

JUDICIOUS BISECTIONS

Po-Shen Loh
Carnegie Mellon University

Joint work with Choongbum Lee and Benny Sudakov

MAX CUT

PROBLEM

Given a graph, find a bipartition which maximizes the number of crossing edges.

PROBLEM

Given a graph, find a bipartition which maximizes the number of crossing edges.

- Max Cut is NP-complete.
- Goemans-Williamson: 0.878-factor approximation via SDP.

MAX CUT

PROBLEM

Given a graph, find a bipartition which maximizes the number of crossing edges.

- Max Cut is NP-complete.
- Goemans-Williamson: 0.878-factor approximation via SDP.

OBSERVATION

Every graph has a cut with at least half of the edges crossing.

MAX CUT

PROBLEM

Given a graph, find a bipartition which maximizes the number of crossing edges.

- Max Cut is NP-complete.
- Goemans-Williamson: 0.878-factor approximation via SDP.

OBSERVATION

Every graph has a cut with at least half of the edges crossing.

Proof:

- Independently choose a random side for each vertex.
- Each particular edge then crosses with probability $\frac{1}{2}$.
- Expected number of crossing edges is exactly half. □

Let n and m be the numbers of vertices and edges, respectively.

THEOREM (EDWARDS '73)

Every graph has a cut of size at least $\frac{m}{2} + \sqrt{\frac{m}{8} + \frac{1}{64}} - \frac{1}{8}$.

Tight: e.g., for complete graphs.

EXTENSIONS

Let n and m be the numbers of vertices and edges, respectively.

THEOREM (EDWARDS '73)

Every graph has a cut of size at least $\frac{m}{2} + \sqrt{\frac{m}{8} + \frac{1}{64}} - \frac{1}{8}$.

Tight: e.g., for complete graphs.

THEOREM (ERDŐS-GYÁRFÁS-KOHAYAKAWA '97)

For graphs with no isolated vertices, Max Cut $\geq \frac{m}{2} + \frac{n}{6}$.

Tight: e.g., for disjoint unions of triangles.

QUESTION

Are there always bipartitions that induce at most $\frac{m}{4}$ edges per side?

QUESTION

Are there always bipartitions that induce at most $\frac{m}{4}$ edges per side?

- Randomly split vertices.
- Let X and Y be the numbers of edges induced per side.
- $\mathbb{E}[X] = \mathbb{E}[Y] = \frac{m}{4}$.

QUESTION

Are there always bipartitions that induce at most $\frac{m}{4}$ edges per side?

- Randomly split vertices.
- Let X and Y be the numbers of edges induced per side.
- $\mathbb{E}[X] = \mathbb{E}[Y] = \frac{m}{4}$.
- But K_{2k+1} has $\frac{m}{4} = \frac{k^2}{2} + \frac{k}{4}$, yet K_{k+1} induces $\frac{k^2}{2} + \frac{k}{2}$ edges.

QUESTION

Are there always bipartitions that induce at most $\frac{m}{4}$ edges per side?

- Randomly split vertices.
- Let X and Y be the numbers of edges induced per side.
- $\mathbb{E}[X] = \mathbb{E}[Y] = \frac{m}{4}$.
- But K_{2k+1} has $\frac{m}{4} = \frac{k^2}{2} + \frac{k}{4}$, yet K_{k+1} induces $\frac{k^2}{2} + \frac{k}{2}$ edges.

THEOREM (BOLLOBÁS-SCOTT '99)

All graphs admit bipartitions that achieve the Edwards bound, while also inducing at most $\frac{m}{4} + \sqrt{\frac{m}{32} + \frac{1}{256}} - \frac{1}{16}$ edges per side.

Tight: e.g., for complete graphs.

DEFINITION

A bipartition into two parts of equal size is called a *bisection*.

- Feige-Langberg: 0.703-factor approximation algorithm for Max Bisection, building upon Frieze and Jerrum.

BISECTIONS

DEFINITION

A bipartition into two parts of equal size is called a *bisection*.

- Feige-Langberg: 0.703-factor approximation algorithm for Max Bisection, building upon Frieze and Jerrum.

OBSERVATION

Every graph has a bisection with at least half of the edges crossing.

BISECTIONS

DEFINITION

A bipartition into two parts of equal size is called a *bisection*.

- Feige-Langberg: 0.703-factor approximation algorithm for Max Bisection, building upon Frieze and Jerrum.

OBSERVATION

Every graph has a bisection with at least half of the edges crossing.

QUESTION

Do judicious bisections always exist, inducing $\leq \frac{m}{4}$ edges per side?

OBSTRUCTION

OBSTRUCTION

Any bisection of $K_{1,n-1}$ already induces half of its edges on the side with the apex.

OBSTRUCTION

OBSTRUCTION

Any bisection of $K_{1,n-1}$ already induces half of its edges on the side with the apex.

CONJECTURES (BOLLOBÁS-SCOTT)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist whenever either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.

OBSTRUCTION

OBSTRUCTION

Any bisection of $K_{1,n-1}$ already induces half of its edges on the side with the apex.

CONJECTURES (BOLLOBÁS-SCOTT)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist whenever either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.
- Graphs with all degrees ≥ 2 admit bisections that induce at most $\frac{m}{3}$ edges per side.

OBSTRUCTION

OBSTRUCTION

Any bisection of $K_{1,n-1}$ already induces half of its edges on the side with the apex.

CONJECTURES (BOLLOBÁS-SCOTT)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist whenever either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.
- Graphs with all degrees ≥ 2 admit bisections that induce at most $\frac{m}{3}$ edges per side.

QUESTION (BOLLOBÁS-SCOTT)

What is the best result for graphs of minimum degree at least δ ?

MAIN RESULTS

THEOREM (LEE-L.-SUDAKOV)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist as long as either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.

THEOREM (LEE-L.-SUDAKOV)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist as long as either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.
- Graphs with all degrees ≥ 2 admit bisections that induce fewer than $(\frac{1}{3} + o(1))m$ edges per side.

MAIN RESULTS

THEOREM (LEE-L.-SUDAKOV)

- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist as long as either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.
- Graphs with all degrees ≥ 2 admit bisections that induce fewer than $(\frac{1}{3} + o(1))m$ edges per side.

THEOREM (LEE-L.-SUDAKOV)

For even integers δ , graphs with all degrees $\geq \delta$ admit bisections that induce fewer than $(\frac{\delta+2}{4(\delta+1)} + o(1))m$ edges per side.

MAIN RESULTS

THEOREM (LEE-L.-SUDAKOV)

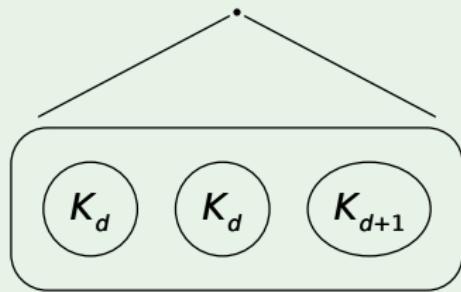
- Bisections inducing only $(\frac{1}{4} + o(1))m$ edges per side exist as long as either (i) the maximum degree is $o(n)$, or (ii) the minimum degree tends to infinity.
- Graphs with all degrees ≥ 2 admit bisections that induce fewer than $(\frac{1}{3} + o(1))m$ edges per side.

THEOREM (LEE-L.-SUDAKOV)

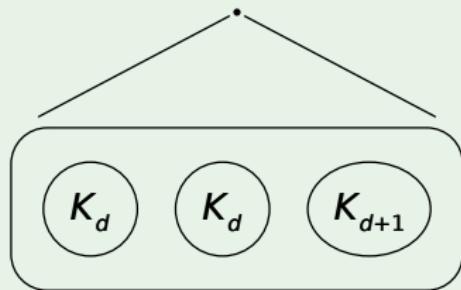
For even integers δ , graphs with all degrees $\geq \delta$ admit bisections that induce fewer than $(\frac{\delta+2}{4(\delta+1)} + o(1))m$ edges per side.

Remark. For odd δ , the bound for $\delta - 1$ applies.

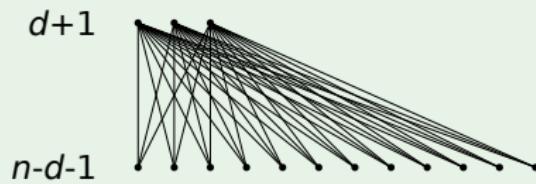
CONSTRUCTION



CONSTRUCTION



CONSTRUCTION 2



RANDOMIZED BISECTION ALGORITHM

- Arbitrarily pair up vertices.
- Independently split each pair randomly.

Analysis.

- Let X and Y be the numbers of edges induced by each side.
- $\mathbb{E}[X]$ is at most $\frac{m}{4}$.

RANDOMIZED BISECTION ALGORITHM

- Arbitrarily pair up vertices.
- Independently split each pair randomly.

Analysis.

- Let X and Y be the numbers of edges induced by each side.
- $\mathbb{E}[X]$ is at most $\frac{m}{4}$.
- $\text{Var}(X)$ is at most $\sum_v d(v)^2$.

RANDOMIZED BISECTION ALGORITHM

- Arbitrarily pair up vertices.
- Independently split each pair randomly.

Analysis.

- Let X and Y be the numbers of edges induced by each side.
- $\mathbb{E}[X]$ is at most $\frac{m}{4}$.
- $\text{Var}(X)$ is at most $\sum_v d(v)^2$.
- Chebyshev: X exceeds $\mathbb{E}[X]$ by $2\sqrt{\text{Var}(X)}$ with probability at most $\frac{1}{4}$.
- There is an outcome with **both** $X, Y \leq \frac{m}{4} + 2\sqrt{\sum d(v)^2}$.

RANDOMIZED BISECTION ALGORITHM

- Arbitrarily pair up vertices.
- Independently split each pair randomly.

Analysis.

- Let X and Y be the numbers of edges induced by each side.
- $\mathbb{E}[X]$ is at most $\frac{m}{4}$.
- $\text{Var}(X)$ is at most $\sum_v d(v)^2$.
- Chebyshev: X exceeds $\mathbb{E}[X]$ by $2\sqrt{\text{Var}(X)}$ with probability at most $\frac{1}{4}$.
- There is an outcome with **both** $X, Y \leq \frac{m}{4} + 2\sqrt{\sum d(v)^2}$.
- $\sum d(v)^2 \leq 2m\Delta \leq 2mn$.

QUESTION

Can one improve the bound Max Bisection $\geq \frac{m}{2}$?

QUESTION

Can one improve the bound Max Bisection $\geq \frac{m}{2}$?

THEOREM (LEE-L.-SUDAKOV)

For graphs with no isolated vertices and maximum degree $\leq \frac{n}{3} + 1$,

$$\text{Max Bisection} \geq \frac{m}{2} + \frac{n}{6}.$$

BISECTION

QUESTION

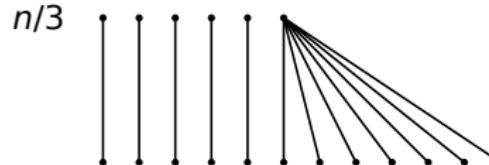
Can one improve the bound $\text{Max Bisection} \geq \frac{m}{2}$?

THEOREM (LEE-L.-SUDAKOV)

For graphs with no isolated vertices and maximum degree $\leq \frac{n}{3} + 1$,

$$\text{Max Bisection} \geq \frac{m}{2} + \frac{n}{6}.$$

Remark. Matches Max Cut bound; max degree condition is tight.



Algorithmic proof of $\frac{m}{2}$ bisection bound.

- Arbitrarily break vertices into ordered sequence of pairs.

Algorithmic proof of $\frac{m}{2}$ bisection bound.

- Arbitrarily break vertices into ordered sequence of pairs.
- When bisecting pair $\{u, v\}$, greedily select orientation which maximizes the number of newly formed crossing edges.

Algorithmic proof of $\frac{m}{2}$ bisection bound.

- Arbitrarily break vertices into ordered sequence of pairs.
- When bisecting pair $\{u, v\}$, greedily select orientation which maximizes the number of newly formed crossing edges.
- If d is the number of new edges contributed by adding u and v , then one orientation produces at least $\frac{d}{2}$ new crossing edges. □

Observations.

- If the new pair $\{u, v\}$ is actually an edge, then guarantee improves by $+\frac{1}{2}$.

Algorithmic proof of $\frac{m}{2}$ bisection bound.

- Arbitrarily break vertices into ordered sequence of pairs.
- When bisecting pair $\{u, v\}$, greedily select orientation which maximizes the number of newly formed crossing edges.
- If d is the number of new edges contributed by adding u and v , then one orientation produces at least $\frac{d}{2}$ new crossing edges. □

Observations.

- If the new pair $\{u, v\}$ is actually an edge, then guarantee improves by $+\frac{1}{2}$.
- Also gain $+\frac{1}{2}$ if d is odd.

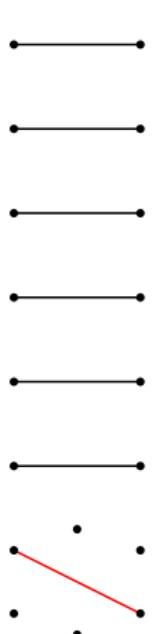
LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

LARGE BISECTION

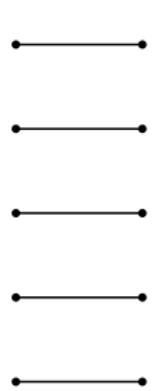
Proof of $\frac{m}{2} + \frac{n}{6}$ bound.



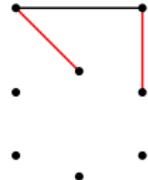
- Take maximal matching; if more than $\frac{n}{3}$ edges, done.
- Remainder is independent set.

LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.



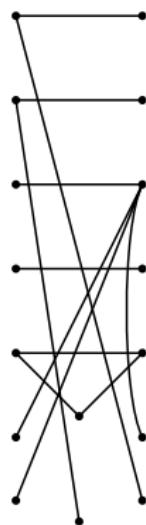
- Take maximal matching; if more than $\frac{n}{3}$ edges, done.
- Remainder is independent set.



LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.
- Remainder is independent set.



LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

- Remainder is independent set.

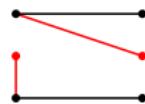
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.



LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.



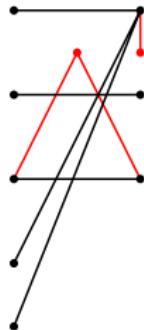
- Remainder is independent set.
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.

LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

- Remainder is independent set.
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.

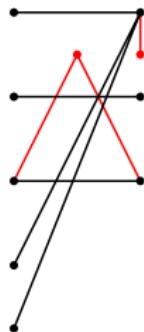


LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

- Remainder is independent set.
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.



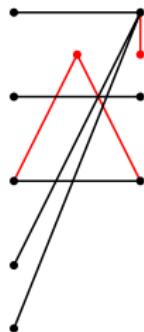
- All unpaired vertices form triangles to matching, or all unpaired vertices have a common neighbor.

LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

- Remainder is independent set.
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.



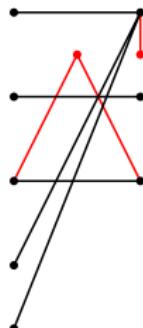
- All unpaired vertices form triangles to matching, or all unpaired vertices have a common neighbor.
- In both cases, there are at most $\frac{n}{3}$ unpaired vertices, hence at least $\frac{n}{3}$ pairs that are edges or odd-backs.

LARGE BISECTION

Proof of $\frac{m}{2} + \frac{n}{6}$ bound.

- Take maximal matching; if more than $\frac{n}{3}$ edges, done.

- Remainder is independent set.
- Pair remaining vertices and insert into order s.t. each pair has odd number of back-edges.



- All unpaired vertices form triangles to matching, or all unpaired vertices have a common neighbor.
- In both cases, there are at most $\frac{n}{3}$ unpaired vertices, hence at least $\frac{n}{3}$ pairs that are edges or odd-backs.
- Greedy algorithm gives bisection of size at least $\frac{m}{2} + \frac{n}{6}$. □

REMAINING INGREDIENTS

- When all degrees are small, independent random splitting of each pair produces a judicious bisection.

REMAINING INGREDIENTS

- When all degrees are small, independent random splitting of each pair produces a judicious bisection.
- Replace Chebyshev with martingale concentration inequalities.

REMAINING INGREDIENTS

- When all degrees are small, independent random splitting of each pair produces a judicious bisection.
- Replace Chebyshev with martingale concentration inequalities.
- Partition high-degree vertices separately at the beginning.

REMAINING INGREDIENTS

- When all degrees are small, independent random splitting of each pair produces a judicious bisection.
- Replace Chebyshev with martingale concentration inequalities.
- Partition high-degree vertices separately at the beginning.
- Then apply large judicious bisection results to remainder.

- When all degrees are small, independent random splitting of each pair produces a judicious bisection.
- Replace Chebyshev with martingale concentration inequalities.
- Partition high-degree vertices separately at the beginning.
- Then apply large judicious bisection results to remainder.

THEOREM (LEE-L.-SUDAKOV)

For even integers δ , graphs with all degrees $\geq \delta$ admit bisections that induce fewer than $(\frac{\delta+2}{4(\delta+1)} + o(1))m$ edges per side.