.

Theorem (Edwards ’73)

Every graph has a cut of size at least m
2 +

√
m
8 + 1

64 −
1
8 .

Tight: e.g., for complete graphs.

Theorem (Erdős-Gyárfás-Kohayakawa ’97)

For graphs with no isolated vertices, Max Cut ≥ m
2 + n

6 .

Tight: e.g., for disjoint unions of triangles.
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Judicious partitions

Question

Are there always bipartitions that induce at most m
4 edges per side?

Randomly split vertices.

Let X and Y be the numbers of edges induced per side.

E [X ] = E [Y ] = m
4 .

But K2k+1 has m
4 = k2

2 + k
4 , yet Kk+1 induces k2

2 + k
2 edges.

Theorem (Bollobás-Scott ’99)

All graphs admit bipartitions that achieve the Edwards bound,

while also inducing at most m
4 +

√
m
32 + 1

256 −
1
16 edges per side.

Tight: e.g., for complete graphs.
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Bisections

Definition

A bipartition into two parts of equal size is called a bisection.

Feige-Langberg: 0.703-factor approximation algorithm for
Max Bisection, building upon Frieze and Jerrum.

Observation

Every graph has a bisection with at least half of the edges crossing.

Question

Do judicious bisections always exist, inducing ≤ m
4 edges per side?
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Obstruction

Obstruction

Any bisection of K1,n−1 already induces half of its edges on the
side with the apex.

Conjectures (Bollobás-Scott)

Bisections inducing only
(
1
4 + o(1)

)
m edges per side exist

whenever either (i) the maximum degree is o(n), or (ii) the
minimum degree tends to infinity.

Graphs with all degrees ≥ 2 admit bisections that induce at
most m

3 edges per side.

Question (Bollobás-Scott)

What is the best result for graphs of minimum degree at least δ?
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Main results

Theorem (Lee-L.-Sudakov)

Bisections inducing only
(
1
4 + o(1)

)
m edges per side exist as

long as either (i) the maximum degree is o(n), or (ii) the
minimum degree tends to infinity.

Graphs with all degrees ≥ 2 admit bisections that induce
fewer than

(
1
3 + o(1)

)
m edges per side.

Theorem (Lee-L.-Sudakov)

For even integers δ, graphs with all degrees ≥ δ admit bisections
that induce fewer than

(
δ+2

4(δ+1) + o(1)
)
m edges per side.

Remark. For odd δ, the bound for δ − 1 applies.
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Tightness
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Second moment method

Randomized bisection algorithm

Arbitrarily pair up vertices.

Independently split each pair randomly.

Analysis.

Let X and Y be the numbers of edges induced by each side.

E [X ] is at most m
4 .

Var (X ) is at most
∑

v d(v)2.

Chebyshev: X exceeds E [X ] by 2
√

Var (X ) with probability at
most 1

4 .

There is an outcome with both X ,Y ≤ m
4 + 2

√∑
d(v)2.∑

d(v)2 ≤ 2m∆ ≤ 2mn.
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Bisection

Question

Can one improve the bound Max Bisection ≥ m
2 ?

Theorem (Lee-L.-Sudakov)

For graphs with no isolated vertices and maximum degree ≤ n
3 + 1,

Max Bisection ≥ m

2
+

n

6
.

Remark. Matches Max Cut bound; max degree condition is tight.

n/3
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Greedy algorithm

Algorithmic proof of m
2 bisection bound.

Arbitrarily break vertices into ordered sequence of pairs.

When bisecting pair {u, v}, greedily select orientation which
maximizes the number of newly formed crossing edges.

If d is the number of new edges contributed by adding u and
v , then one orientation produces at least d

2 new crossing
edges. �

Observations.

If the new pair {u, v} is actually an edge, then guarantee
improves by +1

2 .

Also gain +1
2 if d is odd.
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Large bisection

Proof of m
2 + n

6 bound.

Take maximal matching; if more than n
3 edges,

done.

Remainder is independent set.

Pair remaining vertices and insert into order s.t.
each pair has odd number of back-edges.

All unpaired vertices form triangles to matching,
or all unpaired vertices have a common neighbor.

In both cases, there are at most n
3 unpaired

vertices, hence at least n
3 pairs that are edges or

odd-backs.

Greedy algorithm gives bisection of size at least
m
2 + n

6 . �
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Remaining ingredients

When all degrees are small, independent random splitting of
each pair produces a judicious bisection.

Replace Chebyshev with martingale concentration inequalities.

Partition high-degree vertices separately at the beginning.

Then apply large judicious bisection results to remainder.

Theorem (Lee-L.-Sudakov)

For even integers δ, graphs with all degrees ≥ δ admit bisections
that induce fewer than

(
δ+2

4(δ+1) + o(1)
)
m edges per side.
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