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Given a graph, find a bipartition which maximizes the number of
crossing edges.

@ Max Cut is NP-complete.

@ Goemans-Williamson: 0.878-factor approximation via SDP.

Every graph has a cut with at least half of the edges crossing. I

Proof:

@ Independently choose a random side for each vertex.
@ Each particular edge then crosses with probability %

@ Expected number of crossing edges is exactly half. 0
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EXTENSIONS

Let n and m be the numbers of vertices and edges, respectively.

THEOREM (EDWARDS ’73)

Every graph has a cut of size at least '+ /2 + & — L.

Tight: e.g., for complete graphs.

THEOREM (ERDOS-GYARFAS-KOHAYAKAWA ’97)

For graphs with no isolated vertices, Max Cut > 7 + ¢.

Tight: e.g., for disjoint unions of triangles.
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JUDICIOUS PARTITIONS
Are there always bipartitions that induce at most 7' edges per side? I

e Randomly split vertices.
@ Let X and Y be the numbers of edges induced per side.
o E[X]=E[Y]= 7.

k2 k2

@ But Kppiq has @ = K 4 k yet Kii1 induces % + k edges.
+ 1 2 1 + 2 2

THEOREM (BOLLOBAS-SCOTT ’99)

All graphs admit bipartitions that achieve the Edwards bound,
while also inducing at most 7 + /35 + %6 — % edges per side.

Tight: e.g., for complete graphs.




BISECTIONS
A bipartition into two parts of equal size is called a bisection. I

@ Feige-Langberg: 0.703-factor approximation algorithm for
Max Bisection, building upon Frieze and Jerrum.




BISECTIONS

A bipartition into two parts of equal size is called a bisection. I

@ Feige-Langberg: 0.703-factor approximation algorithm for
Max Bisection, building upon Frieze and Jerrum.

Every graph has a bisection with at least half of the edges crossing. I




BISECTIONS
A bipartition into two parts of equal size is called a bisection. l

@ Feige-Langberg: 0.703-factor approximation algorithm for
Max Bisection, building upon Frieze and Jerrum.

Every graph has a bisection with at least half of the edges crossing. l

QUESTION

Do judicious bisections always exist, inducing < 7' edges per side?
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OBSTRUCTION

Any bisection of Ky ,—1 already induces half of its edges on the
side with the apex.

CONJECTURES (BOLLOBAS-SCOTT)

@ Bisections inducing only (% + o(1))m edges per side exist
whenever either (i) the maximum degree is o(n), or (ii) the
minimum degree tends to infinity.

@ Graphs with all degrees > 2 admit bisections that induce at
most 7 edges per side.

QUESTION (BOLLOBAS-SCOTT)

What is the best result for graphs of minimum degree at least §?
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MAIN RESULTS

THEOREM (LEE-L.-SUDAKOV)

e Bisections inducing only (% + o(1))m edges per side exist as
long as either (i) the maximum degree is o(n), or (ii) the
minimum degree tends to infinity.

@ Graphs with all degrees > 2 admit bisections that induce
fewer than (3 + o(1))m edges per side.

THEOREM (LEE-L.-SUDAKOV)

For even integers §, graphs with all degrees > ¢ admit bisections

that induce fewer than ( (‘55121) + o(1)) m edges per side.

Remark. For odd 4, the bound for § — 1 applies.
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RANDOMIZED BISECTION ALGORITHM

o Arbitrarily pair up vertices.

@ Independently split each pair randomly.

Analysis.
@ Let X and Y be the numbers of edges induced by each side.
o E[X] is at most 7.
e Var(X) is at most >, d(v)2.
° Chebyfhev: X exceeds E [X] by 21/Var (X) with probability at
most 7.

@ There is an outcome with both X, Y < 714 2,/>" d(v)2.
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SECOND MOMENT METHOD

RANDOMIZED BISECTION ALGORITHM

o Arbitrarily pair up vertices.

@ Independently split each pair randomly.

Analysis.
@ Let X and Y be the numbers of edges induced by each side.
o E[X] is at most 7.
e Var(X) is at most >, d(v)2.
o Chebyshev: X exceeds E[X] by 2+/Var (X) with probability at
most %.
@ There is an outcome with both X, Y < 7 + 2,/>-d(v)2.
e > d(v)?> <2mA < 2mn.
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BISECTION

Can one improve the bound Max Bisection > 77 I

THEOREM (LEE-L.-SUDAKOV)

For graphs with no isolated vertices and maximum degree < 3 + 1,

S

m
Max Bisection > — + —.
ax bisection > 2+6

Remark. Matches Max Cut bound; max degree condition is tight.

RUTIIAN
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GREEDY ALGORITHM

Algorithmic proof of 7 bisection bound.

@ Arbitrarily break vertices into ordered sequence of pairs.

@ When bisecting pair {u, v}, greedily select orientation which
maximizes the number of newly formed crossing edges.

o If d is the number of new edges contributed by adding u and

v, then one orientation produces at least % new crossing

edges. O
Observations.

o If the new pair {u, v} is actually an edge, then guarantee
improves by +%.

@ Also gain —i—% if d is odd.
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@ Take maximal matching; if more than g edges,
done.

u]
o)

I

i
it
N)
pe)
Q



LARGE BISECTION
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@ Take maximal matching; if more than g edges,
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@ Take maximal matching; if more than g edges,
done.
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Proof of 7 + ¢ bound.

@ Take maximal matching; if more than g edges,
done.

@ Remainder is independent set.

@ Pair remaining vertices and insert into order s.t.
each pair has odd number of back-edges.
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Proof of 7 + ¢ bound.

@ Take maximal matching; if more than g edges,
done.
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LARGE BISECTION

Proof of 7 + ¢ bound.

@ Take maximal matching; if more than g edges,
done.

‘i @ Remainder is independent set.

I . @ Pair remaining vertices and insert into order s.t.
each pair has odd number of back-edges.

@ All unpaired vertices form triangles to matching,
or all unpaired vertices have a common neighbor.
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LARGE BISECTION

Proof of 7 + ¢ bound.

=gl

Take maximal matching; if more than 3 edges,
done.

Remainder is independent set.

Pair remaining vertices and insert into order s.t.
each pair has odd number of back-edges.

All unpaired vertices form triangles to matching,
or all unpaired vertices have a common neighbor.

In both cases, there are at most 3 unpaired
vertices, hence at least 3 pairs that are edges or
odd-backs.




LARGE BISECTION

Proof of 7 + ¢ bound.

@ Take maximal matching; if more than % edges,
done.

@ Remainder is independent set.

@ Pair remaining vertices and insert into order s.t.
each pair has odd number of back-edges.

All unpaired vertices form triangles to matching,
or all unpaired vertices have a common neighbor.

In both cases, there are at most 3 unpaired
vertices, hence at least 3 pairs that are edges or

izl

odd-backs.

Greedy algorithm gives bisection of size at least
mn O
2 T 6

u]

o)
I
i

it



REMAINING INGREDIENTS

@ When all degrees are small, independent random splitting of
each pair produces a judicious bisection.



REMAINING INGREDIENTS

@ When all degrees are small, independent random splitting of
each pair produces a judicious bisection.

@ Replace Chebyshev with martingale concentration inequalities.



REMAINING INGREDIENTS

@ When all degrees are small, independent random splitting of
each pair produces a judicious bisection.
@ Replace Chebyshev with martingale concentration inequalities.

o Partition high-degree vertices separately at the beginning.



REMAINING INGREDIENTS

@ When all degrees are small, independent random splitting of
each pair produces a judicious bisection.

@ Replace Chebyshev with martingale concentration inequalities.
o Partition high-degree vertices separately at the beginning.

@ Then apply large judicious bisection results to remainder.

u]

o)
I

i
it
N
pe)
?



REMAINING INGREDIENTS

@ When all degrees are small, independent random splitting of
each pair produces a judicious bisection.

@ Replace Chebyshev with martingale concentration inequalities.
o Partition high-degree vertices separately at the beginning.

@ Then apply large judicious bisection results to remainder.

For even integers 9, graphs with all degrees > § admit bisections
that induce fewer than (352+ + o(1))m edges per side.

4(6+1)




	Presentation

