

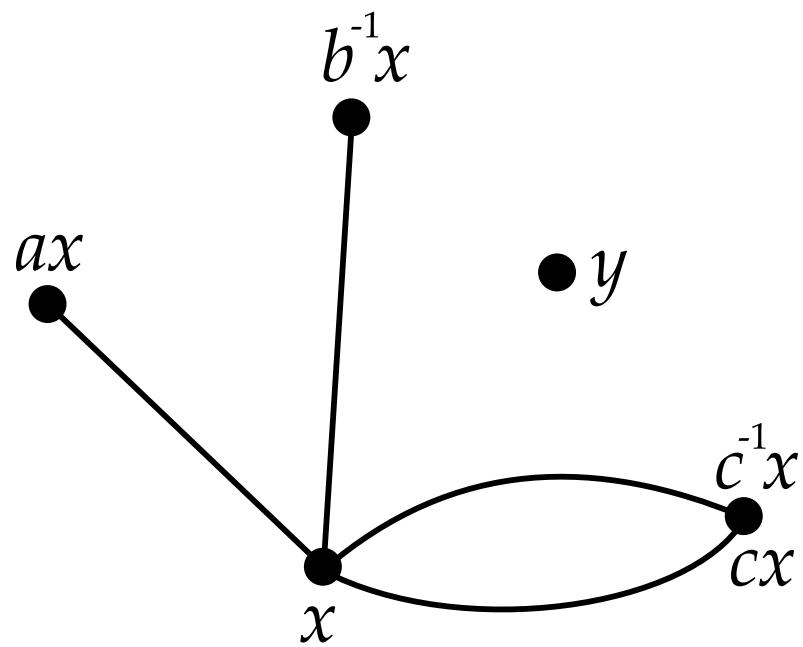
Joint Mathematics Meetings (Jan 2005)

Random Cayley Graphs and the Second Eigenvalue Problem

Po-Shen Loh, Caltech Graduate

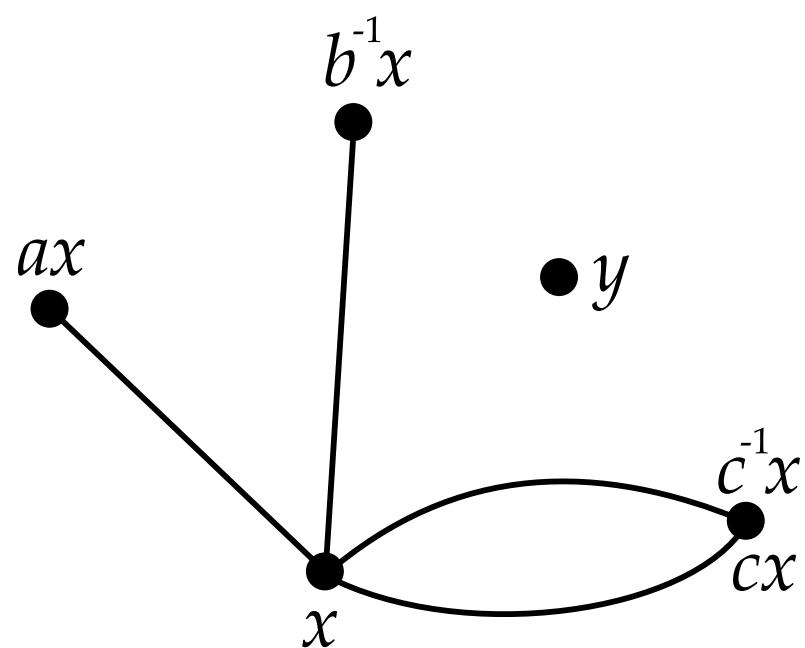
Advisor: Leonard Schulman, Caltech Computer Science

Cayley (multi-)graph



- $X(G, S)$
- a, b , and c are in $S \sqcup S^{-1}$
- There is no t in $S \sqcup S^{-1}$ for which $y = tx$

Adjacency matrix



ax	x
$b^{-1}x$	1
y	1
cx	0
	2

Normalized adjacency matrix; functionals

- $N := |S|$
- Normalized adj. matrix is $\frac{1}{2N} A$
- M has spectrum $|x_1| \geq |x_2| \geq \dots \geq |x_n|$
 $\lambda(M) := |x_1|$
 $\mu(M) := |x_2|$

Results

Theorem 1 (*Alon/Roichman, 1994*)

For any $\epsilon > 0$, there exists $c > 0$ such that for any fixed G , $\mathbb{E}[\mu(X(G, S))] < (1 + o(1))\epsilon$, where $|S| = N = c \log |G|$.

Results

Theorem 1 (*Alon/Roichman, 1994*)

For any $\epsilon > 0$, there exists $c > 0$ such that for any fixed G , $\mathbb{E}[\mu(X(G, S))] < (1 + o(1))\epsilon$, where $|S| = N = c \log |G|$.

Theorem 2 (*Loh/Schulman, 2004*)

$N = c \log D(G)$ will do, with the same c .

Results

Theorem 1 (*Alon/Roichman, 1994*)

For any $\epsilon > 0$, there exists $c > 0$ such that for any fixed G , $\mathbb{E}[\mu(X(G, S))] < (1 + o(1))\epsilon$, where $|S| = N = c \log |G|$.

Theorem 2 (*Loh/Schulman, 2004*)

$N = c \log D(G)$ will do, with the same c .

Conjecture 1 (*Loh/Schulman, 2004*)

$N = O(\log R(G))$ is sufficient.

From eigenvalues to random walks

M has real spectrum and $\lambda(M) = 1$:

$$\mu(M) \leq (\text{Tr}(M^{2m}) - 1)^{1/2m}$$

From eigenvalues to random walks

M has real spectrum and $\lambda(M) = 1$:

$$\mu(M) \leq (\text{Tr}(M^{2m}) - 1)^{1/2m}$$

Jensen's inequality:

$$\mathbb{E}[\mu(X(G, S))] \leq \mathbb{E} \left[(\text{Tr}(A^{2m}) - 1)^{1/2m} \right] \leq (\mathbb{E}[\text{Tr}(A^{2m})] - 1)^{1/2m}$$

Process RW

(1) Choose a random word of length $2m$ from the free monoid on the N letters $\{a_1, a_2, \dots, a_N\}$

$$a_2 a_5 a_5^{-1} a_1^{-1} a_7 a_3$$

Process RW

- (1) Choose a random word of length $2m$ from the free monoid on the N letters $\{a_1, a_2, \dots, a_N\}$
- (2) Reduce the word in the free group by iteratively canceling adjacent pairs

$$a_2 a_5 a_5^{-1} a_1^{-1} a_7 a_3$$

$$a_2 a_1^{-1} a_7 a_3$$

Process RW

- (1) Choose a random word of length $2m$ from the free monoid on the N letters $\{a_1, a_2, \dots, a_N\}$ $a_2 a_5 a_5^{-1} a_1^{-1} a_7 a_3$
- (2) Reduce the word in the free group by iteratively canceling adjacent pairs $a_2 a_1^{-1} a_7 a_3$
- (3) Randomly assign group elements (from G) to the letters that appear in the remaining word, and evaluate the product in G .

Process RW

- (1) Choose a random word of length $2m$ from the free monoid on the N letters $\{a_1, a_2, \dots, a_N\}$ $a_2 a_5 a_5^{-1} a_1^{-1} a_7 a_3$
- (2) Reduce the word in the free group by iteratively canceling adjacent pairs $a_2 a_1^{-1} a_7 a_3$
- (3) Randomly assign group elements (from G) to the letters that appear in the remaining word, and evaluate the product in G .

$$\mathbb{E}[\text{Tr}(A^{2m})] = G \cdot \Pr(\mathbf{RW} \mapsto 1)$$

Events

- (A)
- (B)
- (C) Neither of A or B , but (3) yields $1 \in G$.

$$\Pr(\mathbf{RW} \mapsto 1) \leq \Pr(A) + \Pr(B) + \Pr(C)$$

Events

Let $M := 2m \left(1 - \frac{\log \log 2m}{\log 2m}\right)$.

- (A) Step (2) produces a word ω shorter than M .
- (B) Not A , and every letter that appears in the ω appears at least twice.
- (C) Neither of A or B , but (3) yields $1 \in G$.

$$\Pr(\mathbf{RW} \mapsto 1) \leq \Pr(A) + \Pr(B) + \Pr(C)$$

Bounds for A, B, C

$$(\text{shorter than } M) \quad \Pr(A) \leq$$

$$(\text{no singletons}) \quad \Pr(B) \leq$$

$$(\text{has singleton, yields 1}) \quad \Pr(C) \leq 1/G$$

For C : $\omega = X\alpha Y$

Bounds for A, B, C

Recall $M = 2m \left(1 - \frac{\log \log 2m}{\log 2m}\right)$.

$$(\text{shorter than } M) \quad \Pr(A) \leq 2^{2m} (2/N)^{m \log \log 2m / \log 2m}$$

$$(\text{no singletons}) \quad \Pr(B) \leq 2^M (m/N)^{M/2}$$

$$(\text{has singleton, yields 1}) \quad \Pr(C) \leq 1/G$$

For C : $\omega = X\alpha Y$

Simplification

Recall $M = 2m \left(1 - \frac{\log \log 2m}{\log 2m}\right)$.

$$\begin{aligned} \text{(shorter than } M) \quad \Pr(A) &\leq 2^{2m} (2/N)^{m \log \log 2m / \log 2m} \\ \text{(no singletons)} \quad \Pr(B) &\leq 2^M (m/N)^{M/2} \\ \text{(has singleton, yields 1)} \quad \Pr(C) &\leq 1/G \end{aligned}$$

Setting $2m := (\log G)/b$ and $N := c \log G$:

$$(\mathbb{E}[\text{Tr}(A^{2m})] - 1)^{1/2m} \leq (1 + o(1)) \left(e^b \sqrt{\frac{2}{bc}} \right)$$

Group Algebra $\mathbb{C}[G]$

	x
ax	1
$b^{-1}x$	1
y	0
cx	2

Vector space with basis indexed by G .

$$T := S \sqcup S^{-1}$$

$$\alpha := \sum_{t \in T} \frac{1}{|T|} t$$

Group representations

$\rho : G \longrightarrow \mathbb{C}^{D \times D}$, unitary matrices

- $\rho(xy) = \rho(x)\rho(y)$
- $\rho(x^{-1}) = \rho(x)^{-1}$

Group representations

$\rho : G \longrightarrow \mathbb{C}^{D \times D}$, unitary matrices

- $\rho(xy) = \rho(x)\rho(y)$
- $\rho(x^{-1}) = \rho(x)^{-1}$

Reducible: isomorphic (exists uniform change of basis) to

$$\begin{pmatrix} A_x & 0 \\ 0 & B_x \end{pmatrix}$$

Special properties

$$\rho_1 \equiv 1 \quad \rho_r(1) = I_{d_r}$$

Special properties

$$\rho_1 \equiv 1 \quad \rho_r(1) = I_{d_r}$$

$$\chi_r(x) = \text{Tr}(\rho_r(x))$$

$$\sum_{x \in G} \chi_r(x) = 0 \quad \text{for nontrivial irreducibles}$$

Special properties

$$\rho_1 \equiv 1 \quad \rho_r(1) = I_{d_r}$$

$$\chi_r(x) = \text{Tr}(\rho_r(x))$$

$$\sum_{x \in G} \chi_r(x) = 0 \quad \text{for nontrivial irreducibles}$$

$$\sum_{r=1}^R d_r^2 = G$$

Fourier transform

$$\mathcal{F} : \mathbb{C}[G] \xrightarrow{\sim} \bigoplus_{r=1}^R \mathcal{M}_r$$

Fourier transform

$$\mathcal{F} : \mathbb{C}[G] \xrightarrow{\sim} \bigoplus_{r=1}^R \mathcal{M}_r$$

$$\mathcal{F} : \sum_{x \in G} a_x x \longmapsto \bigoplus_{r=1}^R \left(\sum_{x \in G} a_x \rho_r(x) \right)$$

Fourier transform

$$\mathcal{F} : \mathbb{C}[G] \xrightarrow{\sim} \bigoplus_{r=1}^R \mathcal{M}_r$$

$$\mathcal{F} : \sum_{x \in G} a_x x \longmapsto \bigoplus_{r=1}^R \left(\sum_{x \in G} a_x \rho_r(x) \right)$$

$$\mathcal{F}(\alpha) = \begin{pmatrix} \Psi_1 & 0 & \dots & 0 \\ 0 & \Psi_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Psi_R \end{pmatrix}, \quad \Psi_r := \sum_{t \in T} \frac{1}{|T|} \rho_r(t)$$

From μ to λ

$$\Psi_1 = \sum_{t \in T} \frac{1}{|T|} \rho_1(t)$$

$$\mu \begin{pmatrix} \Psi_1 & 0 & \dots & 0 \\ 0 & \Psi_2 & \dots & 0 \\ \cdot & \cdot & \dots & \cdot \\ 0 & 0 & \dots & \Psi_R \end{pmatrix} = \lambda \begin{pmatrix} \Psi_2 & \dots & 0 \\ \cdot & \dots & \cdot \\ 0 & \dots & \Psi_R \end{pmatrix}$$

From eigenvalues to traces

M has real spectrum:

$$\lambda(M) \leq (\text{Tr}(M^{2m}))^{1/2m}$$

From eigenvalues to traces

M has real spectrum:

$$\lambda(M) \leq (\mathrm{Tr}(M^{2m}))^{1/2m}$$

Jensen's inequality:

$$\mathrm{E}[\mu(X(G, S))] \leq \mathrm{E} \left[(\mathrm{Tr}(A_0^{2m}))^{1/2m} \right] \leq (\mathrm{E}[\mathrm{Tr}(A_0^{2m})])^{1/2m}$$

Swap order of summation

$$\sum_{r=2}^R \text{Tr}(\Psi_r^{2m}) = \sum_{r=2}^R \text{Tr} \left(\frac{1}{|T|} \sum_{t \in T} \rho_r(t) \right)^{2m}$$

Swap order of summation

$$\begin{aligned}\sum_{r=2}^R \text{Tr}(\Psi_r^{2m}) &= \sum_{r=2}^R \text{Tr} \left(\frac{1}{|T|} \sum_{t \in T} \rho_r(t) \right)^{2m} \\ &= \frac{1}{|T|^{2m}} \sum_{r=2}^R \left(\sum_{t_1, t_2, \dots, t_{2m} \in T} \chi_r(t_1 t_2 \cdots t_{2m}) \right)\end{aligned}$$

Swap order of summation

$$\begin{aligned}\sum_{r=2}^R \text{Tr}(\Psi_r^{2m}) &= \sum_{r=2}^R \text{Tr} \left(\frac{1}{|T|} \sum_{t \in T} \rho_r(t) \right)^{2m} \\ &= \frac{1}{|T|^{2m}} \sum_{r=2}^R \left(\sum_{t_1, t_2, \dots, t_{2m} \in T} \chi_r(t_1 t_2 \cdots t_{2m}) \right) \\ &= \frac{1}{|T|^{2m}} \sum_{r=2}^R \sum_{g \in G} \chi_r(g) N_g\end{aligned}$$

Swap order of summation

$$\begin{aligned}
\sum_{r=2}^R \text{Tr}(\Psi_r^{2m}) &= \sum_{r=2}^R \text{Tr} \left(\frac{1}{|T|} \sum_{t \in T} \rho_r(t) \right)^{2m} \\
&= \frac{1}{|T|^{2m}} \sum_{r=2}^R \left(\sum_{t_1, t_2, \dots, t_{2m} \in T} \chi_r(t_1 t_2 \cdots t_{2m}) \right) \\
&= \frac{1}{|T|^{2m}} \sum_{r=2}^R \sum_{g \in G} \chi_r(g) N_g \\
\text{Re E}[\text{Tr}(A^{2m})] &= \frac{1}{|T|^{2m}} \sum_{g \in G} \text{E}[N_g] \sum_{r=2}^R \text{Re} \chi_r(g),
\end{aligned}$$

Process **RW**, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

Process RW, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ = & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ + & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } \overline{A \cup B}) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \end{aligned}$$

Process RW, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ = & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ + & \sum_{g \in G} \frac{1}{G} \Pr(\overline{A \cup B}) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \end{aligned}$$

Process RW, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ = & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ + & \sum_{r=2}^R \frac{1}{G} \Pr(\overline{A \cup B}) \sum_{g \in G} \operatorname{Re} \chi_r(g) \end{aligned}$$

Process RW, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ = & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ + & \sum_{r=2}^R \frac{1}{G} \Pr(\overline{A \cup B}) \sum_{g \in G} \operatorname{Re} \chi_r(g) \end{aligned}$$

Process RW, revisited

$$\frac{\mathbb{E}[N_g]}{|T|^{2m}} = \Pr(\mathbf{RW} \mapsto g)$$

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ & \leq \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) D(G) \\ & + \sum_{r=2}^R \frac{1}{G} \Pr(\overline{A \cup B}) \sum_{g \in G} \operatorname{Re} \chi_r(g) \end{aligned}$$

Comparison with Alon/Roichman

$$\text{L/S: } (\Pr(A) + \Pr(B)) \cdot D(G)$$

Comparison with Alon/Roichman

$$\begin{aligned} \text{A/R:} \quad & G \cdot (\Pr(A) + \Pr(B) + \Pr(C)) - 1 \\ & \leq (\Pr(A) + \Pr(B)) \cdot G \end{aligned}$$

$$\text{L/S:} \quad (\Pr(A) + \Pr(B)) \cdot D(G)$$

Comparison with Alon/Roichman

$$\begin{aligned} \text{A/R:} \quad & G \cdot (\Pr(A) + \Pr(B) + \Pr(C)) - 1 \\ & \leq (\Pr(A) + \Pr(B)) \cdot G \end{aligned}$$

$$\text{L/S:} \quad (\Pr(A) + \Pr(B)) \cdot D(G)$$

$$\text{Recall: } M = 2m \left(1 - \frac{\log \log 2m}{\log 2m}\right),$$

$$(\text{shorter than } M) \quad \Pr(A) \leq 2^{2m} (2/N)^{m \log \log 2m / \log 2m}$$

$$(\text{no singletons}) \quad \Pr(B) \leq 2^M (m/N)^{M/2}$$

Simplification, revisited

Recall $M = 2m \left(1 - \frac{\log \log 2m}{\log 2m}\right)$.

$$\begin{aligned} \text{(shorter than } M) \quad \Pr(A) &\leq 2^{2m} (2/N)^{m \log \log 2m / \log 2m} \\ \text{(no singletons)} \quad \Pr(B) &\leq 2^M (m/N)^{M/2} \\ \text{(has singleton, yields 1)} \quad \Pr(C) &\leq 1/G \end{aligned}$$

Setting $2m := (\log D(G))/b$ and $N := c \log D(G)$:

$$((\Pr(A) + \Pr(B)) \cdot D(G))^{1/2m} \leq (1 + o(1)) \left(e^b \sqrt{\frac{2}{bc}} \right)$$

Future work

$$\begin{aligned} & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ = & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } A \cup B) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \\ + & \sum_{g \in G} \Pr(\mathbf{RW} \mapsto g \text{ and } \overline{A \cup B}) \sum_{r=2}^R \operatorname{Re} \chi_r(g) \end{aligned}$$

Acknowledgements

- Marshall family
- Caltech Summer Undergraduate Research Fellowship office
- Caltech Mathematics Department